Leptogenesis

Takehiko Asaka（Niigata Univ．）

Flavor Physics workshop 2021 （FPWS2021）
2021／09／27－30
Online

Contents

- Introduction
- Baryon asymmetry of the universe (BAU)
- Baryogenesis in the Standard Model
- Leptogenesis
- Motivation
- Some scenarios of leptogenesis
- Experimental tests of leptogenesis scenarios
- Summary

Baryon Asymmetry of the Universe (BAU)

Baryon v.s. antibaryon

Baryon
 proton $(B=+1)$
 neutron $(B=+1)$

Antibaryon
 antiproton $\quad(B=-1)$
 antineutron $(B=-1)$

- We find baryons mostly, not antibaryons !
- Existence of antiproton

In cosmic rays, $p+p \rightarrow p+p+p+\bar{p}$
At TEVATRON, $p+\bar{p} \rightarrow \mathrm{X}$

- Asymmetry between baryons and antibaryons in our Universe

How large ???

Baryon Asymmetry of the Universe (BAU)

- Observational value

Planck 2018 [1807.06209]

$$
Y_{B}=\frac{n_{B}}{S}=(0.872 \pm 0.004) \times 10^{-10}
$$

n_{B} : baryon number density, s : entropy density

Brief history of the universe

Baryogenesis

- Sakharov (1967)
(1) Baryon number B is violated
"According to our hypothesis, the occurrence of C asymmetry is the consequencecot pielation pfisheinniergatee imithateenstationary expansion of the hot Universe during the superdense stage, as manifest in the difference between the egatialfprqpabililities offithe-gharge-conjugate reactions."

Let us see whether the SM satisfies these conditions

B violation in the MSM

- At classical level, B and L are conserved

$$
\left\{\begin{array}{l}
\partial_{\mu} j_{B}^{\mu}=0 \\
\partial_{\mu} j_{L}^{\mu}=0
\end{array}\right.
$$

accidental symmetries

$$
\left\{\begin{array}{l}
\text { Baryon number: } B=\int d^{3} x j_{B}^{0} \\
\text { Lepton number: } L=\int d^{3} x j_{L}^{0}
\end{array}\right.
$$

both charges are conserved

- At quantum level, B and L are violated by non-perturbative anomaly effect

$$
\partial_{\mu} j_{B}^{\mu}=\partial_{\mu} j_{L}^{\mu}=N_{F} \frac{g^{2}}{32 \pi^{2}} W_{\mu \nu}^{a} \widetilde{W}^{a \mu \nu}
$$

$$
N_{F}: \text { number of generations (families) }
$$

$$
\partial_{\mu}\left(j_{B}^{\mu}-j_{L}^{\mu}\right)=0
$$

B and L are violated, but $(B-L)$ is conserved!

- Chern-Simons number (integer)

$$
\begin{aligned}
& \Delta B=\int_{t_{i}}^{t_{f}} d t \int d^{3} x \partial_{\mu} j_{B}^{\mu}=N_{F} \Delta N_{C S} \\
& \quad N_{C S}=\frac{g^{2}}{32 \pi^{2}} \int d^{3} x \varepsilon^{i j k} \operatorname{tr}\left(A_{i} \partial_{j} \partial_{k}+\frac{2}{3} i g A_{i} A_{j} A_{k}\right)
\end{aligned}
$$

Energy

$$
\Delta B=\Delta L=N_{F}
$$

- At the vacuum (at temperature $T=0$)

Energy

[G. 't Hooft '76]
The transition rate

$$
\Gamma \sim \exp \left(-\frac{16 \pi^{2}}{g^{2}}\right)=\mathcal{O}\left(10^{-170}\right)
$$

$B+L$ breaking effect is negligible

- For high temperatures (at temperature $T>\mathcal{O}\left(10^{2}\right) \mathrm{GeV}$)

Energy Sphaleron

The transition rate (per unit volume)

$$
\Gamma \sim \kappa \alpha_{W}^{5} T^{5} \quad[\text { Moore ‘00] }
$$

Sphaleron process is in equilibrium

$10^{12} \mathrm{GeV}>T>10^{2} \mathrm{GeV}$
[Kuzumin, Rubakov, Shaposhnikov '85]

