

Status (Prospects) of $B \rightarrow K^{(*)}\ell^+\ell^-$ decays at Belle (II) & related topics

Saurabh Sandilya

University of Cincinnati (On Behalf of the Belle and Belle II Collaboration)

Outline

Introduction

- ✤ Forward Backward asymmetry in $B \rightarrow K^* \ell^+ \ell^- \text{ and } B \rightarrow X_s \ell^+ \ell^-$
- ★ Lepton flavor separated angular analysis of B→K*⁰ℓ⁺ℓ⁻ at Belle
- R(K*) and R(K) status
- ***** Search for LFV decay $B \rightarrow K^{*0}\mu^+e^-$
- ***** Search for $B \rightarrow h^{(*)}vv$

Introduction

- The decays such as $B \to K^{(*)} \ell^+ \ell^-$ are manifestations of quark level transitions $b \to s \ell^+ \ell^-$.
- These FCNC processes are forbidden in the SM at the tree level and can only occur at greatly suppressed rates through higher-order processes (penguin loops/box).

Introduction

- The decays such as $B \to K^{(*)} \ell^+ \ell^-$ are manifestations of quark level transitions $b \to s \ell^+ \ell^-$.
- These FCNC processes are forbidden in the SM at the tree level and can only occur at greatly suppressed rates through higher-order processes (penguin loops/box).

First observation of a b \rightarrow s $\ell^+\ell^-$ decay (LP-2001)

Forward Backward asymmetry in $B \rightarrow K^* \ell^+ \ell^-$

 $R(K^*) = 0.83 \pm 0.17 \pm 0.08$ $R(K) = 1.03 \pm 0.19 \pm 0.06$

Pre-LHCb

Forward Backward asymmetry in $B \rightarrow K^* \ell^+ \ell^-$

 F_L and A_{FB} are obtained from fit to $cos\theta_{K^*}$ and $cos\theta_{B\ell}$

 $R(K^*) = 0.83 \pm 0.17 \pm 0.08$ $R(K) = 1.03 \pm 0.19 \pm 0.06$

Pre-LHCb

- Inclusive measurement is theoretically cleaner than the exclusive, but experimentally more challenging .
- Sum-of-exclusive technique (10 modes with M[X_s] < 2.0 GeV/c²) used to measured A_{FB} (corresponds to ~50% of the inclusive rate).

Belle II prospects for $B \rightarrow X_s \ell^+ \ell^-$

Belle II can
 significantly improve
 upon this situation
 and with its expected
 larger statistics.

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$Br(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV^2})$	23%	10%	4.7%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] {\rm GeV}^2)$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] {\rm GeV}^2)$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	19%	7.3%	2.4%

B2TIP report | arXiv:1808.10567

In the beginning, Belle II will still have to rely on the sum-of-exclusive method but later fully inclusive analysis can also be attempted.

Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K \\ + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_L \\ -F_L\cos^2\theta_K\cos2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos2\phi \\ + S_4\sin2\theta_K\sin2\theta_L\cos\phi + S_5\sin2\theta_K\sin\theta_L\cos\phi \\ + S_6\sin^2\theta_K\cos\theta_L + S_7\sin2\theta_K\sin\theta_L\sin\phi \\ + S_8\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin^2\theta_K\sin^2\theta_L\sin2\phi \end{bmatrix}$$

$$JHEP 01 (2009) 019$$

$$F'_4, S_4 : \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_L > \pi/2 \\ \theta_L \to \pi - \theta_L & \text{for } \theta_L > \pi/2 \end{cases}$$

$$F'_{i=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$
The observables are considered to be largely free from form-factor related uncertainties}

15-Nov-18

Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

- Signal is extracted in Beam Constrained Mass: $M_{bc} = \sqrt{E_{beam}^2 |\vec{p}_B|^2}$
- Signal pdf: Crystal Ball, Background pdf: Argus shape

Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

• Data is divided in the q² bins.

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

- Signal and background fraction is obtained by fitting M_{bc} distribution
- The data is split into a sideband and signal region

 Shape of the background can be determined in the sideband region

• Final fit in signal region for each transformation

Result P₅': for Combined Data

- Measurements are compatible with the SM.
- Similar central values for the P_5' anomaly with 2.5 σ tension.

