New SND results on the light hadron spectroscopy including 2π and multi hadron channels

Kupich Andrey

Budker Institute of Nuclear Physics, Novosibirsk State University on behalf of the SND collaboration

Muon g-2 theory initiative workshop. June 28 – July 2, 2021 Japan

VEPP-2000 e^+e^- collider

VEPP-2000 parameters

- c.m. energy E=0.3-2.0 GeV
- Luminosity at E=1.8 GeV $10^{32}cm^{-2}sec^{-1}$ (project) $4x10^{31}cm^{-2}sec^{-1}$ (achieved)
- Beam energy spread 0.6 MeV at E=1.8 GeV

- 10 times more intense positron source
- Experiments at upgraded VEPP-2000 was restarted by the end of 2016

Timeline

2010-2013 – experiments, 70 pb^{-1} 2013-2016 – upgrade, new injector 2016-2019 – experiments, 210 pb^{-1} 2020 – 50 pb^{-1} collected in two months, before lockdown

Most recent results published

• $e^+e^- \rightarrow K^+K^-\pi^0$

•
$$e^+e^- \rightarrow \pi^+\pi^-\pi^0$$

• $e^+e^-
ightarrow \eta \pi^0 \gamma$

• $e^+e^- \to \pi^+\pi^-$ • $e^+e^- \to f_1(1285)$

 $e^+e^- \rightarrow \pi^+\pi^-$ analysis is based on the **4.6 pb⁻¹** statistics, collected in 2012 – 2013, that corresponds to the **2.3** × 10⁶ collinear events, with 10⁶ $e^+e^- \rightarrow \pi^+\pi^-$, $\mu^+\mu^-$ and 1.3 × 10⁶ $e^+e^- \rightarrow e^+e^-$

SND detector

Main physics task of SND is study of all possible processes of e^+e^- annihilation into hadrons below 2 GeV.

- The total hadronic cross section, which is calculated as a sum of exclusive cross sections.
- Study of hadronization (dynamics of exclusive processes).
- Study of the light vector mesons.
- Production of the C-even resonances

$e^+e^- ightarrow f_1(1285)$

 $B(f_1(1285) \rightarrow e^+e^-)$ is calculated using cross section of the $e^+e^- \rightarrow f_1(1285)$ process. Theory predicts $B(f_1(1285) \rightarrow e^+e^-) = 3.5 \pm 1.8 \times 10^{-9}$

$e^+e^- ightarrow f_1(1285)$

- 2010-2012 and 2017 data are used.
- IL=15 pb^-1 in 1.2 GeV $\leq \sqrt{s} \leq 1.4$ GeV.
- About 3.4 pb⁻¹ of data were collected in the resonance maximum.
- The $f_1(1285) \rightarrow \pi^0 \pi^0 \eta \rightarrow 6\gamma$ decay mode is used, with 1% efficiency.
- The main background sources are $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$, $e^+e^- \rightarrow \eta \gamma$ and $e^+e^- \rightarrow \pi^0 \pi^0 \omega$.
- After applying the selection criteria, two events have been observed at the peak (with 0.25 expected background events).
- 0 events selected outside the $f_1(1285)$ peak.
- These two events correspond to $B(f_1(1285) \rightarrow e^+e^-) = 5.1^{+3.7}_{-2.7} \times 10^{-9}$ and have 2.5 σ .

Phys. Lett. B800 (2020) 135074

Kupich A

$e^+e^- ightarrow \pi^+\pi^-\pi^0$ at $\sqrt{s} > 1.05~{ m GeV}$

Exclusive channels at $\sqrt{s} > 1.15$ GeV (IL = 28pb⁻¹)

- Subprocesses $e^+e^- \rightarrow \rho(770)\pi, \rho(1450)\pi, \omega\pi$ $(\rho\pi; \rho^0\pi^0, \rho^-\pi^+, \rho^+\pi^-)$ were studied, using $M_{\pi^+\pi^-}$.
- Contribution of each channel was measured.
- $\omega(1420)
 ightarrow 3\pi$ is dominated by $\omega(1420)
 ightarrow
 ho(770)\pi$.
- $\omega(1650) \rightarrow \rho(1450)\pi$ channel plays a major role in $\omega(1650) \rightarrow 3\pi$

Eur Phys I C80 (2020) no 10 993

$e^+e^- ightarrow K^+K^-\pi^0$

 $e^+e^- \to K^+K^-\pi^0$ was studied by SND in \sqrt{s} =1.27–2 GeV energy region (IL = 26pb⁻¹)

Cross sections of the $e^+e^- \rightarrow K^{*\pm}K^{\mp} \rightarrow K^+K^-\pi^0$ and $e^+e^- \rightarrow \phi\pi^0 \rightarrow K^+K^-\pi^0$ are measured separately.

