

### Dark Matter Detector R&D – Freiburg Activities

Marc Schumann University of Freiburg Joint Symposium Nagoya, 29.03.2023 www.app.uni-freiburg.de

universität freiburg

### **DARWIN:** The ultimate LXe WIMP Detector

darwin-observatory.org JCAP 11, 017 (2016)

Background dominated by irreducible neutrinos

#### 10 **Baseline design** XENON10 ER Background [evts $\times$ (t d keV)<sup>-1</sup>] ZEPLIN-III $10^{3}$ ~50t total LXe mass ~40 t LXe TPC $10^{\circ}$ ~30 t fiducial mass XÈNON100 PandaX-II XENON1T PandaX-4T $10^{-}$ XENONnT $10^{-2}$ DARWIN / G3 solar neutrinos (pp, <sup>7</sup>Be) 10 $10^{-2}$ $10^{-1}$ 10 Target Mass [t] 260 cm Best Limit (90% CL) $10^{-43}$ XENON10 Sensitivity Goal ZEPLIN-III $10^{-44}$ Cross Section [cm<sup>2</sup>] A XENON100 •LUX • PandaX-II (VITTERSTREES 10 XENON1T PandaX-4T **DHOTHER** $10^{-}$ LZ $10^{-48}$ neutrino fog (1 evt) XENONnT

#### universitätfreiburg

DARWIN / G3 neutrino floor, Billard (20)  $10^{-49}$  $10^{-2}$  $10^{-1}$ 10 Target Mass [t]

### **DARWIN:** The ultimate LXe WIMP Detector



## **DARWIN R&D in Freiburg**

universität freiburg

### **DARWIN R&D in Freiburg**

Goal: focus on problems that need to be solved to realize and build DARWIN

- Reduction of Rn background
   → Hermetic TPC
- Challenging TPC electrodes

   signal homogeneity, signal shape
   → single-phase TPC
   unprecedented electrode diameter
  - → PANCAKE test platform

universität freiburg

#### **PhD work of Julia Dierle** *Eur. Phys. J C 83, 9 (2023) arXiv:2209.00362*

### **Hermetic TPC**

erc

### **DARWIN: Radon Background**



#### Strategy DARWIN

- avoid Rn emanation by
- → optimal material production
- → material selection
- → surface treatment
- → optimized detector design
- active Rn removal, e.g., via cryogenic distillation
   → column developed for XENONnT is R&D for DARWIN idea: EPJ C 77, 358 (2017)



### **Motivation and Concept**

- Rn emanated from surfaces
- About 10x more surfaces outside of active TPC target
- In addition: all "dirty" components in outer volume (cables, HV dividers)
- Reduce Rn by mechanically separating inner and outer volumes
- BUT: depart as little as possible from wellestablished, successful TPC designs



### Design

- "Typical" TPC
  - 3 mesh electrodes
  - PTFE reflector tube
  - 2 PMTs in contact with target
- Sealing done via cryofitting (=exploit difference in linear expansion coefficients)
- LXe level controlled with weir



## Design

- "Typical" TPC
  - 3 mesh electrodes
  - PTFE reflector tube
  - 2 PMTs in contact with target
- Sealing done via cryofitting (=exploit difference in linear expansion coefficients)
- LXe level controlled with weir
- Valve connecting both volumes for filling and recuperation
- Electric field homogeneity confirmed with COMSOL



# Design

- "Typical" TPC
  - 3 mesh electrodes
  - PTFE reflector tube
  - 2 PMTs in contact with target
- Sealing done via cryofitting (=exploit difference in linear expansion coefficients)
- LXe level controlled with weir
- Valve connecting both volumes for filling and recuperation
- Electric field homogeneity confirmed with COMSOL
- 2 independent gas systems
- Only one coldfinger, connected to inner volume
- TPC operated on Freiburg
   Xebra Test Platform
   JINST 18 T02004 (2023)