Buchmuller

Sphaleron conversion

- Initial $(B-L)$ asymmetry is converted into B

$$
B_{f}=\frac{8 N_{F}+4}{22 N_{F}+13}(B-L)_{i}=0.35(B-L)_{i}
$$

[Khlebnikov, Shaposhnikov ‘88, Harvey, Turner ‘90]

- $(B-L)_{i}=0$ initially leads to $B=0$ universe
\rightarrow Initial asymmetries B_{i} and L_{i} are washed out if $(B-L)_{i}=0$
- We have to generate $(B-L)_{i}>0$ initially in order to explain $B>0$ universe !

Baryogenesis in the Standard Model

- B and L violations
- Sphaleron for T>100GeV
- CP violation
- 1 CP phase in the quark-mixing (CKM) matrix
$\mathrm{CPV} \sim \frac{J_{C P}\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{t}^{2}-m_{u}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{b}^{2}-m_{d}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right)}{T_{E W}^{12}} \sim 10^{-19}$
\rightarrow too small
- Out of equilibrium [Kajantie, Laine, Rummukainen, Shaposhnikov]
- Strong $1^{\text {st }}$ order phase transition if $m_{h}<72 \mathrm{GeV}$ but $m_{h}=125 \mathrm{GeV}$
\rightarrow not satisfied

> We have to go beyond the SM !

Various baryogenesis scenarios

- GUT baryogenesis, GUT baryogenesis after preheating, Baryogenesis from primordial black holes, String scale baryogenesis, Affleck-Dine (AD) baryogenesis, Hybridized AD baryogenesis, No-scale AD baryogenesis, Single field baryogenesis, Electroweak (EW) baryogenesis, Local EW baryogenesis, Non-local EW baryogenesis, EW baryogenesis at preheating, SUSY EW baryogenesis, String mediated EW baryogenesis, Inflationary via baryogenesis, Baryogenesis without ground unification (leptogenesis), Resonant leptogenesis, Spontaneous baryogenesis, Coherent baryogenesis, Gravitational baryogenesis, Defect mediated baryogenesis, Baryogenesis from cosmic strings, B-ball baryogenesis, Baryogenesis via neutrino oscillations, Monopole baryogenesis, \cdots

Leptogenesis

Leptogenesis -Motivation

Neutrino properties

- Mixing angles and mass squared differences are measured very precisely

$$
\begin{array}{ll}
\sin ^{2} \theta_{12}=0.308_{-0.012}^{+0.013} \tag{NHcase}\\
\sin ^{2} \theta_{23}=0.440_{-0.019}^{+0.023} & \Delta m_{21}^{2}=\left(7.49_{-0.17}^{+0.19}\right) \times 10^{-5} \mathrm{eV}^{2} \quad \text { (NH cas } \\
\sin ^{2} \theta_{13}=0.02163_{-0.00074}^{+0.00074} & \begin{array}{l}
\text { Gonzalez-Garcia, Maltoni and Schwetz } \\
\\
(v \text {-fit, August '16) }
\end{array}
\end{array}
$$

- Unknown properties
- Absolute masses of neutrinos (m_{v} lightest ? Mass ordering ?)
- CP violations (Dirac phase ? Majorana phase(s) ?)
- Dirac or Majorana fermions

Why v_{R} ?

- Chiral structure of fermions in the SM
- Hierarchical patterns of fermion masses
- neutrino masses \ll masses of quarks and leptons

$$
\left(m_{\text {atm }} \simeq 50 \mathrm{meV} \ll m_{e} \simeq 0.5 \mathrm{MeV}\right)
$$

- Interesting phenomena by right-handed neutrinos
- Baryogenesis
- Leptogenesis / Mechanism by oscillations
- Dark matter
- keV mass right-handed neutrino is a candidate of WDM (it may be irrelevant in the seesaw mechanism)
- etc.