- $e^+e^- \rightarrow K^{*\pm}K^{\mp} \rightarrow K^+K^-\pi^0$ is dominated by $\phi(1680)$ decay.
- Fit of the $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ cross section (with BABAR data) shows the presence of additional resonance (3 σ) with $m = 1585 \pm 15$ MeV and $\Gamma = 75 \pm 30$ MeV.

Eur.Phys.J. C80 (2020) no.12, 1139

 $e^+e^-\to\eta\pi^0\gamma$ was studied by SND in \sqrt{s} =1.05–2 GeV energy region (IL = 95pb^{-1})

 $\mathbf{e}^+\mathbf{e}^- \rightarrow \eta \pi^0 \gamma$ are dominated by $\mathbf{e}^+\mathbf{e}^- \rightarrow \eta \omega$ with additional contributions from $\eta \phi$, $\eta \rho$, $\phi \pi^0$, $\omega \pi^0$ and possible $a_0 \gamma$ radiative decays.

- $e^+e^- \to \omega\eta \to \eta\pi^0\gamma$ can be described with $\omega(1420)$ and $V^{\prime\prime}(1680)$.
- It is found, with a significance of 5.6 σ , that the process $e^+e^- \rightarrow \eta \pi^0 \gamma$ is not completely described by hadronic vector-pseudoscalar intermediate states.
- Cross section of the $e^+e^-
 ightarrow a_0(1450)\gamma$ was measured.

Eur.Phys.J. C80 (2020) no.11, 1008.

Measurement of the $e^+e^- \rightarrow \pi^+\pi^$ cross section in the energy region $0.525 < \sqrt{s} < 0.883$ GeV

- N_{ch} ≥ 2. The events can contain neutral particles due to nuclear interactions of charged pions with detector material or due to electromagnetic showers splitting
- $|\Delta \theta| = |180^{\circ} (\theta_1 + \theta_2)| < 12^{\circ} \text{ and } |\Delta \phi| = |180^{\circ} |\phi_1 \phi_2|| < 4^{\circ}, \text{ where } \phi \text{ is the particle azimuthal angle}$
- $E_{1,2} > 40$ MeV, where E_i is the *i*th particle (i = 1, 2) energy deposition
- $\ \, {\color{black} \bullet} \ \, {\color{$
- $\textcircled{0}||d0_1|<1$ cm , $|d0_2|<1$ cm, where $|d0_i|$ is a distance between the ith particle track and the beam axis
- $|z0_1| < 8 \text{ cm}$, $|z0_2| < 8 \text{ cm}$, where $|z0_i|$ is a distance from the center of the detector to the primary vertex of the *i*th particle track along the beam axis
- The muon system veto = 0

The output signal of the trained BDT network R is a value in the interval from -1.0 to 1.0 The $e^+e^- \rightarrow e^+e^-$ events are located in the region R < 0, while $e^+e^- \rightarrow \pi^+\pi^-, \mu^+\mu^-$

events in R > 0.

Kupich A.

New SND results on the light hadron spectroscopy including 2π and multi hadron channels

Non-collinear and cosmic backgrounds

$$N_{cosm} = N_{exp}[veto = 1] imes rac{N_{cosm}[veto = 0]}{N_{cosm}[veto = 1]}$$

 $N_{exp}[veto = 1]$ – number of data events selected with 2π cuts but with veto=1; $N_{cosm}[veto = 0(1)]$ – number of special cosmic events

Two types of cosmic events are used:

• Non-central ($|d0_1| > 0.5 \text{ cm}$, $|d0_2| > 0.5 \text{ cm}$, $|z0_1| > 5 \text{ cm}$ and $|z0_2| > 5 \text{ cm}$) events from the same data sample.

• Events from special cosmic runs without beams

Both give the same 2.5% ratio between $N_{cosm}[veto = 0]$ and $N_{cosm}[veto = 1]$ in every energy point

Background from the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ is subtracted directly in the $\omega(782)$ region, with a number of background events estimated according to the formula:

$$N_{3\pi} = N^{exp}[3\pi] imes rac{N^{mc}_{3\pi}[2\pi]}{N^{mc}_{3\pi}[3\pi]}$$

 $N^{exp}[3\pi]$ – number of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ events in the same data sample selected with a special 3π cuts:

 $N_{cha} \geq 2, \ N_n \geq 2, \ |\Delta \theta| > 10^\circ, \ |\Delta \phi| > 10^\circ, \ 40^\circ < heta_i < 140^\circ, \ \chi^2_{\pi^+\pi^-\pi^0} < 30$

Contribution of this background to the total $e^+e^- \rightarrow \pi^+\pi^-$ cross section **is less than 0.15%**, due to the strong suppression by $|\Delta\theta|$ and $|\Delta\phi|$ cuts.