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

15-Nov-18

Result - Separate Lepton Flavor!

- The Largest deviation in the muon mode with 2.6σ .
- Electron mode is deviating with 1.1σ .

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

15-Nov-18

Result - Separate Lepton Flavor!

- Test lepton flavor universality.
- Observables $Q_i = P'_i^{\mu} P'_i^{e}$. [JHEP 10, 075 (2016)]
- Deviation from zero very sensitive to NP.

- No significant deviation from zero is discerned.
- Q₄ and Q₅ observables in agreement with SM and favoring NP scenario.

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

Status of R(K/K*)

- The Lepton Flavor universality can be tested very precisely with the ratios: $R_{H}[q_{0}^{2}, q_{1}^{2}] = \frac{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to H\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to He^{+}e^{-})}{dq^{2}}}; H = K, K^{*}, X_{s}$
- In these ratios, hadronic uncertainties in theoretical predictions cancel and SM prediction is (very) close to unity.
- Experimentally, many sources of systematic uncertainties are substantially reduced.

Belle II prospects for R(K/K*)

- The Lepton Flavor universality can be tested very precisely with the ratios: $R_{H}[q_{0}^{2}, q_{1}^{2}] = \frac{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to H\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to He^{+}e^{-})}{dq^{2}}}; H = K, K^{*}, X_{s}$
- In these ratios, hadronic uncertainties in theoretical predictions cancel and SM prediction is (very) close to unity.
- Experimentally, many sources of systematic uncertainties are substantially reduced.

B2TIP report | arXiv:1808.10567

Global fits to $b \rightarrow s$

• Including P'_i , Q_i , $b \rightarrow s\gamma$, $R[K^{(*)}]$, $B_s \rightarrow \mu\mu$

Capdevila, Crivellin, Descotes-Genon, Matias, and Virto JHEP 1801 (2018) 093

suggests $C_{9\mu}^{NP} \approx -1.1$

Including R[K^(*)] and Belle's P_i', Q_i

Altmannshofer, Stangl, and Straub Phys. Rev. D 96, 055008 (2017)

A combined fit singles out NP in the Wilson coefficient C_9^{μ} as a possible explanation.

- Measurements from the LHCb have exhibited possible deviations in R(K) and R(K*) from LFU.
 PRL 113, 151601 (2014), JHEP 08, 055 (2017)
- Violation of LFU is accompanied by LFV.
 S. L. Glashow et.al PRL 114, 091801 (2015)
- Recently, LFV decay $B^0 \rightarrow K^{*0}\mu^{\pm}e^{\mp}$ is searched at **Belle**.

Phys. Rev. D 98, 071101(R) 2018

- K[±], π[±], μ[±] and e[±] candidates are selected from tracks near IP and satisfying PID requirements. Inv. mass from K-π should be within 100 MeV window around K*⁰ nominal mass.
- **continuum** background events are suppressed using input variables based on event topology in a **NN**. Another NN is used to suppress background originating from **B-decays**. $B^0 \rightarrow K^{*0}J/\psi$ was a good control sample and it is also used to **calibrate** the NNs.
- set of vetoes applied to suppress events from $B^0 \rightarrow K^{*0} [K^+\pi^-]J/\psi[\ell^+\ell^-]$ decays in which one of the leptons is misidentified and swapped with the K⁺ or π^- .

Search for LFV decay $B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$

- good agreement between data and MC for both the number of events observed and the shapes of the distributions.
- No signal is observed \rightarrow UL is derived.

