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Background dominated by irreducible neutrinos

DARWIN: The ultimate LXe WIMP Detector
darwin-observatory.org  JCAP 11, 017 (2016)

260 cm

Baseline design
~50t total LXe mass
~40 t LXe TPC
~30 t fiducial mass

260 cm
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  1 ty

 20 ty
 200 ty

Exposure

DARWIN

darwin-observatory.org
JCAP 11, 017 (2016)

DARWIN: The ultimate LXe WIMP Detector
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DARWIN R&D in FreiburgDARWIN R&D in Freiburg
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DARWIN R&D in FreiburgDARWIN R&D in Freiburg

 Goal: focus on problems that need to  
 be solved to realize and build DARWIN

● Reduction of Rn background
→ Hermetic TPC
 

● Challenging TPC electrodes
 

– signal homogeneity, signal shape
→ single-phase TPC
 

– unprecedented electrode diameter
→ PANCAKE test platform 
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PhD work of Julia Dierle
Eur. Phys. J C 83, 9 (2023)
arXiv:2209.00362
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DARWIN: Radon Background

XENON1T JCAP 04, 027 (2016)

DARWIN goal:
ER background dominated
by solar neutrinos
→ everything else subdominant
    (=at ~10% level)

222Rn concentration goal: 0.1 µBq/kg 

 

→ main background challenge

Strategy DARWIN
  

– avoid Rn emanation by  → optimal material production    
→ material selection

   → surface treatment  
→ optimized detector design

 

–  active Rn removal, e.g., via cryogenic distillation 
   → column developed for XENONnT is R&D for DARWIN

idea: EPJ C 77, 358 (2017)

XENONnT
level
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Motivation and Concept

● Rn emanated from surfaces
● About 10x more surfaces 

outside of active TPC target
● In addition: all „dirty“ 

components in outer volume 
(cables, HV dividers)

● Reduce Rn by 
mechanically separating 
inner and outer volumes

● BUT: depart as little as 
possible from well-
established, successful 
TPC designs
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Design
● „Typical“ TPC 

– 3 mesh electrodes
– PTFE reflector tube
– 2 PMTs in contact with target

● Sealing done via cryofitting 
(=exploit difference in 
   linear expansion coefficients)

● LXe level controlled with weir
● Valve connecting both volumes 

for filling and recuperation
● Electric field homogeneity 

confirmed with COMSOL

● 2 independent gas systems
● Only one coldfinger, connected 

to inner volume
● TPC operated on Freiburg 

Xebra Test Platform
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Design
● „Typical“ TPC 

– 3 mesh electrodes
– PTFE reflector tube
– 2 PMTs in contact with target

● Sealing done via cryofitting 
(=exploit difference in 
   linear expansion coefficients)

● LXe level controlled with weir
● Valve connecting both volumes 

for filling and recuperation
● Electric field homogeneity 

confirmed with COMSOL

● 2 independent gas systems
● Only one coldfinger, 

connected to inner volume
● TPC operated on Freiburg 

Xebra Test Platform 
                JINST 18 T02004 (2023)
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TPC Performance

● TPC performance studied with 83mKr
● max e–-lifetime ~300 µs  (dt

max
=43 µs)

● correct for z-dependence of signals
● decent light and charge-yields:

g
1
=0.089(4) PE/γ

g
2
=7.1(7) PE/e–    

● stable operation only without purifying
outer volume (→ level fluctuations)
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Hermeticity
● Prototype test: leak rate of seals 

O(10–2) mbar l s–1  („watertight“) 

● Measure Xe leak rate with 
83mKr injected into inner volume 
via detailed model

● Leakage flow f~0.1 kg/h
→ semi-hermetic TPC

● Origin of leakage unknown. 
Scale up result to 40t-TPC 
assuming 3 hypotheses:
– leak around PMTs 

→ r2 ~1000
– leak around electrodes 

→r ~ 50
– leak around tubes 

→ ~ 1  

83mKr

Fully hermetic TPC

83mKr
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Scaling to DARWIN: 222Rn

● Expand model to include
– Rn emanation
   (k

1
..inner, k

2
..outer volume)

– Rn removal system
   (flow f

rr
 of Xe through removal system)

● Expected Rn-activity
in 40t active target:

Benchmark
numbers:
k

1
=3 mBq

k
2
=30 mBq

f
rr
=1000 SLM

← more hermetic                                  more leaky → 
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Scaling to DARWIN: 222Rn
● Study impact of individual

Rn parameters
● Even moderate levels of 

hermeticity have a 
significant impact

● Great potential in combination
with other Rn-abatement 
techniques

Change Rn 
emanation 
in outer volume

Change Rn 
removal 
flow

Change Rn 
emanation 
in inner volume
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Conclusion I
Eur. Phys. J C 83, 9 (2023)

● We built and operated a small-scale hermetic 
TPC which follows the well-established 
„standard“ TPC design

● Achieved moderate hermeticity using cryofitting 
→ method not yet fully optimized

● Need two independent cooling systems  
to also purify outer volume

● Already moderate levels of hermeticity can 
significantly reduce the Rn level

● Hermetic TPC concept: 
promising and rather easy approach to 
reduce Rn in combination with all other methods
→ we should not miss this opportunity
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Single-phase TPC

PhD work of Florian Tönnies, Patrick Meinhardt
+ Fabian Kuger, Adam Brown
Simulation study: JINST 17, P03027 (2022), arXiv:2112.11844
Detector platform: JINST 18, T02004 (2023), arXiv:2208.14815
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Motivation

● well established technique
● good signal amplification

 

● requires precise LXe level
● inhomogeneous response
● wide signals (~1 µs)
● electrode sagging: 

nonfunctional TPC if anode 
touches LXe surface

F. Kuger et al 2022 JINST 17 P03027

wire

Dual-Phase TPC                       Single-Phase TPC

S2 signals on XENON1T
top PMT array: ±20% 

● local signal generation
→ homogeneous response
→ sagging no problem

● no liquid-gas interface
● fast signals

 

● very high fields required
→ thin wires + high voltage

● signal amplification?
● does it even work? ?

EPJ C 77, 881 (2017)

JINST 17, P03027 (2022) 
arXiv:2112.11844
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Motivation

● well established technique
● good signal amplification

 

● requires precise LXe level
● inhomogeneous response
● wide signals (~1 µs)
● electrode sagging: 

nonfunctional TPC if anode 
touches LXe surface

F. Kuger et al 2022 JINST 17 P03027

wire

Dual-Phase TPC                       Single-Phase TPC

S2 signals on XENON1T
top PMT array: ±20% 

● local signal generation
→ homogeneous response
→ sagging, lightweight electrodes

● no liquid-gas interface
● fast signals

 

● very high fields required
→ thin wires + high voltage

● signal amplification?
● does it even work? ?

EPJ C 77, 881 (2017)

JINST 17, P03027 (2022) 
arXiv:2112.11844
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The first single-phase TPC

● 70 mm TPC, 0.8 kg LXe target
● top PMTs: 7x R8520

bottom:  1x R11410
● TPC was previously operated in dual-phase mode

        JINST 18, T02004 (2023)

● gate, cathode, screen: SS etched hex mesh 
(d=200 µm, 5 mm opening)

● wire anode: Ø=10µm, pitch=10mm, Au-plated W
voltage range: 3.0 – 4.6 kV

Proof-of-concept: 1 wire
Aprile et al, JINST 9, P11012 (2014)
 

Radial TPC (1 wire)
Wei et al, JINST 17, C02002 (2022)
 

Simulation study multi-wire TPC
Kuger et al, JINST 17, P03027 (2022)
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Signal Width

● S2 signals much faster → facilitate signal detection/timing

Single Phase eventSingle Phase event Comparable Dual Phase eventComparable Dual Phase event

83m*Kr (τ = 0.22 µs)

32 keV32 keV

83Kr (stable)

9.4 keV

83mKr (τ = 2.6 h)
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Signal Width

● S2 signals much faster → facilitate signal detection/timing

Single Phase eventSingle Phase event

83m*Kr (τ = 0.22 µs)

32 keV32 keV

83Kr (stable)

9.4 keV

83mKr (τ = 2.6 h)
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Signal Width

● S2 signals much faster → facilitate signal detection/timing
● width is diffusion limited (dual phase limited by signal generation)

Single Phase eventSingle Phase event

83m*Kr (τ = 0.22 µs)

32 keV32 keV

83Kr (stable)

9.4 keV

83mKr (τ = 2.6 h)

Single Phase Single Phase
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P R E L I M I N A R Y
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Charge Amplification Factor