Higgs
Boson

$$
\begin{aligned}
& \text { (left-handed) } \\
& \text { h } \\
& \binom{u}{d}_{L}\binom{c}{s}_{L}\binom{t}{b}_{L} \\
& \binom{e}{v_{e}}_{L}\binom{\mu}{v_{\mu}}_{L}\binom{\tau}{v_{\tau}}_{L} \\
& \text { (right-handed) } \\
& \begin{array}{lll}
u_{R} & c_{R} & t_{R}
\end{array} \\
& d_{R} \quad s_{R} \quad b_{R} \\
& e_{R} \quad \mu_{R} \tau_{R} \\
& W^{ \pm} \\
& \gamma
\end{aligned}
$$

Three right-handed neutrinos

Higgs
Boson

$$
\begin{aligned}
& \text { (left-handed) } \\
& \binom{u}{d}_{L}\binom{c}{s}_{L}\binom{t}{b}_{L} \\
& \binom{e}{v_{e}}_{L}\binom{\mu}{v_{\mu}}_{L}\binom{\tau}{v_{\tau}}_{L} \\
& e_{R} \mu_{R} \tau_{R} \\
& \nu_{R 1} \nu_{R 2} \nu_{R 3} \\
& \text { (right-handed) } \\
& \begin{array}{lll}
u_{R} & c_{R} & t_{R}
\end{array} \\
& \begin{array}{lll}
d_{R} & s_{R} & b_{R}
\end{array} \\
& Z^{0} \\
& W^{ \pm} \\
& \gamma \\
& h
\end{aligned}
$$

Extension by right-handed neutrinos $\boldsymbol{v}_{\boldsymbol{R}}$

$\delta \mathcal{L}=i \overline{v_{R}} \gamma^{\mu} \partial_{\mu} v_{R}-\left(F \bar{L} v_{R} \Phi+\frac{M_{M}}{2} \overline{v_{R}} v_{R}^{c}+\right.$ h.c. $)$
Minkowski '77, Yanagida '79
Gell-Mann, Ramond, Slansky '79 Glashow '79,
Mohapatra, Senjanovic '79

- Seesaw mechanism $\left(M_{D}=F\langle\Phi\rangle \ll M_{M}\right)$

$$
-L=\frac{1}{2}\left(\overline{v_{L}}, \overline{v_{R}^{c}}\right)\left(\begin{array}{cc}
0 & M_{D} \\
M_{D}^{T} & M_{M}
\end{array}\right)\binom{v_{L}^{c}}{v_{R}}+h . c=\frac{1}{2}\left(\bar{v}, \overline{N^{c}}\right)\left(\begin{array}{cc}
M_{v} & 0 \\
0 & M_{M}
\end{array}\right)\binom{v^{c}}{N}+h . c .
$$

口 Light active neutrinos \boldsymbol{v}

$$
M_{v}=-\frac{M_{D}^{T}}{M_{M}} \times M_{D} \quad \Leftarrow \text { tiny neutrino masses ! }
$$

\rightarrow explain neutrino oscillations
व Heavy neutral leptons $N\left(\simeq v_{R}\right)$

- Mass M_{M}
- Mixing $\Theta=M_{D} / M_{M}$

Neutrino mixing

$$
v_{L}=U v+\Theta N^{c}
$$

Yukawa coupling and Majorana mass

Mixing and mass of heavy neutral lepton

Range of parameter space

TA, Tsuyuki '15

Bound from seesaw mechanism

- Mixings of HNL must be sufficiently large to explain masses of active neutrinos !
- Bound on the mixing of the lightest HNL N_{1}

$$
\left|\Theta_{1}\right|^{2} \geq \frac{m_{l}}{M_{1}} \quad\left|\Theta_{1}\right|^{2} \equiv \sum_{\alpha=e, \mu, \tau}\left|\Theta_{\alpha 1}\right|^{2}
$$

$$
m_{l}=\left\{\begin{array}{l}
m_{1}\left(m_{3}\right) \text { in the } \mathrm{NH}(\mathrm{IH}) \text { for } 3 \mathrm{RHN}(\mathcal{N}=3) \\
m_{2}\left(m_{1}\right) \text { in the } \mathrm{NH}(\mathrm{IH}) \text { for } 2 \mathrm{RHN}(\mathcal{N}=2)
\end{array}\right.
$$