Mode	е (%)	N _{sig}	B ^{UL} (10 ⁻⁷)
$B^0 \rightarrow K^{*0} \mu^+ e^-$	8.8	$-1.5^{+4.7}_{-4.1}$	1.2
$B^0 \rightarrow K^{*0} \mu^- e^+$	9.3	$0.40^{+4.8}_{-4.5}$	1.6
$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$	9.0	$-1.2^{+6.8}_{-6.2}$	1.8

 M_{hc} (GeV/c²)

- Search for $\mathbf{B} \rightarrow \mathbf{h}^{(*)} \mathbf{v} \mathbf{v}$ at Belle, where $\mathbf{h} = \mathbf{K}^+$, \mathbf{K}_s^0 , \mathbf{K}^{*+} , \mathbf{K}^{*0} , π^+ , $\pi^0 \rho^+$, ρ^0
- Proceeds via penguin or box diagrams:

- SM prediction for the BF ranges from 1.2×10^{-7} (B $\rightarrow \pi^0 \nu \nu$) to 9.2×10^{-6} (B $\rightarrow K^{*+}\nu \nu$). [A. Buras *et al.* J. High Energy Phys. 02 (2015) 184; C. Hambrock *et al.* Phys. Rev. D 92, 074020 (2015).]
- Experimentally challenging, tagging of companion B meson needed.
 - measured at **Belle** using Hadronic tagging [Phys.Rev.D87 111103 (2013)].
 - measured at BaBar utilizing both hadronic [Phys. Rev. D 87, 112005 (2013)] and semileptonic tagging [Phys. Rev. D 82, 112002 (2010)]
 - Semileptonic tagging in this analysis.

Belle [Phys. Rev. D 96, 091101(R) (2017)]

Reconstruction of $B \to h^{(*)} \nu \nu$

- Semileptonic tagging for companion B (B_{tag}):
 - Hierarchical reconstruction of $B \rightarrow D^{(*)}\ell \nu$ using Neural Network.
 - 2 3 times efficient than hadronic tagging.
- B_{tag} candidate is combined with the reconstructed signal (B_{sig}) decay product to form an Υ(4S) candidate or signal event candidate.
- No additional charged track, π^0 or K_L^0 in an event.
- Continuum events are suppressed with the event shape variables.
- Signal extracted in extra (additional) energy in the calorimeter

Results

- Signal Extraction:
 - Fit with template histograms.
 - Signal and Background (b→c, continuum, light quark pairs).
 - Relative fractions are fixed to MC values.
- No statistically significant signal yield observed.

$K^+ \nu \bar{\nu}$ $17.7 \pm 9.1 \pm 3.4$ 1.9σ $K^0_S \nu \bar{\nu}$ $0.6 \pm 4.2 \pm 1.4$ 0.0σ $K^{*+} \nu \bar{\nu}$ $16.2 \pm 7.4 \pm 1.8$ 2.3σ $K^{*0} \nu \bar{\nu}$ $-2.0 \pm 3.6 \pm 1.8$ 0.0σ $\pi^+ \nu \bar{\nu}$ $5.6 \pm 15.1 \pm 5.9$ 0.0σ $\pi^0 \nu \bar{\nu}$ $0.2 \pm 5.6 \pm 1.6$ 0.0σ $\rho^+ \nu \bar{\nu}$ $6.2 \pm 12.3 \pm 2.4$ 0.3σ	Channel	Observed signal yield	Significance
$K_{\rm S}^0 \nu \bar{\nu}$ $0.6 \pm 4.2 \pm 1.4$ 0.0σ $K^{*+} \nu \bar{\nu}$ $16.2 \pm 7.4 \pm 1.8$ 2.3σ $K^{*0} \nu \bar{\nu}$ $-2.0 \pm 3.6 \pm 1.8$ 0.0σ $\pi^+ \nu \bar{\nu}$ $5.6 \pm 15.1 \pm 5.9$ 0.0σ $\pi^0 \nu \bar{\nu}$ $0.2 \pm 5.6 \pm 1.6$ 0.0σ $\rho^+ \nu \bar{\nu}$ $6.2 \pm 12.3 \pm 2.4$ 0.3σ	$K^+ u ar u$	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$K^{*+}\nu\bar{\nu}$ $16.2 \pm 7.4 \pm 1.8$ 2.3σ $K^{*0}\nu\bar{\nu}$ $-2.0 \pm 3.6 \pm 1.8$ 0.0σ $\pi^+\nu\bar{\nu}$ $5.6 \pm 15.1 \pm 5.9$ 0.0σ $\pi^0\nu\bar{\nu}$ $0.2 \pm 5.6 \pm 1.6$ 0.0σ $\rho^+\nu\bar{\nu}$ $6.2 \pm 12.3 \pm 2.4$ 0.3σ	$K^0_{\rm S} \nu \bar{\nu}$	$0.6\pm4.2\pm1.4$	0.0σ
$K^{*0}\nu\bar{\nu}$ $-2.0 \pm 3.6 \pm 1.8$ 0.0σ $\pi^+\nu\bar{\nu}$ $5.6 \pm 15.1 \pm 5.9$ 0.0σ $\pi^0\nu\bar{\nu}$ $0.2 \pm 5.6 \pm 1.6$ 0.0σ $\rho^+\nu\bar{\nu}$ $6.2 \pm 12.3 \pm 2.4$ 0.3σ	$K^{*+} u ar{ u}$	$16.2 \pm 7.4 \pm 1.8$	2.3σ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^{*0} u ar{ u}$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$\begin{array}{cccc} \pi^{0}\nu\bar{\nu} & 0.2 \pm 5.6 \pm 1.6 & 0.0\sigma \\ \rho^{+}\nu\bar{\nu} & 6.2 \pm 12.3 \pm 2.4 & 0.3\sigma \\ 0 & \bar{\nu} & 11.0 \pm 0.0 \pm 2.6 & 1.2 \end{array}$	$\pi^+ u ar u$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$\rho^+ \nu \bar{\nu}$ 6.2 ± 12.3 ± 2.4 0.3 σ	$\pi^0 u ar u$	$0.2 \pm 5.6 \pm 1.6$	0.0σ
0 = 110 + 00 + 20	$ ho^+ u ar u$	$6.2 \pm 12.3 \pm 2.4$	0.3σ
$\rho^{\circ}\nu\nu$ 11.9 ± 9.0 ± 3.6 1.2 σ	$ ho^0 u ar u$	$11.9 \pm 9.0 \pm 3.6$	1.2σ