ID efficiency

$$arepsilon_{e} = rac{N^{ee}(R \in [-1; 0])}{N^{ee}(R \in [-1; 1])}, \;\; arepsilon_{\pi} = rac{N^{\pi\pi}(R \in [0; 1])}{N^{\pi\pi}(R \in [-1; 1])}$$

 $N^{ee,\pi\pi}(R \in [a; b])$ are the numbers of $e^+e^- \rightarrow e^+e^-$ or $\pi^+\pi^-$ events with R in the interval [a; b]

Identification efficiencies for $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \pi^+\pi^-$ simulated events

$$\delta_x = \frac{\epsilon_x^{exp}}{\epsilon_x^{mc}}$$

 $x = e(\pi)$, ϵ_x^{exp} and ϵ_x^{mc} are identification efficienties for experimental and simulated pseudoevents respectively. The δ_e does not depend on energy, and its average value is 1.0006 ± 0.0001

$$\delta_\pi(\sqrt{s}) = a igg(\sqrt{(\sqrt{s}-b)^2+10}-(\sqrt{s}-b)igg)+c igg)$$

 $\delta_\pi=0.9990\pm0.0002$ at the energy region $\sqrt{s}>0.65$ GeV and below δ_π changes upto 0.9950 \pm 0.0006 at $\sqrt{s}=0.52$ GeV

ID efficiency correction

Correction coefficients for ID efficiencies of the $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \pi^+\pi^-$ events. δ_{π} obtained using pseudo $\pi\pi$ events constructed from $e^+e^- \rightarrow \pi^+\pi^-$ and $e^+e^- \rightarrow \omega, \phi \rightarrow \pi^+\pi^-\pi^0$ events. Lines are the fit results.

Corrected ID efficiencies for the $e^+e^- \to e^+e^-$ and $e^+e^- \to \pi^+\pi^-$ events

Contribution to the cross section uncertainty

Error	$\delta_e, \%$	δ_{π}	δ_{π}
		at $\sqrt{s} > 0.65$ GeV, %	at $\sqrt{s} <$ 0.65 GeV, %
σ_{stat}	0.01	0.02	0.02 - 0.06
σ_{ID}	0.02	0.01	0.02
σ_{bkg}	0.02	0.02	-
σ_{tot}	0.03	0.03	0.03 - 0.06

Contribution of the ID efficiencies to the relative error of $e^+e^- \rightarrow \pi^+\pi^$ cross section is **less than 0.2%** for the most energy points

$E_{1,2} > 40$ MeV efficiency

The pseudo– $\pi\pi$ events are used to check the validity of efficiency for the $E_{1,2} > 40$ MeV cut, derived from the simulation

Obtained average correction is equal to 0.992. The maximum difference between corrections derived from the different types of pseudo-events is 0.5%

Kupich A

Efficiency of the $|\Delta \phi| < 4^\circ$ and $|\Delta heta| < 12^\circ$ cuts

In order to study the differences between simulation and experimental data at each energy point, an efficiency correction is introduced:

$$R_i(x) = \frac{\epsilon_i^{exp}(x)}{\epsilon_i^{mc}(x)} \ \epsilon_i^{exp} = \frac{N_i(x \in [A_x; B_x])}{N_i(x \in [C_x; D_x])} \ \epsilon_i^{mc} = \frac{M_i(x \in [A_x; B_x])}{M_i(x \in [C_x; D_x])}$$

Efficiency of the $|\Delta \phi| < 4^\circ$ and $|\Delta \theta| < 12^\circ$ cuts

The average values of $\delta_{\Delta\phi} = R_{\pi\pi}(\Delta\phi)/R_{ee}(\Delta\phi)$ and $\delta_{\Delta\theta} = R_{\pi\pi}(\Delta\theta)/R_{ee}(\Delta\theta)$ differ from 1 by 0.1 % and 0.2 %, respectively

The overall contribution to the systematic uncertainty from the conditions on the $\Delta\phi$ and $\Delta\theta$ is equal to $0.001 \oplus 0.002 = 0.002$

$$R_{i}(z) = \frac{\varepsilon_{i}^{exp}(z)}{\varepsilon_{i}^{mc}(z)} \varepsilon_{i}^{exp}(z) = \frac{N_{i}(\theta_{0} \in [x; 180^{\circ} - z])}{N_{i}(\theta_{0} \in [50^{\circ}; 130^{\circ}])} \varepsilon_{i}^{mc}(z) = \frac{M_{i}(\theta_{0} \in [x; 180^{\circ} - z])}{M_{i}(\theta_{0} \in [50^{\circ}; 130^{\circ}])}$$

The statistically significant deviation of $\delta_{\theta_{0}} = R_{\pi\pi}/R_{ee}$ from unity does not exceed 0.5 %

