Overview of LHCb results on $B \rightarrow D^* \tau \nu$ and related topics

Greg Ciezarek, on behalf of the LHCb collaboration

March 27, 2017

$B \rightarrow D^* \tau \nu$

- In the Standard model, the only difference between $B \rightarrow D^{(*)} \tau \nu$ and $B \rightarrow D^{(*)} \mu \nu$ is the mass of the lepton
 - Theoretically clean: $\sim 2\%$ uncertainty for D^* mode
- Ratio $R(D^{(*)}) = B(B \rightarrow D^{(*)}\tau\nu) / B(B \rightarrow D^{(*)}\mu\nu)$ is sensitive to e.g charged Higgs, leptoquark
- Current world average for $\mathcal{R}(D^{(*)})$ in $\sim 4\sigma$ tension with Standard Model!

Experimental challenge

- Difficulty: neutrinos 2 for $(au o \pi\pi\pi
 u)
 u$, 3 for $(au o \mu
 u
 u)
 u$
 - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
 - $B \to D^* \mu \nu, B \to D^{**} \mu \nu, B \to D^* D(\to \mu X) X \dots$
 - $B \rightarrow D^* \pi \pi \pi X$, $B \rightarrow D^* D (\rightarrow \pi \pi \pi X) X$...
- Also combinatorial, misidentified background

2. Introduction

What you can't do at a hadron collider

- Traditional methods for measuring these decays rely on $e^+e^- \rightarrow B\overline{B}$ event properties
 - Fully reconstruct other $B \rightarrow$ measurement of signal B kinematics
 - Signal B + other B should be entire event → strong rejection against other missing reconstructable particles
- In a hadron collider the BB centre of mass isn't fixed → rest of event provides little constraint on the signal B kinematics
 - Event also contains a lot of junk from the proton-proton interaction \rightarrow reconstructing the whole event is meaningless
- Needed completely different methods

5/25

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Overview

- Published $\mathcal{R}(D^*)$ measurement with $au o \mu
 u
 u$
- $\tau \rightarrow \pi \pi \pi \nu$ measurements covered in Benedetto Siddi's talk next
- Ongoing measurements
- Future

3. Published $\mathcal{R}(D^*)$ measurement

What you can do at a hadron collider

- Single arm forward spectrometer covering $2 < \eta < 5$
- Precision vertex measurement
- Muon and Hadron PID

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

3. Published $\mathcal{R}(D^*)$ measurement

Isolation

- Reject physics backgrounds with additional charged tracks
- MVA output distribution for $B \rightarrow D^{**} \mu^+ \nu$ background (hatched) and signal (solid)
- Inverting the cut gives a sample hugely enriched in background \rightarrow control samples

- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - Assume $\gamma \beta_{z, visible} = \gamma \beta_{z, total}$
 - $\sim 18\%$ resolution on B momentum, long tail on high side
- Can then calculate rest frame quantities $m^2_{missing}$, E_{μ} , q^2

Fit strategy

- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - Assume $\gamma \beta_{z, visible} = \gamma \beta_{z, total}$
 - ${\sim}18\%$ resolution on B momentum, long tail on high side
- Can then calculate rest frame quantities $m^2_{missing}$, E_{μ} , q^2

Fit strategy

• Three dimesional template fit in E_{μ} (left), $m^2_{missing}$ (middle), and q^2

- Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
 - Continuous variation in e.g different form factor parameters

イロト 不得 トイヨト イヨト

-

Background strategy

- All major backgrounds modelled using control samples in data
 - Dedicated samples for different backgrounds
 - Quality of fit used to justify modelling
 - Data-driven systematic uncertainties
- All combinatorial or misidentified backgrounds taken from data
- More details on everything in backups

▲日を▲御を▲田を▲田を一田、 めるの

 $B \rightarrow D^{**} (\rightarrow D^{*+} \pi) \mu \nu$ control sample

4. Fit

• Isolation MVA selects one track, $M_{D^{*+}\pi}$ around narrow D^{**} peak \rightarrow select a sample enhanced in $B \rightarrow D^{**}\mu^+\nu$

- Use this to constrain, justify $B
 ightarrow D^{**} \mu^+ \nu$ shape for light D^{**} states
- Also fit above, below narrow D^{**} peak region to check all regions of $M_{D^{*+}\pi}$ are modelled correctly in data

$B \rightarrow D^{**} (\rightarrow D^{*+} \pi \pi) \mu \nu$ control sample

• Also look for two tracks with isolation MVA \rightarrow study $B \rightarrow D^{**}(\rightarrow D^{*+}\pi\pi)\mu\nu$ in data

• Can control shape of this background

(日)、

э

4. Fit

- Fit to isolated data, used to determine ratio of $B \to D^* \tau \nu$ and $B \to D^* \mu \nu$
- Model fits data well
- We measure $\mathcal{R}(D^*)=0.336\pm0.027\pm0.030,$ consistent with SM at 2.1σ level
 - LHCB-PAPER-2015-025