● expected exponential signal 
dependence on anode field 
observed

● break-down effects above 
V=4.6 kV limit performance
→ investigation ongoing

● NEST prediction: 
~1000 e– created for 83mKr
→ ~2200 PE detected @ 4.6 kV

● g2 = 2.23 ± 0.05 PE/e–  
rather low but not unexpected!
(g2=17.6 PE/e– in dual phase mode)

● g1~0.10 PE/γ
as in dual phase mode
 

● analysis ongoing

P R E L I M I N A R Y
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Charge Amplification Factor

● expected exponential signal 
dependence on anode field 
observed

● break-down effects above 
V=4.6 kV limit performance
→ investigation ongoing

● NEST prediction: 
~1000 e– created for 83mKr
→ ~2200 PE detected @ 4.6 kV

● g2 = 2.23 ± 0.05 PE/e–  
rather low but not unexpected!
(g2=17.6 PE/e– in dual phase mode)

● g1~0.10 PE/γ
as in dual phase mode
 

● analysis ongoing

P R E L I M I N A R Y

Conclusion II
● operated single-phase TPC 
● promising narrow S2 signals
● S2 signal size not yet competitive
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PANCAKE

XENONnT

● DARWIN LXe test platform 
in Freiburg to test horizontal 
TPC components
(electrodes …)

● unique facility
● double wall cryostat;
● flat floor (inner vessel)
● 2.75 m inner diameter

→  up to ~15 cm height 
● ~400 kg Xe gas available

→  smaller „bathtub“ (1.46m)
 → LXe level: 6 cm

● LN2 Cooling compensates ~80 heat intake

– „fast“ cooling pads O(kW)
to initially cool 3t of steel (~2 weeks)    

– Thermosyphon 200 W
to operate in LXe mode
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PANCAKE
● DARWIN LXe test platform 

in Freiburg to test horizontal 
TPC components
(electrodes …)

● unique facility
● double wall cryostat;
● flat floor (inner vessel)
● 2.75 m inner diameter

→  up to ~15 cm height 
● ~400 kg Xe gas available

→  smaller „bathtub“ (1.46m)
 → LXe level: 6 cm

● LN2 Cooling compensates ~80 heat intake

– „fast“ cooling pads O(kW)
to initially cool 3t of steel (~2 weeks)    

– Thermosyphon 200 W
to operate in LXe mode

XENONnT

cold seal via
2mm OFHC Cu wire
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Xenon Handling
● Current Xe inventory: 380 kg
● 300 kg + 300 kg cold+warm storage in 

bottles
● Recuperation via 

cryogenic pumping
● Safety: 1 bottle cold during operation
● Gas purification flow via 

– heat exchanger (95%+) 
– SAES getter, 
– KNF diaphragm pump
→ 1/2“ VCR piping

● Sophisticated slow control system 
Doberman
→ web based, secure client&server,
    visualization, alarms
    (automated) control
    evolution of JINST 11, T09003 (2016)
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Cool-Down and Filling

Cooling down 3t of steel takes time; filling procedure was not yet optimized for speed.

14th feb

Temperatures
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Cool-Down and Filling

Cooling down 3t of steel takes time; filling procedure was not yet optimized for speed.

14th feb

P

LXe Level

GXe Pressure
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LXe Filling

PANCAKE is equipped with cameras.

14 days in 10 seconds
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Stable Operation

● filled PANCAKE 
was operated 
stably for 11 days

● test of gas 
purification system 
(15 and 5 slpm)

→ Xe pressure 
     stable within 
     a few 10–3

● very efficient 
heat exchanger 

GXe Flow

Heater             T Coldhead        GXe Pressure

←  7 days  → 

←  4 days  → 

n o   p u r i f i c a t i o n

w i t h   p u r i f i c a t i o n
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Tremendous work of 
Sebastian Lindemann, Adam Brown,
Julia Müller, Tiffany Luce, Jaron Grigat, 
Florian Tönnies,Robin Glade-Beucke, 
Fabian Kuger,Jens Reinighaus,  
and more people...

Conclusion III
● PANCAKE works
● next: 

a few minor 
improvements

● ...then we are 
ready to test the
first electrodes



M. Schumann – Dark Matter Detector R&D 35

Summary
● hermetic TPC
● single-phase TPC
● PANCAKE 

large-scale platform
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