Probability of the π (e) track loss due reconstruction inefficiency is estimated from the $R_{\pi\pi}$ (R_{ee}):

the ratio of the number of events with one track, but the total number of particles >1 and loosen $\Delta\phi$ and $\Delta\theta$ cuts, to the number of events with two or more tracks

Muon system veto efficiency

$$\delta_{\textit{veto}} = rac{\sigma_{\pi\pi}((\phi_1 + \phi_2 - 180^\circ)/2 > 166^\circ \textit{or} < 14^\circ;\textit{veto} \ge 0)}{\sigma_{\pi\pi}((\phi_1 + \phi_2 - 180^\circ)/2 > 166^\circ \textit{or} < 14^\circ;\textit{veto} = 0)}$$

In case of the veto ≥ 0 selection the certain number of the **residual cosmic background** events, derived from the fit of the $(z0_1 + z0_2)/2$ with a sum of uniform and normal distributions, is **subtracted** from the total number of the $e^+e^- \rightarrow \pi^+\pi^-$ events

The main sources of systematic uncertainty

- $\Delta \theta$, $\Delta \phi$, θ_0 cuts: $0.001 \oplus 0.002 \oplus 0.005 = 0.55\%$
- $E_{1,2} > 40$ MeV condition: 0.5 %
- e/π -separation for the $\sqrt{s} \leq 600$ MeV: 0.3 0.5%
- muon subtraction for the $\sqrt{s} \le 600$ MeV: 0.3 0.7%

Additional sources of systematic uncertainty

- $\bullet~$ 0.2 % is taken as a systematic error from modeling of the pion loss due to nuclear interaction
- Contributions from the $N_{cha} \ge 2$ and veto = 0 cuts are considered to be negligible
- Calculation of the radiative correction gives 0.2 % (checked by comparing MCGPJ with BABAYAGA-NLO)

Source	$\sqrt{s} > 600 { m MeV}$	$\sqrt{s} \le 600 \mathrm{MeV}$		
ID e $/\pi$	0.1-0.2	0.3-0.5		
μ	0.0-0.2	0.3-0.7		
$\Delta \theta$	0.1			
$\Delta \phi$	0.2			
θ_0	0.5			
$E_{1,2}$	0.5			
rad	0.2			
trig	0.1			
nucl	0.2			
total	total 0.8 0.9-1.2			

$N_{a} = L(\sigma_{\pi\pi}\varepsilon^{a}_{\pi\pi} + \sigma_{\mu\mu}\varepsilon^{a}_{\mu\mu} + \sigma_{ee}\varepsilon^{a}_{ee}) + N^{a}_{nc}$

a = 1,2 correspond to the $R_{e/\pi} \in [0,1]$ and $R_{e/\pi} \in [-1,0]$ respectively; σ_{jj} and ε^a_{jj} , with jj = $\pi^+\pi^-, \mu^+\mu^-, e^+e^-$ in the final state; N^a_{nc} is the number of non-collinear and cosmic background events; L is the IL collected at s_i .

From these equations $e^+e^- \rightarrow \pi^+\pi^-$ cross section and L can be deduced:

$$L(s_i) = \frac{(N_2 - N_{nc}^2)\varepsilon_{\pi\pi}^1 - (N_1 - N_{nc}^1)\varepsilon_{\pi\pi}^2}{\sigma_{ee}(\varepsilon_{ee}^2\varepsilon_{\pi\pi}^1 - \varepsilon_{ee}^1\varepsilon_{\pi\pi}^2) + \sigma_{\mu\mu}(\varepsilon_{\mu\mu}^2\varepsilon_{\pi\pi}^1 - \varepsilon_{\mu\mu}^1\varepsilon_{\pi\pi}^2)}$$
$$\sigma_{\pi\pi}(s_i) = \frac{N_1 - N_{nc}^1 - L(s_i)\sigma_{\mu\mu}\varepsilon_{\mu\mu}^1(s_i) - L(s_i)\sigma_{ee}\varepsilon_{ee}^1}{L(s_i)\varepsilon_{\pi\pi}^1}$$

$$\sigma_{\pi\pi}^{0}(s_i) = rac{\sigma_{\pi\pi}(s_i)}{1+\delta_{\mathit{rad}}(s_i)}$$

 $1 + \delta_{rad}(s_i)$ is a radiative correction, that accounts for radiation from the initial and final states, calculated using the **MCGPJ** code.

 $\delta_{rad}(s_i)$ has to be calculated **iteratively**, by fitting measured cross sections with a model from the MCGPJ

Kupich A.