Belle [Phys. Rev. D 96, 091101(R) (2017)]

Upper Limits

- Most stringent upper limits on BF[B \rightarrow h^(*)vv], where h^(*) = K⁺, K_s⁰, K^{*0}, π^+ , π^0 , ρ^+ and ρ^0 .
- Golden channel for Belle II.

Summary

- The decays $B \to K^{(*)}\ell^+\ell^-$ were first observed by Belle (2001).
- First Lepton Flavor dependent angular analysis of $B \rightarrow K^* \ell^+ \ell^$ performed: Consistent with both SM and NP with $C_{9\mu}^{NP} \approx -1.1$.
- Searched for the LFV decay B⁰ → K^{*0}µ[±]e[∓] at Belle, and the most stringent limit derived.
- Search for B → h^(*)vv is performed. Most stringent limits till date in most channels. Close to SM prediction in K^(*) mode. Golden channel for Belle II.
- Upcoming B-factory "Belle II" has brighter prospects for EWP decays.

Extra Slides

Full Angular Analysis

The observables are depended on $q^2 = M_{\ell^+\ell^-}^2$

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K \\ + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_L \\ - F_L\cos^2\theta_K\cos2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos2\phi \\ + S_4\sin2\theta_K\sin2\theta_L\cos\phi + S_5\sin2\theta_K\sin\theta_L\cos\phi \\ + S_6\sin^2\theta_K\cos\theta_L + S_7\sin2\theta_K\sin\theta_L\sin\phi \\ + S_8\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin^2\theta_K\sin^2\theta_L\sin2\phi \end{bmatrix}$$

Folding Procedure

$$P'_{4}, S_{4}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{L} > \pi/2\\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \pi/2, \end{cases}$$

$$P'_{5}, S_{5}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \pi/2, \end{cases}$$

- With a transformation of the angles, the dimension is reduced to three free parameters
- Each transformation remains three observables S_j, F_L and S₃
- The observables

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}},$$

are considered to be largely free from form-factor uncertainties (J. High Energy Phys. 05 (2013) 137).

Transverse polarization asymmetry

$$A_T^{(2)} = rac{2S_3}{(1-F_L)}$$

Belle II prospects for angular analysis