5. Ongoing measurements

Next step: $D^0\mu X$ vs $D^{*+}\mu X$

• Final states closely entwined: D* decays to D⁰

- Always a large correlation between $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ measurements \rightarrow this is second round of $\mathcal{R}(D^*)$ measurement
- $B \rightarrow D^{(*)} \tau \nu$ signal $\sim 5 \times$ larger than in reconstructed $D^{*+} \mu X$ sample
 - $\sim 75\%D^*$ feed-down ightarrow significant update to $\mathcal{R}(D^*)$
- Backgrounds not so much worse than in $D^{*+}\mu X$

5. Ongoing measurements

Sources of $\mathcal{R}(D^*)$ uncertainty

- Last year: measured $\mathcal{R}(D^*)$ using $B \rightarrow D^* \tau \nu$, $\tau \rightarrow \mu \nu \nu$,
 - Relative contributions to total [error squared] shown
 - Largest systematics from MC statistics and non-muon component
- All uncertainties improved
 - MC statistics increased
 - Misid (hadrons → muons) component uncertainty will be reduced by improved methods, smarter use of PID

Ongoing analyses

- Ongoing: $B_s \rightarrow D_s^{(*)} \tau \nu$
 - Similar situation to $\mathcal{R}(D^{(*)})$
 - Main difference to $B \rightarrow D^{(*)} \tau \nu$: feed-down mostly via neutrals
- Expected soon: $B_c \rightarrow J/\psi \tau \nu$
 - Production rate low, but J/ $\psi
 ightarrow \mu\mu$ is a nice final state ightarrow high efficiencies
 - · Charmonium feed-down not so high, spectrum relatively well studied
 - Large background from $B \rightarrow J/\psi$ + (hadron misidentified as muon X)

Ongoing analyses

- Ongoing: $\Lambda_b \rightarrow \Lambda_c^{(*)} \tau \nu$
 - Different spin structure to meson modes \rightarrow different physics sensitivity
 - In particular, would help discriminate tensor contributions
- Potential: $B \rightarrow D^{**} \tau \nu$
 - Samples of $D^{**}\mu X$ not so small: control sample for $\mathcal{R}(D^*)$ measurement shown
 - To interpret results, need to split measurements between different D^{**} states
 - More work needed first on $B
 ightarrow D^{**} \mu
 u$ modes

ъ

Other hadronic analyses

- After $\mathcal{R}(D^*)$, expect full program of measurements with hadronic tau
- $\mathcal{R}(\Lambda_c)$ already underway
- Key issue: normalisation channels
 - Hadronic $\mathcal{R}(D^*)$ measurement relies on precise external measurement of $B\to D^{*+}\pi^-\pi^+\pi^-$
 - These do not exist for e.g $\Lambda_b \to \Lambda_c \pi^- \pi^+ \pi^-$
 - Plan to use theory calculation for B(Λ_b → Λ_cμν)/B(B→ D^{*}μν) to avoid dependence on Λ_b production fraction

7. Future

- If we establish a new physics signal in $b \rightarrow c \tau \nu$, would really want to test the flavour structure: $b \rightarrow u \tau \nu$
 - $b \to c \tau \nu$ hard enough to measure, before extra suppression \to background levels challenging
 - Requires very careful choice of channel to give us any hope
- See Mark Smith's talk tomorrow

Beyond Rs

- Ratios of branching fractions are only the first observable
 - q^2 , angles, τ/D^* polarisation have different sensitivity to new physics
- Variables fitted in $\tau \to \mu \nu \nu$ analyses already have some sensitivity to this
 - For now, measurements assume SM distributions (+ uncertainties)

Angular resolutions for $B \rightarrow D^* \mu \nu$

- Before taus, first look at angular resolution for $B \to D^* \mu \nu$ simulated events
- · Pretty wide, but have something to work with
 - Interesting mesurements possible in muonic modes

7. Future

Angular resolutions for $B \rightarrow D^* \tau \nu \ (\tau \rightarrow \mu \nu \nu)$

- Angular resolution for $B \rightarrow D^* \tau \nu$
- Tau decay results in loss of information
 - θ_ℓ and χ degraded
 - θ_D about the same $\to D^{*+}(\Lambda_c)$ polarisation related observables maybe a good first target
 - · Ideas for how to proceed, some tools already exist
 - Possible first step: measure scalar form-factor directly from $B \rightarrow D^{(*)} \tau \nu$ data, eliminate dependence on calculations
- Sensitivity not yet known, may need larger samples to really pin things down..