### **TPC Performance**



### Hermeticity

- Prototype test: leak rate of seals O(10<sup>-2</sup>) mbar I s<sup>-1</sup> ("watertight")
- Measure Xe leak rate with <sup>83m</sup>Kr injected into inner volume via detailed model
- Leakage flow f~0.1 kg/h
   → semi-hermetic TPC
- Origin of leakage unknown.
   Scale up result to 40t-TPC assuming 3 hypotheses:
  - leak around PMTs

 $\rightarrow$  r<sup>2</sup> ~1000

leak around electrodes

 $\rightarrow$ r ~ 50

leak around tubes

→ ~ 1



### Scaling to DARWIN: <sup>222</sup>Rn



M. Schumann – Dark Matter Detector R&D

## Scaling to DARWIN: <sup>222</sup>Rn

0.6

- Study impact of individual **Rn** parameters
- Even moderate levels of hermeticity have a significant impact

0.6

0.5

0.1

0.0<sup>⊥</sup> 10

Great potential in combination with other Rn-abatement techniques



## **Conclusion I**

- We built and operated a small-scale hermetic TPC which follows the well-established "standard" TPC design
- Achieved moderate hermeticity using cryofitting

   → method not yet fully optimized
- Need two independent cooling systems to also purify outer volume
- Already moderate levels of hermeticity can significantly reduce the Rn level
- Hermetic TPC concept: promising and rather easy approach to reduce Rn in combination with all other methods
   → we should not miss this opportunity





### **Single-phase TPC**

universität freiburg

### Motivation

JINST 17, P03027 (2022) arXiv:2112.11844





S2 signals on XENON1T top PMT array: ±20%

#### • well established technique

- good signal amplification
- requires precise LXe level
- inhomogeneous response
- wide signals (~1 μs)
- electrode sagging: nonfunctional TPC if anode touches LXe surface

## Motivation

JINST 17, P03027 (2022) arXiv:2112.11844





S2 signals on XENON1T top PMT array: ±20%

universitätfreiburg

#### • well established technique

- good signal amplification
- requires precise LXe level
- inhomogeneous response
- wide signals (~1 μs)
- electrode sagging: nonfunctional TPC if anode touches LXe surface

#### Single-Phase TPC



F. Kuger et al 2022 JINST 17 P03027

- local signal generation
  - → homogeneous response
  - $\rightarrow$  sagging, lightweight electrodes
- no liquid-gas interface
- fast signals
- very high fields required
   → thin wires + high voltage
- signal amplification?
- does it even work?

### The first single-phase TPC





Proof-of-concept: 1 wire Aprile *et al*, *JINST* 9, P11012 (2014)

Radial TPC (1 wire) Wei *et al, JINST* 17, C02002 (2022)

Simulation study multi-wire TPC Kuger et al, JINST 17, P03027 (2022)



- 70 mm TPC, 0.8 kg LXe target
- top PMTs: 7x R8520 bottom: 1x R11410
- TPC was previously operated in dual-phase mode *JINST 18, T02004 (2023)*
- gate, cathode, screen: SS etched hex mesh (d=200 μm, 5 mm opening)
- wire anode: Ø=10µm, pitch=10mm, Au-plated W voltage range: 3.0 – 4.6 kV



• S2 signals much faster  $\rightarrow$  facilitate signal detection/timing

### **Signal Width**





• S2 signals much faster  $\rightarrow$  facilitate signal detection/timing

## **Signal Width**





- S2 signals much faster  $\rightarrow$  facilitate signal detection/timing
- width is diffusion limited (dual phase limited by signal generation)