NOTE: $\left|\Theta_{1}\right|^{2}$ can be zero for $\mathcal{N}=3$
(No lower bound for $\mathcal{N}>3$)

Range of parameter space

Direct search
TA, Tsuyuki '15

RH neutrinos and baryogenesis

Extension by ν_{R} (seesaw)

L violation
by Majorana mases
CP violation
in neutrino sector

New particles (HNL/RH neutrinos)

Sakharov's 3 conditions

C1
 B, L violations

C3
 Out of equilibrium

v_{R} in the seesaw mechanism can satisfy all three conditions for baryogenesis

Baryogenesis regions

TA, Tsuyuki '15

Thermal Leptogenesis

[Fukugita, Yanagida '86]

Leptogenesis

- $v_{R}(N)$ can into LH leptons and also their anti-particles

- When CP is violated in neutrino sector,

$$
\varepsilon_{1}=\frac{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)-\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)}{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)+\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)} \neq \mathbf{0}!
$$

\Rightarrow generate asymmetry ΔL_{L} between $\# L_{L}$ and $\# \overline{L_{L}}$

- Asymmetry in L_{L} is partially converted into baryon asymmetry by EW sphaleron process ($T \gtrsim 10^{2} \mathrm{GeV}$)

$$
B=\frac{28}{79}(B-L)_{0}=-\frac{28}{79} L_{0}
$$

Out of Equilibrium Decay

- For $\boldsymbol{T} \gg \boldsymbol{M}_{\mathbf{1}}, \boldsymbol{N}_{\mathbf{1}}$ is in thermal equilibrium

$$
\begin{aligned}
& N_{1} \rightarrow L+\bar{\Phi} \\
& N_{1} \leftarrow L+\bar{\Phi}
\end{aligned}
$$

- For $\boldsymbol{T}<\boldsymbol{M}_{\mathbf{1}}$

$$
\begin{aligned}
& n_{N_{1}}^{\mathrm{EQ}} \propto \exp \left(-M_{1} / T\right) \\
& \text { If } \Gamma_{N_{1}}<H\left(T \sim M_{1}\right)
\end{aligned}
$$

$n_{N_{1}}$ cannot catch up with $n_{N_{1}}^{\mathrm{EQ}}$
\rightarrow Out of equilibrium decay of N_{1}

Leptogenesis

- Yield of BAU

$$
\varepsilon_{1}=\frac{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)-\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)}{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)+\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)}
$$

$$
\frac{n_{B}}{s} \propto \varepsilon_{1} \propto M_{1} \longleftarrow \quad M_{1} \ll M_{2,3, \ldots}
$$

[Giudice et al "03]

Lower bound on Majorana mass in order to explain the observed BAU

$$
M_{1}>O\left(10^{9}\right) \mathrm{GeV}
$$

\rightarrow impossible to test directly such a heavy particle by experiments

Resonant leptogenesis

- Resonant production of lepton asymmetry occurs if right-handed neutrinos are quasi-degenerate

$$
\varepsilon_{1}=\frac{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)-\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)}{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)+\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)}
$$

$\Delta M \ll M_{N}$

$$
\Delta M=M_{2}-M_{1}
$$

$$
M_{N}=\left(M_{2}+M_{1}\right) / 2
$$

$$
\varepsilon_{1} \propto \frac{M_{N}^{2}}{\Delta M^{2}} \quad\left(\text { for } \Delta M^{2}>O\left(M_{N} \Gamma_{N}\right)\right)
$$

huge enhancement
\Rightarrow Leptogenesis is possible even for $M_{1} \ll 10^{9} \mathrm{GeV}$
Note that $M_{1} \gtrsim 10^{2} \mathrm{GeV}$ in this case in order to convert lepton asymmetry into baryon asymmetry by EW sphaleron process ($T \gtrsim 10^{2} \mathrm{GeV}$)

Resonant Leptogenesis

Degenerate RH neutrinos ($M_{1,2}=\mathbf{1 0}^{\mathbf{3}} \mathbf{G e V}$)
Maximum values of YB

Dirac Phase

TA, Yoshida [arXiv:1812.11323]