Fit model

$$\sigma_{\pi\pi}(\mathbf{s}) = \frac{2}{3} \frac{\alpha^2}{\mathbf{s}^{5/2}} \mathsf{P}_{\pi\pi}(\mathbf{s}) |\mathsf{A}_{\pi\pi}(\mathbf{s})|^2$$
$$\mathsf{P}_{\pi\pi}(\mathbf{s}) = q_{\pi}^3(s), \quad \mathsf{q}_{\pi}(\mathbf{s}) = \frac{1}{2} \sqrt{s - 4m_{\pi}^2}$$
$$|\mathsf{A}_{\pi\pi}(\mathbf{s})|^2 = \left| \sqrt{\frac{3}{2}} \frac{1}{\alpha} \sum_{V=\rho,\omega,\rho'} \frac{\Gamma_V m_V^3 \sqrt{m_V \sigma (V \to \pi^+ \pi^-)}}{D_V(s)} \frac{e^{i\phi_{\rho_V}}}{\sqrt{q_{\pi}^3(m_V)}} \right|^2$$
$$\mathsf{D}_{\mathbf{V}}(\mathbf{s}) = m_V^2 - s - i\sqrt{s}\Gamma_V(s), \quad \Gamma_V(s) = \sum_f \Gamma(V \to f, s)$$
$$\Gamma_{\omega}(s) = \frac{m_{\omega}^2}{s} \frac{q_{\pi}^3(s)}{q_{\pi}^3(m_{\omega})} \Gamma_{\omega} B_{\omega \to \pi^+ \pi^-} + \frac{q_{\pi\gamma}^3(s)}{q_{\pi\gamma}^3(m_{\omega})} \Gamma_{\omega} B_{\omega \to \pi^0 \gamma} + \frac{W_{\rho\pi}(s)}{W_{\rho\pi}(m_{\omega})} \Gamma_{\omega} B_{\omega \to 3\pi}$$
$$\Gamma_V(s) = \frac{m_V^2}{s} \frac{q_{\pi}^3(s)}{q_{\pi}^3(m_V)} \Gamma_V \quad (V = \rho, \rho')$$

Fit results

The **relative difference** between the $e^+e^- \rightarrow \pi^+\pi^-$ cross section, measured by SND and fit of the SND experimental data. The **green bar** depicts **systematic** and **statistical** errors of the SND fit, folded quadratically.

Cross section values in the \sqrt{s} =751.7, 759.5 and 778.7 MeV energy points shows **non-statistical** deviation from the fit

Parameter	This work	SND VEPP-2M
$m_ ho,{ m MeV}$	$775.3 \pm 0.5 \pm 0.6$	$774.6 \pm 0.4 \pm 0.5$
$\Gamma_ ho,MeV$	$145.6\pm0.6\pm0.8$	$146.1 \pm 0.8 \pm 1.5$
$\sigma(ho o \pi^+\pi^-),{\sf nb}$	$1189.7\pm4.5\pm9.5$	$1193\pm7\pm16$
$\sigma(\omega o \pi^+\pi^-)$, nb	$31.5\pm1.2\pm0.6$	$29.3\pm1.4\pm1.0$
$\phi_{ ho\omega}$, deg.	$110.7\pm1.1\pm1.0$	$113.7 \pm 1.3 \pm 2.0$
$\sigma(ho' ightarrow \pi^+\pi^-)$, nb	2.4 ± 0.6	1.8 ± 0.2
χ^2/ndf	47/30	-
$B_{ ho ightarrow e^+e^-} imes B_{ ho ightarrow \pi^+\pi^-}$	$(4.889 \pm 0.015 \pm 0.039) imes 10^{-5}$	$(4.876 \pm 0.023 \pm 0.064) imes 10^{-5}$
$B_{\omega ightarrow e^+e^-} imes B_{\omega ightarrow \pi^+\pi^-}$	$(1.318 \pm 0.051 \pm 0.021) imes 10^{-6}$	$(1.225 \pm 0.058 \pm 0.041) imes 10^{-6}$

Fit results

Calculating bare $e^+e^- \to \pi^+\pi^-$ cross section

$$\sigma_{\pi\pi}^{\text{bare}}(\mathbf{s}) = \sigma_{\pi\pi}^{0}(\mathbf{s}) \times |\mathbf{1} - \mathbf{\Pi}(\mathbf{s})|^{2} \times (\mathbf{1} + \frac{\alpha}{\pi}\mathbf{a}(\mathbf{s}))$$
$$\mathbf{a}(\mathbf{s}) = \frac{1+\beta^{2}}{\beta} \Big[4Li_{2} \Big(\frac{1-\beta}{1+\beta} \Big) + 2Li_{2} \Big(-\frac{1-\beta}{1+\beta} \Big) - 3\ln \frac{2}{1+\beta} \ln \frac{1+\beta}{1-\beta} - 2\ln\beta \ln \frac{1+\beta}{1-\beta} \Big] - 3\ln \frac{4}{1-\beta^{2}} - 4\ln\beta + \frac{1}{\beta^{3}} \Big[\frac{5}{4} (1+\beta^{2})^{2} - 2 \Big] \times \ln \frac{1+\beta}{1-\beta} + \frac{3}{2} \frac{1+\beta^{2}}{\beta^{2}}.$$
$$\mathsf{Li}_{2}(\mathbf{x}) = -\int_{0}^{x} dt \ln(1-t)/t, \quad \boldsymbol{\beta} = \sqrt{1 - \frac{4m_{\pi}^{2}}{s}}$$