## **Charge Amplification Factor**

- expected exponential signal dependence on anode field observed
- break-down effects above
   V=4.6 kV limit performance
   → investigation ongoing
- NEST prediction: ~1000 e<sup>-</sup> created for <sup>83m</sup>Kr
   → ~2200 PE detected @ 4.6 kV
- g<sub>2</sub> = 2.23 ± 0.05 PE/e<sup>-</sup>
   rather low but not unexpected! (g<sub>2</sub>=17.6 PE/e<sup>-</sup> in dual phase mode)
- g<sub>1</sub>~0.10 PE/γ as in dual phase mode
- analysis ongoing



## **Charge Amplification Factor**

- expected exponential signal dependence on anode field observed
- break-down effects above
   V=4.6 kV limit performance
   → investigation ongoing
- NEST prediction: ~1000 e<sup>-</sup> created for <sup>83m</sup>Kr
   → ~2200 PE detected @ 4.6 kV
- g<sub>2</sub> = 2.23 ± 0.05 PE/e<sup>-</sup>
   rather low but not unexpected!
   (g<sub>2</sub>=17.6 PE/e<sup>-</sup> in dual phase mode)
- g<sub>1</sub>~0.10 PE/γ as in dual phase mode
- analysis ongoing



### **Conclusion II**

- operated single-phase TPC
- promising narrow S2 signals
- S2 signal size not yet competitive



### **PANCAKE Detector Test Platform**

universitätfreiburg

### PANCAKE

- DARWIN LXe test platform in Freiburg to test horizontal TPC components (electrodes ...)
- unique facility
- double wall cryostat;
- flat floor (inner vessel)
- 2.75 m inner diameter
   → up to ~15 cm height
- ~400 kg Xe gas available
  - $\rightarrow$  smaller "bathtub" (1.46m)
  - $\rightarrow$  LXe level: 6 cm





### PANCAKE

- **DARWIN LXe test platform** in Freiburg to test horizontal **TPC** components (electrodes ...)
- unique facility
- double wall cryostat;
- flat floor (inner vessel)
- 2.75 m inner diameter  $\rightarrow$  up to ~15 cm height
- ~400 kg Xe gas available
  - $\rightarrow$  smaller "bathtub" (1.46m)
  - $\rightarrow$  I Xe level: 6 cm
- 1.46 m 2.75 m cold seal via
- LN<sub>2</sub> Cooling compensates ~80 heat intake
  - "fast" cooling pads O(kW) to initially cool 3t of steel (~2 weeks)
  - Thermosyphon 200 W to operate in LXe mode



### **Xenon Handling**

- Current Xe inventory: 380 kg
- 300 kg + 300 kg cold+warm storage in bottles
- **Recuperation** via cryogenic pumping
- Safety: 1 bottle cold during operation
- Gas **purification** flow via
  - heat exchanger (95%+)
  - SAES getter,
  - KNF diaphragm pump
  - $\rightarrow$  1/2" VCR piping
- Sophisticated slow control system
   Doberman
  - → web based, secure client&server, visualization, alarms (automated) control evolution of JINST 11, T09003 (2016)





Fast cooling

Lab

### **Cool-Down and Filling**



Cooling down 3t of steel takes time; filling procedure was not yet optimized for speed.

### **Cool-Down and Filling**



Cooling down 3t of steel takes time; filling procedure was not yet optimized for speed.

### **LXe Filling**

14 days in 10 seconds



PANCAKE is equipped with cameras.

### **Stable Operation**

- filled PANCAKE was operated stably for 11 days
- test of gas purification system (15 and 5 slpm)
  - → Xe pressure stable within a few 10<sup>-3</sup>
- very efficient heat exchanger



Tremendous work of Sebastian Lindemann, Adam Brown, Julia Müller, Tiffany Luce, Jaron Grigat, Florian Tönnies, Robin Glade-Beucke, Fabian Kuger, Jens Reinighaus, and more people...

### **Conclusion III**

PANCAKE works

next: a few minor improvements ...then we are ready to test the first electrodes

universitätfreiburg

POLLO

#### Summary

- hermetic TPC
- single-phase TPC
- PANCAKE large-scale platform