Baryogenesis via neutrino oscillation

Akhmedov, Rubakov, Smirnov '98
TA, Shaposhnikov '05

Baryogenesis via Neutrino Oscillation

Akhmedov, Rubakov, Smirnov ('98) / TA, Shaposhnikov ('05)
Shaposhnikov ('08), Canetti, Shaposhnikov ('10)
TA, Ishida ('10), Canetti, Drewes, Shaposhnikov ('12), TA, Eijima, Ishida ('12)
Canetti, Drewes, Shaposhnikov ('12), Canetti, Drewes, Frossard, Shaposhnikov ('12)

- Oscillation starts at $T_{\text {osc }} \sim\left(M_{0} M_{N} \Delta M\right)^{1 / 3}$

Medium effects

- Asymmetries are generated since evolution rates of L_{α} and $\overline{L_{\alpha}}$ are different due to CPV

Evolution of each asymmetries

Figure 5: Evolution of asymmetries in terms of $z=T_{L} / T$. Here we take $M_{3}=3 \mathrm{GeV}$, $\Delta M_{32}^{2} / M_{3}^{2}=10^{-8}, \xi=+1, \sin \theta_{13}=0.2, \phi=0, \omega=\pi / 4$ and $\delta=3 \pi / 2$.

Figure 6: Evolution of asymmetries in terms of $z=T_{L} / T$. Here we take $M_{3}=3 \mathrm{GeV}$ $\Delta M_{32}^{2} / M_{3}^{2}=10^{-8}, \xi=+1, \sin \theta_{13}=0.2, \phi=0, \omega=\pi / 4$ and $\delta=3 \pi / 2$.

Baryogenesis via neutrino osc.

Oscillation of heavy neutrinos can be a source of BAU

- CPV in oscillation and production generates asymmetries
- Asymmetries are separated into LH and RH leptons
- Asymmetry in LH leptons is converted into BAU

Key Point

Baryogenesis via Leptogenesis

Baryogenesis via Neutrino Oscillation

$$
\begin{aligned}
\frac{n_{B}}{s} & =1.8 \times 10^{-11} \kappa \frac{M_{0}^{7 / 3} M_{N}^{5 / 3} m_{\mathrm{atm}}^{5 / 2} m_{\mathrm{sol}}^{1 / 2}}{T_{W}\left(\Delta M_{32}^{2} / M_{N}^{2}\right)^{2 / 3}\langle\Phi\rangle^{6}} \times \delta_{C P} \\
& =4.7 \times 10^{-10}\left(\frac{M_{N}}{5 \mathrm{GeV}}\right)^{5 / 3}\left(\frac{10^{-8}}{\Delta M_{32}^{2} / M_{N}^{2}}\right)^{2 / 3} \times \delta_{C P}
\end{aligned}
$$

- RH neutrinos N2 and N3 must be quasi-degenerate to get a sizable BAU !
- CP asymmetry parameter for BAU

$$
\delta_{C P} \propto \sum_{I=2,3} \sum_{\alpha=e, \mu, \tau}\left|F_{I \alpha}\right|^{2} \operatorname{Im}\left[F_{\alpha 3}\left(F^{\dagger} F\right)_{32} F_{\alpha 2}^{*}\right]
$$

Baryogenesis Region

Region accounting for $\frac{n_{B}}{s}=(8.55-9.00) \times 10^{-11}$

$$
M_{N}>2.1 \mathrm{MeV}(\mathrm{NH}) \quad M_{N}>0.7 \mathrm{MeV}(\mathrm{IH})
$$

Constraints on HNL

Baryogenesis region

Klaric, Shaposhnikov, Timiryasov '21 [2103.16545]

Leptogenesis scenarios

TA, Tsuyuki '15

Experimental tests for leptogenesis scenarios

RH neutrinos and baryogenesis

Extension by $\boldsymbol{v}_{\boldsymbol{R}}$ (seesaw)

L violation
 by Majorana mases

CP violation
in neutrino sector

- Neutrinoless double beta decay
- Inverse neutrinoless double beta decay
- LNV meson decay
- CPV neutrino oscillation
- EDM

New particles ($\mathrm{HNL} / \mathrm{RH}$ neutrinos)

- Peak searches
- Beam dump experiments

Experimental tests are crucial !!

