

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

NEWSdm experiment Directional Dark Matter Search with Super-high resolution Nuclear Emulsion

Tatsuhiro NAKA

KMI, Nagoya University on behalf of NEWSdm collaboration

Feb., 18-20 (presentation 18th), 2019 KMI2019 @ ES hall, Nagoya University

Dark Matter in our galaxy

Local dark matter density of 0.4 4 +- 0.1 GeV/cm³

Independent value on dark matter model Very much mount of DM is condensed in the halo because mean dark matter density in the universe is <u>~</u> <u>1.4 keV/cm³</u> (27 % of critical density ratio)

Dark matter flux on the earthSolar system~ 100000 /cm²/sec @ 100 GeV/c² dark matter

Direct Dark Matter Search

Standard dark matter model

Maxwell-Bolzman distribution
 Weakly interaction with standard particles
 Nuclear recoil signal

Dark matter

DM velocity in the Milky Way

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{min}}^{v_{max}} \mathrm{d}^3 v \ f(\vec{v}) v \frac{\mathrm{d}\sigma(\vec{v}, E_R)}{\mathrm{d}E_R}$$

How to interact with standard particles

- Spin-dependent or independent ?
- Material dependence
- Velocity distribution

WIMP dark matter detection

Dark matter

Solar sy

Nuclear recoil

Direct Dark Matter Search

NEWSdm experiment [Nuclear Emulsion for WIMPs Search – directional measurement]

http://news-dm.lngs.infn.it LOI under review by the LNGS science committee

NEWS: Nuclear Emulsions for WIMP Search Letter of Intent (NEWS Collaboration)

https://arxiv.org/abs/1604.04199

Potential of Directional Sensitive Search

R&D Challenges for NEWSdm project

- Super-high resolution device using capability of detecting nano-scale track
- Readout technologies for such very short length tracks
- Understanding and rejection of backgrounds

Nano Imaging Tracker(NIT)

@ Nagoya Univ.

 Production time : 4-5 hours /batch
 One butch : ~ 100 g (+ 300 g) (there are 2 type machines)
 ⇒ kg scale production is possible using this machine.

Controlled AgBr crystal

Super-resolution

500nm

prototype NIT film for dark matter experiment

S

For high-mass DM

For low-mass DM

Mass fraction Atomic Fraction Ag 0.44 0.10 Br 0.32 0.10 0.019 0.004 0.101 0.214 С 0 0.074 0.118 Ν 0.027 0.049 Η 0.016 0.410 S, Na + others ~ 0.001 ~ 0.001

Elemental composition of NIT

Intrinsic radioactivity :

U-238	Th-232	K-40	Ag-110m	C-14
27	6	35	(~400)	24000
				[mBq/kg]

Intrinsic neutron emission:

~ 1.2 /kg/y (by SOURCE simulation)

⇒ ~ 0.1 /kg/y (> 100 nm nuclear recoil)

Detail shown in Astropart. Phys. 80 (2016)16-21

Low-velocity ion tracking with sub-micron length

Can use ion implantation as calibration sourceSEM image of low-velocity Carbon ion (100keV)

- Mono energy (± 0.1 keV)
- Good direction uniformity (<10 mrad)
- Now, C from CO₂ Ar, Kr
- (various kind ions are also possible)

AgBr crystal has good sensitivity for Carbon ions (100% consistent detection possibility)11

Underground laboratory at LNGS

New Underground facility concept

Exposure site NEWS **Device Production facility** New production machine

New Underground emulsion facility

Feb. 2018 ~ : started construction and commissioning of the production machine at Nagoya (⇒ transported to LNGS from Sep. 2018)
Feb. 2019 ~ : Started test production first time at underground
+ clean room and other infrastructure are on constructing

Up to April : overall confirmation of underground emulsion facility with clean room

First production in LNGS succeeded !!

Readout technologies

One more machine will be constructed

Toho U.

Nagoya

Sub-micron length track readout capability

Cleary observed angular distribution ⇒ angular resolution ~ 30 deg.