LO contribution to a_{μ}

$$\mathsf{a}_{\mu}(\pi\pi,\mathsf{s}_{\mathsf{min}}\leq\!\sqrt{\mathsf{s}}\leq\mathsf{s}_{\mathsf{max}})=\left(rac{lpha\mathsf{m}_{\mu}}{3\pi}
ight)^{2}\int_{\mathsf{s}_{\mathsf{min}}}^{\mathsf{s}_{\mathsf{max}}}rac{\mathsf{R}(\mathsf{s})\mathsf{K}(\mathsf{s})}{\mathsf{s}^{2}}\mathsf{d}\mathsf{s}_{\mathsf{min}}$$

K(s) is a known kernel (J. Phys. G 38, 085003 2011) and

$$R(s) = \frac{\sigma_{\pi\pi}^{bare}}{\sigma(e^+e^- \to \mu^+\mu^-)}, \quad \sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s}$$

Trapezoid integration allows to compute \mathbf{a}_{μ} using measured cross sections

Measurement	$a_\mu(\pi\pi) imes 10^{10}$		
This work	$409.79\pm1.44\pm3.87$		
SND VEPP-2M	$406.47\pm1.74\pm5.28$		
BaBar	$413.58\pm2.04\pm2.29$		
KLOE (combined)	$403.39 \pm 0.72 \pm 2.50$		

J. High Energ. Phys. 2021, 113 (2021)

Kupich A.

The relative difference between the $e^+e^- \rightarrow \pi^+\pi^-$ cross section, measured by BABAR and fit of the SND experimental data

- $\sigma_{sys} \oplus \sigma_{stat}$ errors are shown for the BABAR data
- The green bar depicts systematic and statistical errors of the SND fit, folded quadratically

Phys. Rev. 2012.Vol. 86D. 3,032013

The relative difference between the $e^+e^- \rightarrow \pi^+\pi^-$ cross section, measured by KLOE and fit of the SND experimental data

JHEP 1803 (2018) 173

The relative difference between the $e^+e^- \rightarrow \pi^+\pi^-$ cross section, measured in experiments at VEPP-2M and fit of the SND experimental data

New SND results on the light hadron spectroscopy including 2π and multi hadron channels

Kupich A.

- The difference between the value of $a_{\mu}(\pi\pi, 525 \text{MeV} \le \sqrt{s} \le 883 \text{MeV})$ obtained from the SND data, and ones derived from the previous measurements $< 1\sigma$
- The parameters of the ρ and ω mesons in this analysis are consistent with ones obtained by SND in experiments at VEPP-2M
- Comparison with VEPP-2M results indicates no significant contradictions in the whole energy spectrum
- In the 0.6 $\leq \sqrt{s} \leq$ 0.7 GeV energy range there is a 3% discrepancy between the SND and BABAR data, but for the rest of the spectrum SND data is in agreement with the BABAR results
- \bullet There is 1–4 % difference between KLOE and SND data for \sqrt{s} ${\geq}0.7$ GeV