Lepton number violation in the seesaw mechanism

1) Neutrinoless double beta decay
2) Inverse neutrinoless double beta decay
3) LNV meson decay

Neutrinoless double beta ($0 v \beta \beta$) decay

- Neutrinoless double beta $(0 v \beta \beta)$ decay

$$
(Z, A) \rightarrow(Z+2, A)+2 e^{-}
$$

- LNV $(\Delta L=+2)$ process mediated by Majorana massive neutrinos
- Half-life of $0 \nu \beta \beta$ decay

$$
T_{1 / 2}^{-1}=A \frac{m_{p}^{2}}{\left\langle p^{2}\right\rangle^{2}}\left|m_{\mathrm{eff}}\right|^{2}
$$

$$
m_{\mathrm{eff}}=\sum_{i=1,2,3} m_{i} U_{e i}^{2}
$$

Effective mass in low-scale seesaw

- Effective mass

$$
\begin{gathered}
m_{\mathrm{eff}}=\sum_{i=1,2,3} m_{i} U_{e i}^{2} \\
\text { active neutrinos } \boldsymbol{v}_{\mathrm{i}} \\
m_{\mathrm{eff}}^{v} \\
\sum_{I}^{\sum_{\beta} f_{\beta}\left(M_{I}\right) M_{I} \Theta_{e I}^{2}}
\end{gathered}\left\{\begin{array}{l}
f_{\beta}\left(M_{I}\right)=\frac{\Lambda_{\beta}^{2}}{\Lambda_{\beta}^{2}+M_{I}^{2}} \\
\Lambda_{\beta} \sim 200 \mathrm{MeV}
\end{array}\right.
$$

- $N_{\text {I }}$ may give a significant contribution to $m_{\text {eff }}$!

$$
m_{\mathrm{eff}}^{N}= \begin{cases}M_{I} \Theta_{e I}^{2} & \left(M_{I} \ll \Lambda_{\beta}\right) \\ \frac{\Lambda_{\beta}{ }^{2}}{M_{I}^{2}} M_{I} \Theta_{e I}^{2} & \left(M_{I} \gg \Lambda_{\beta}\right)\end{cases}
$$

HNL may hide NDBD $\left(m_{\text {eff }}=0\right)$

- Range of mixing element $\left|\Theta_{e 1}\right|^{2}$ is predicted

TA, Ishida, Tanaka arXiv:2012.13186

HNL may enhance NDBD ($m_{\text {eff }}>m_{\text {eff }}^{v}$)

- Range of mixing element $\left|\Theta_{e 1}\right|^{2}$ is predicted

TA, Ishida, Tanaka arXiv:2101.12498

NDBD in different nuclei

- Effective mass
- Active neutrino contribution

$$
m_{\mathrm{eff}}^{v}=\sum_{i} m_{i} U_{e i}^{2}
$$

independent on decay nuclei

- HNL contribution

$$
\begin{aligned}
& m_{\mathrm{eff}}^{N}= \sum_{I} f_{\beta}\left(M_{I}\right) M_{I} \Theta_{e I}^{2} \quad \text { dependent on decay nuclei ! } \\
& f_{\beta}\left(M_{I}\right)=\frac{\Lambda_{\beta}^{2}}{\Lambda_{\beta}^{2}+M_{I}^{2}}
\end{aligned}
$$

Multiple detection/non-detection by NDBD using different nuclei
is crucial to reveal the properties of HNLs in the seesaw mechanism

Another example of LNV: $\boldsymbol{e}^{-} \boldsymbol{e}^{-} \rightarrow \boldsymbol{W}^{-} \boldsymbol{W}^{-}$

$0 \nu \beta \beta$ decay

Inverse $0 v \beta \beta$ decay

Inverse neutrinoless double beta (i0v $\boldsymbol{\beta} \boldsymbol{\beta}$) decay

- $e^{-} e^{-} \rightarrow W^{-} W^{-}$offers test for LNV
[T. G. Rizzo 1982]