Energy threshold > ~ 60 keV (eff. ~ 10 % ⇒ to be improve by upgrade optical condition)

track length [nm]

T. Katsuragawa et al, JINST 12 T04002 (2017)

<u>K. Kimura and T. Naka, Nucl. Inst. Meth. A 680 (2012) 12-17</u>

Demonstration of direction sensitive nuclear recoil detection due to 14.8 MeV neutrons

Mostly detected target was Br recoil [< 200 keV]

Now on studying CNO recoil demonstration due to 565 keV (Li-p nuclear fission reaction)

Localized Surface Plasmon Resonance (LSPR)

TEM image

45 nm:80 nm

100 nm

Silver-nano particle

TEM画像

45 nm:120 nm

100 nm

17

Super-resolution analysis using LSPR information

Scattering intensity

Polarization light dependence

polarization

direction

polarization direction of incident light

Shift of barycenter is important informatio for nano-scale structure

Optical microscope system and analysis flow

Standard optical microscope scanning [on going]

Current Speed : ~30 g/year

- Roughly event selection with high speed
- On-line event analysis

~ 100 g/month scale (~ kg/y)

~ kg /month scale (~ 10 kg/y)

LSPR analysis Phase contrast imaging [under studying] [will be newly installed] 10⁷ events/month 10^5 events/month Phase contrast Super-resolution : ~10 nm imaging Spectrum analysis Contaminated dust Machine learning discrimination Yandex@Russia, Napoli No on comissionig

Further new analysis [under studying]

~10^3 events/month

- 3D super-resolution analysis with plasmonics
- Destructive analysis using oxidation method
- Expansion method

Cutting-edge technologies will be installed

Dark matter sensitivity

<u>Device intrinsic potential : 10 keV of C recoil (> ~ 10% eff. and 45 ° angl. Res.</u>

Understanding of backgrounds

	Main source	Technologies	Expected rejection power or event rate		
Physical BG					
Electrons	C-14 β Environment gamma	Crystal temperature dependence (<i>M. Kimura et al., NIM A 845 (2017) 373</i>) Crystal sensitivity control Image and plasmonic analysis	<pre>(> 10⁶ or more rejection power (< O(1) /kg/day)) *now on studying</pre>		
		Synthetic Polymer	> 10 ³ or more		
Neutron	Intrinsic (α, n)	-	~ 3 x 10 ⁻⁴ /kg/day or less Astropart. Phys. 80 (2016)16-21		
	Environment	Water shield	< 1E-4/kg/day		
Cosmic-ray	Recoiled nuclei	Coincidence with MIP sensitive emulsion	*on studying using simulation		
	Spallation neutron	(under studying with simulation)	(~O(10 ⁻⁴)/kg/day * now on study)		
Nonphysical BG					
Contaminated dust	(under studying)	Clean room Phase contrast imaging Plasmonic analysis and image processing Machine learning Chemical treatment	Under studying (at least > 10 ⁶ or more, in principle it should not be background)		

Concept of NEWSdm experiment

Concept of NEWSdm experiment

Conclusion

- Direct dark matter search is very important method to directly understand what dark matter is
- Direction sensitive search is new promising method as next generation method to more understand dark matter property
- Nano Imaging Tracker is first solid detector to detect 100 nm length nuclear recoil as tracks
- NEWSdm experiment is under preparing and doing R&D for large scale directional dark matter search at LNGS, Italy
- * Technical Design Report will be prepared in this year.
- Such unique technologies are interesting not only WIMP search, but beam experiment, neutrino experiment, neutron detector and any other detector applications.

Detector Application

[Scintillation light emission]

- ✓ High emission efficiency
- → possibility as scintillator
- ✓ Study for fundamental mechanism of AgBr nano crystal

T. Shiraishi, H. Ichiki, TN al., accepted (2019)

low-velocity heavy particle detector

- ✓ Exotic heavy low-velocity particle (e.g., monopole)
- ✓ Medical therapy
- ✓ Energy loss mechanism

[Neutron detector]

- Environment neutron measurement with direction information
- ✓ Low-energy (sub-MeV, UCN) neutron detector

NEWSdm Application