Future

- What we have analysed now is a tiny fraction of the sample we will eventually collect
 - With 50 fb $^{-1}$ (2021-2030), samples will grow by a factor \sim 30
 - With 300 fb $^{-1}$, (2034) samples will grow by a factor \sim 200
 - No sign that we hit a systematic limit
 - O(10 million) $B \rightarrow D^* \tau \nu \ (\tau \rightarrow \mu \nu \nu)$ events \rightarrow huge power for angular analysis
 - Need to work together with theory to understand all contributions to the needed precision \rightarrow continuous process
 - Even more suppressed signals $(B_c \rightarrow J/\psi \tau \nu X, B \rightarrow D^{**} \tau \nu, b \rightarrow u \tau \nu modes?)$ can have high statistical precision

Conclusion

- First LHCb measurement of $B \rightarrow D^* \tau \nu \ (\tau \rightarrow \mu \nu \nu)$ consistent with SM at 2.1 σ level
 - First ever measurement of a b
 ightarrow au decay at a hadron collider
 - Phys. Rev. Lett. 115 (2015) 111803
- Coming soon: $\mathcal{R}(D^*)$ measurement with $\tau \to \pi \pi \pi \nu$, $\mathcal{R}(J/\psi)$, $\mathcal{R}(D^{(*)})$ (both $\tau \to \mu \nu \nu$)
 - Exciting times
- Program of measurements in other channels underway, will continue to expand
- Will also start measuring observables beyond branching fractions
- All these measurements are still limited by sample sizes, will continue to improve

Backups

$B \rightarrow D^* \mu \nu$

- $B \rightarrow D^* \mu \nu$ (black) vs $B \rightarrow D^* \tau \nu$ (red)
- $B \rightarrow D^* \mu \nu$ is both the normalisation mode, and the highest rate background ($\sim 20 \times B \rightarrow D^* \tau \nu$)
 - Use CLN parameterisation for form factors
 - Float form factors parameters in fit ightarrow uncertainty taken into account

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

9. Backup

 $B \rightarrow D^{**} \mu^+ \nu$

- $B \rightarrow D^{**} \mu^+ \nu$ refers to any higher charm resonances (or non resonant hadronic modes)
- Not so well measured
 - Set of states comprising D^{**} known to be incomplete
 - Decay models not well measured
- For the established states (shown in black):
 - Separate components for each resonance (D_1, D_2^*, D_1')
 - Use LLSW model (Phys. Rev. D. (1997) 57 307), float slope of Isgur-wise function < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $B
ightarrow D^{**} (
ightarrow D^{*+} \pi) \mu
u$ control sample

• Isolation MVA selects one track, $M_{D^{*+}\pi}$ around narrow D^{**} peak \rightarrow select a sample enhanced in $B \rightarrow D^{**}\mu^+\nu$

- Use this to constrain, justify $B
 ightarrow D^{**} \mu^+
 u$ shape for light D^{**} states
- Also fit above, below narrow D^{**} peak region to check all regions of $M_{D^{*+}\pi}$ are modelled correctly in data

Higher $B \rightarrow D^{**} \mu^+ \nu$ states

- Previously unmeasured $B \rightarrow D^{**} (\rightarrow D^{*+} \pi \pi) \mu \nu$ contributions recently measured by BaBar
 - Too little data to separate individual (non)resonant components
 - Single fit component, empirical treatment
- Constrain based on a control sample in data
 - Degrees of freedom considered: D^{**} mass spectrum, q^2 distribution
 - Effect of D** mass spectrum negligible

$B \rightarrow D^{**} (\rightarrow D^{*+} \pi \pi) \mu \nu$ control sample

- Also look for two tracks with isolation MVA \rightarrow study $B \rightarrow D^{**}(\rightarrow D^{*+}\pi\pi)\mu\nu$ in data
- Can control shape of this background

31/25

(日)、

э

$B \rightarrow D^* D X$

- $B \rightarrow D^*DX$ consists of a very large number of decay modes
 - · Physics models for many modes not well established
- Constrain based on a control sample in data
- Single component, empirical treatment
 - Consider variations in M_{DD}
 - Multiply simulated distributions by second order polynomials
 - Parameters determined from data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$B \rightarrow D^* DX$ control sample

• Isolation MVA selects a track with loose kaon ID \rightarrow select a sample enhanced in $B \rightarrow D^*DX$

・ロト ・聞ト ・ヨト ・ヨト

э

• Use this to constrain, justify $B \rightarrow D^*DX$ shape

Combinatorial backgrounds

- Combinatorial background modelled using same-sign $D^{*+}\mu^+$ data
- Two sources of combinatorial background are treated separately (shown on next slide)

(日)、

-

Combinatorial backgrounds

- Non D^{*+} backgrounds (fake D^*) template modelled using $D^0\pi^-$ data (shown)
 - Yield determined from sideband extrapolation beneath D^{*+} mass peak
- Hadrons misidentified as muons (fake muons)
 - Controlled using $D^{*+}h^{\pm}$ sample
 - · Both template and expected yield can be determined
- Both of these are subtracted from D^{*+}µ⁺ template to avoid double counting

$D^{*+}\tau X$ backgrounds

- Two small backgrounds containing taus, each $<\sim 10\%$ of the signal yield: $B \rightarrow D^{**}\tau^+\nu$ (shown) and $B \rightarrow D^*(D_s \rightarrow \tau\nu)X$
 - Both too small to measure
- $B \rightarrow D^{**}\tau^+\nu$ constrained based on measured $B \rightarrow D^{**}\mu^+\nu$ yield, theoretical expectations (~50% uncertainty)
- $B \rightarrow D^*(D_s \rightarrow \tau \nu)X$ constrained based on $B \rightarrow D^*DX$ yield, and measured branching fractions (~30% uncertainty)