- $e^{-} e^{-}$collision is option of ILC, CLIC
- Advantages over $0 v \beta \beta$ decay
- Signal is clean
- Free from uncertainty in nuclear matrix elements
- Can occur even if $0 v \beta \beta$ decay is absent
\rightarrow Inverse $0 v \beta \beta$ decay and $0 v \beta \beta$ decay are complementary tests for LNV in the seesaw mechanism

Inverse $0 v \beta \beta$ decay in the seesaw

- Sensitivity of mixing (@100 fb ${ }^{-1}$) TA, Tsuyuki ${ }^{\text { }} 15$

Lepton number violation in meson decays

Lepton number violation by heavy Majorana neutrino in B decays

Takehiko Asaka (Niigata Univ.)

In collaboration with
Hiroyuki Ishida (NCTS, Taiwan)

Ref: arXiv:1609.06113
to appear in Physics Letters B

Flavor Physics Workshop 2016
@Iwamuro, Niigata (26-28 October, 2016)

Contents

GeV scale right-handed (RH) neutrinos $\boldsymbol{V}_{\boldsymbol{R}}$

- Why are such particles interesting?
- Seesaw mechanism for neutrino masses
- Oscillation mechanism for baryon asymmetry of the universe
- Direct tests by (near) future experiments
- How do we test such particles?
- Lepton number violating decays of B mesons, induced by Majorana properties of such particles

Search for $B^{+} \rightarrow \mu^{+} \mu^{+} \pi^{-}$ at Belle II and ...

Sensitivity limits on $\left|\boldsymbol{\theta}_{\mu}\right|^{2}$

- FCC-ee $\left(\sqrt{s}=m_{Z}\right)$

TA, Ishida [arXiv:1609.06113]

Sensitivity by using $B^{+} \rightarrow \mu^{+} \mu^{+} \pi^{-}$

Belle II with $N_{B}=5 \times 10^{10}$
FCC-ee (B) with $N_{Z}=10^{13}$

$$
\left(Z \rightarrow b \bar{b} \Rightarrow N_{B} \simeq 6 \times 10^{11}\right)
$$

Cf. Sensitivity by using

$$
\begin{aligned}
& W^{+} \rightarrow \mu^{+} \mu^{+} \pi^{-} \\
& \quad \text { FCC-ee }(\mathrm{W}) \\
& \quad \text { with } N_{W}=2 \times 10^{8}
\end{aligned}
$$

CPV and Leptogenesis

Decay rate asymmetry

- Leptogenesis

$$
\begin{aligned}
\varepsilon_{1}= & \frac{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)-\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)}{\Gamma\left(N_{1} \rightarrow L_{L}+\bar{\Phi}\right)+\Gamma\left(N_{1} \rightarrow \overline{L_{L}}+\Phi\right)} \\
= & \frac{1}{8 \pi} \sum_{J \neq 1} \frac{\operatorname{Im}\left(F^{\dagger} F\right)_{1 J}^{2}}{\left(F^{\dagger} F\right)_{11}}\left[f\left(\frac{M_{J}^{2}}{M_{1}^{2}}\right)+g\left(\frac{M_{J}^{2}}{M_{1}^{2}}\right)\right] \\
& f(x)=x^{\frac{1}{2}}\left[1+(1+x) \log \left(\frac{x}{x+1}\right)\right] \quad g(x)=\frac{x^{\frac{1}{2}}}{1-x}
\end{aligned}
$$

ε_{1} is determined by Yukawa couplings and Majorana masses of RH neutrinos

CPV in neutrino Yukawa couplings is important !!

BAU and CPV in neutrino sector

- Neutrino Yukawa couplings

$$
\begin{gathered}
M_{v}=-M_{D}^{T} M_{N, \text { diag }}^{-1} M_{D} \\
F=\frac{i}{\langle\Phi\rangle} U M_{v, \text { diag }}^{1 / 2} \Omega M_{N, \mathrm{diag}}^{1 / 2}
\end{gathered}
$$

In mixing matrix U
of active neutrinos
Dirac phase
Majorana phase(s)

In mixing matrix Ω of RH neutrinos

$$
\text { Phase(s) for } v_{R}
$$

These phases are essential for BAU !