- The $e^+e^- \rightarrow \pi^+\pi^-$ cross section is measured with systematic uncertainty better then 1% using a small fraction of collected data.
- The ${f e^+e^-}
 ightarrow \pi^+\pi^-\pi^0$ process is studied at $\sqrt{s}>1.05$ GeV.
- $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ cross section indicates a presence of new resonance with $m = 1585 \pm 15 MeV$ and $\Gamma = 75 \pm 30 MeV$.
- Rare radiative process $e^+e^- \rightarrow a_0(1450)\gamma$ have been measured for the first time in the $\eta\pi^0\gamma$ channel.
- Search for production of the C-even resonance $f_1(1285)$, in e^+e^- annihilation is performed. The **first indication** of the process $e^+e^- \rightarrow f_1(1285)$ is obtained.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\sqrt{s} , MeV	$\sigma_{\pi\pi}$, nb	$\sigma^0_{\pi\pi}$, nb	$ F(s) ^2$	$1+\delta_{rad}$	$\sigma_{\it pol},~{\rm nb}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	525.07	$203.4{\pm}12.3{\pm}2.4$	$210.4 \pm 12.7 \pm 2.5$	$4.4{\pm}0.3{\pm}0.1$	0.967	$209.7 \pm 12.7 \pm 2.5$	
565.2 $235\pm12.3\pm2.4$ $244.3\pm12.8\pm2.5$ $5.5\pm0.3\pm0.1$ 0.962 $243.8\pm12.8\pm2.5$ 585.04 $254.2\pm10.7\pm2.5$ $265\pm11.1\pm2.6$ $6.2\pm0.3\pm0.1$ 0.959 $264.8\pm11.1\pm2.6$ 604.85 $328.8\pm8.7\pm3$ $344.7\pm9.2\pm3.1$ $8.3\pm0.2\pm0.1$ 0.954 $344.8\pm9.2\pm3.1$ 624.78 $366.4\pm11.1\pm3.2$ $386.1\pm11.7\pm3.4$ $9.7\pm0.3\pm0.1$ 0.949 $386.7\pm11.7\pm3.4$ 644.63 $438\pm8.2\pm3.7$ $464.2\pm8.7\pm3.9$ $12.1\pm0.2\pm0.1$ 0.944 $465.6\pm8.7\pm3.9$ 664.53 $525.9\pm3.5\pm4.4$ $561.3\pm3.7\pm4.7$ $15.3\pm0.1\pm0.1$ 0.937 $563.7\pm3.7\pm4.7$ 684.42 $642.1\pm8.4\pm5.3$ $689.1\pm9\pm5.6$ $19.5\pm0.3\pm0.2$ 0.922 $692.9\pm9.1\pm5.7$ 704.21 $798.1\pm10.3\pm6.5$ $860.7\pm11.1\pm7$ $25.4\pm0.3\pm0.2$ 0.927 $865.5\pm11.1\pm7$ 724.12 $1030.4\pm9.5\pm8.3$ $1112.6\pm10.3\pm9$ $34.2\pm0.3\pm0.3$ 0.926 $1116.6\pm10.3\pm9$ 739.13 $1146.5\pm5.6\pm9.2$ $1233.7\pm6\pm9.9$ $39.1\pm0.2\pm0.3$ 0.929 $1234\pm6\pm9.9$ 743.8 $1200.9\pm9.8\pm9.7$ $1289.4\pm10.6\pm10.4$ $41.3\pm0.3\pm0.3$ 0.931 $1288.1\pm10.6\pm10.4$ 747.74 $1215\pm14.4\pm9.8$ $1301.6\pm15.4\pm10.5$ $42\pm0.5\pm0.3$ 0.936 $1276.6\pm14.6\pm10.3$ 755.7 $1246.5\pm10.8\pm10$ $1327.9\pm11.5\pm10.7$ $45.2\pm0.6\pm0.4$ 0.942 $1360.3\pm18.2\pm10.9$ 763.63 $1263.4\pm5\pm10.2$ $1336.8\pm5.2\pm10.8$ $44.5\pm0.2\pm0.4$ 0.948 $1310\pm7.2\pm10.5$ 771.57 $1290.9\pm17.2\pm10.4$ $1356.5\pm23.3\pm10.9$ $45.9\pm0.8\pm0.4$ 0.951 <	543.99	$224.4{\pm}10.1{\pm}2.5$	$232.5 \pm 10.5 \pm 2.6$	$5{\pm}0.2{\pm}0.1$	0.965	$231.9{\pm}10.4{\pm}2.6$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	565.2	$235 \pm 12.3 \pm 2.4$	$244.3 \pm 12.8 \pm 2.5$	$5.5 {\pm} 0.3 {\pm} 0.1$	0.962	$243.8 {\pm} 12.8 {\pm} 2.5$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	585.04	$254.2 \pm 10.7 \pm 2.5$	$265{\pm}11.1{\pm}2.6$	$6.2{\pm}0.3{\pm}0.1$	0.959	$264.8 {\pm} 11.1 {\pm} 2.6$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	604.85	328.8±8.7±3	$344.7 \pm 9.2 \pm 3.1$	$8.3 {\pm} 0.2 {\pm} 0.1$	0.954	$344.8 \pm 9.2 \pm 3.1$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	624.78	$366.4 \pm 11.1 \pm 3.2$	$386.1 \pm 11.7 \pm 3.4$	$9.7{\pm}0.3{\pm}0.1$	0.949	$386.7 \pm 11.7 \pm 