CPV in active neutrino sector

- PMNS mixing matrix of active neutrinos
$U=\left(\begin{array}{ccc}c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\ -s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\ s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i \frac{\alpha_{31}}{2}}\end{array}\right)$
- Dirac phase δ
- Majorana phases α_{21} and α_{31}
- CPV in PMNS matrix can be source of BAU
- Decay rate asymmetry ε_{1} does NOT depend on U
- But, the flavor effects (for $M_{1} \lesssim O\left(10^{13}\right) \mathrm{GeV}$) give the connection between CPV in PMNS matrix and BAU
\rightarrow Dirac and Majorana phases in PMNS matrix can be a source of BAU !!

Thermal Leptogenesis

- $M_{1}=10^{10} \mathrm{GeV}$ (Hierarchical masses for RH neutrinos)

NH

IH

Moffat, Pascoli, Petcov, Turner '19

Resonant Leptogenesis

- $M_{1,2}=1 \mathrm{TeV}$ (quasi-degenerate)

TA, Yoshida '19

Baryogenesis via RH neutrino oscillation

- $M_{1,2}=5 \mathrm{GeV}$ (quasi-degenerate)

TA, Ishida '10

BAU and CPV in neutrino sector

- T2K and NOvA indicate CPV in neutrino sector

Non-zero Dirac phase

$$
\delta \sim-\frac{\pi}{2}\left(\text { or } \frac{3 \pi}{2}\right)
$$

Important step to understand baryogenesis by RH neutrinos !

Electric dipole moments of charged leptons

Search for HNL (v_{R})

Search for Heavy Neutral Leptons

- Production by meson decays

$$
K^{+} \rightarrow e^{+} N, K^{+} \rightarrow \mu^{+} N, \ldots
$$

- Peak search experiments
- Measure E_{e} in $K^{+} \rightarrow e^{+} N$
[Shrock '80]

$$
E_{e}=\frac{m_{K}^{2}-m_{e}^{2}-M_{N}^{2}}{2 m_{K}}
$$

- Beam dump experiments

(The T2K Collaboration)

arXiv:1902.07598v1 [hep-ex] 20 Feb 2019

FIG. 5. 90% upper limits on the mixing element U_{e}^{2} as a function of heavy neutrino mass using the single-channel approach, considering only the contribution from $K^{ \pm} \rightarrow$ $e^{ \pm} N, N \rightarrow e^{ \pm} \pi^{\mp}$, with the three methods \mathbf{A}, \mathbf{B} and \mathbf{C}. The limits are compared to the ones of PS191 experiment [6, 7].

FIG. 6. 90% upper limits on the mixing elements U_{e}^{2} (top), U_{μ}^{2} (middle), U_{τ}^{2} (bottom) as a function of heavy neutrino mass, obtained with the combined approach. The blue solid lines are obtained after marginalisation over the two other mixing elements. In the top plot, the additional blue dashed line corresponds to the case where profiling is used ($U_{\mu}^{2}=U_{\tau}^{2}=0$) The limits are compared to the ones of other experiments PS191 [6, 7], E949 [5], CHARM [25].

- A new fixed-target experiment at the CERN SPS accelerator is proposed that will use decays of charm mesons to search for Heavy Neutral Leptons

SHIP - Search for HIdden Particles

CERN, Universität Zürich, EPFL Lausanne, INFN Cagliari, Università Federico II and INFN Napoli, Imperial College London

Search for Hidden Particles

Limits on mixing of HNL

- Limits on mixing $\Theta_{e I}$

Deppisch, Dev, Pilaftsis '15

Summary

- Leptogenesis
\rightarrow Connection between neutrino masses and BAU is attractive and important idea
\rightarrow Various scenarios are possible depending on RH neutrino masses
- Conventional seesaw scenario ($M_{N}>10^{9} \mathrm{GeV}$)
[Seesaw + Leptogenesis]
\rightarrow natural framework of SUSY GUT ...
\rightarrow Exp. test for RH neutrinos is impossible
- Connection can be obtained even lighter mass region [Seesaw + Baryogenesis via RH neutrino osc.]
\rightarrow Such RH neutrinos might be tested!