3.4$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	644.63	438±8.2±3.7	464.2±8.7±3.9	$12.1 {\pm} 0.2 {\pm} 0.1$	0.944	465.6±8.7±3.9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	664.53	$525.9 \pm 3.5 \pm 4.4$	$561.3 \pm 3.7 \pm 4.7$	$15.3 {\pm} 0.1 {\pm} 0.1$	0.937	$563.7 \pm 3.7 \pm 4.7$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	684.42	$642.1 \pm 8.4 \pm 5.3$	$689.1 {\pm} 9 {\pm} 5.6$	$19.5 {\pm} 0.3 {\pm} 0.2$	0.932	$692.9 {\pm} 9.1 {\pm} 5.7$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	704.21	$798.1{\pm}10.3{\pm}6.5$	$860.7 \pm 11.1 \pm 7$	$25.4{\pm}0.3{\pm}0.2$	0.927	$865.5 \pm 11.1 \pm 7$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	724.12	$1030.4 {\pm} 9.5 {\pm} 8.3$	$1112.6{\pm}10.3{\pm}9$	$34.2 \pm 0.3 \pm 0.3$	0.926	$1116.6{\pm}10.3{\pm}9$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	739.13	$1146.5 {\pm} 5.6 {\pm} 9.2$	$1233.7{\pm}6{\pm}9.9$	$39.1 {\pm} 0.2 {\pm} 0.3$	0.929	$1234{\pm}6{\pm}9.9$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	743.8	$1200.9 {\pm} 9.8 {\pm} 9.7$	$1289.4{\pm}10.6{\pm}10.4$	$41.3 {\pm} 0.3 {\pm} 0.3$	0.931	$1288.1{\pm}10.6{\pm}10.4$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	747.74	$1215{\pm}14.4{\pm}9.8$	$1301.6 {\pm} 15.4 {\pm} 10.5$	$42{\pm}0.5{\pm}0.3$	0.933	$1298.7{\pm}15.4{\pm}10.5$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	751.71	$1199.4{\pm}13.7{\pm}9.7$	$1281.4{\pm}14.7{\pm}10.3$	$41.7 {\pm} 0.5 {\pm} 0.3$	0.936	$1276.6{\pm}14.6{\pm}10.3$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	755.7	$1246.5{\pm}10.8{\pm}10$	$1327.9 {\pm} 11.5 {\pm} 10.7$	$43.5 {\pm} 0.4 {\pm} 0.4$	0.939	$1321.3{\pm}11.4{\pm}10.6$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	759.58	$1288.3 {\pm} 17.3 {\pm} 10.4$	$1368{\pm}18.3{\pm}11$	$45.2 {\pm} 0.6 {\pm} 0.4$	0.942	$1360.3 {\pm} 18.2 {\pm} 10.9$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	763.63	$1263.4{\pm}5{\pm}10.2$	$1336.8{\pm}5.2{\pm}10.8$	$44.5 \pm 0.2 \pm 0.4$	0.945	$1328.9{\pm}5.2{\pm}10.7$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	767.83	$1249.1{\pm}6.9{\pm}10.1$	$1317 {\pm} 7.2 {\pm} 10.6$	$44.2 \pm 0.2 \pm 0.4$	0.948	$1310{\pm}7.2{\pm}10.5$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	771.57	$1290.3 \pm 22.2 \pm 10.4$	$1356.5 {\pm} 23.3 {\pm} 10.9$	$45.9 {\pm} 0.8 {\pm} 0.4$	0.951	$1351.7{\pm}23.2{\pm}10.9$	
778.55 1257 \pm 5.3 \pm 10.1 1311.1 \pm 5.5 \pm 10.5 45 \pm 0.2 \pm 0.4 0.959 1307.4 \pm 5.5 \pm 10.5	775.73	$1290.9 \pm 17.2 \pm 10.4$	$1353.6{\pm}18{\pm}10.9$	$46.2{\pm}0.6{\pm}0.4$	0.954	$1353.2{\pm}18{\pm}10.9$	
	778.55	$1257{\pm}5.3{\pm}10.1$	$1311.1{\pm}5.5{\pm}10.5$	$45 {\pm} 0.2 {\pm} 0.4$	0.959	$1307.4{\pm}5.5{\pm}10.5$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	780.74	$1199{\pm}18.4{\pm}9.7$	$1229.2{\pm}18.9{\pm}9.9$	$42.3 \pm 0.7 \pm 0.3$	0.976	$1211.4{\pm}18.6{\pm}9.8$	

782.03	$1104.8 {\pm} 11.2 {\pm} 8.9$	$1106.9 {\pm} 11.2 {\pm} 8.9$	$38.2{\pm}0.4{\pm}0.3$	0.998	$1074.7{\pm}10.9{\pm}8.7$
782.9	$1058.1{\pm}4.8{\pm}8.5$	$1039.8{\pm}4.7{\pm}8.4$	$36{\pm}0.2{\pm}0.3$	1.017	$999{\pm}4.5{\pm}8$
783.72	$1004.9{\pm}11.6{\pm}8.1$	$971.9{\pm}11.3{\pm}7.8$	$33.7 {\pm} 0.4 {\pm} 0.3$	1.033	$925.2{\pm}10.7{\pm}7.5$
784.7	$959.2{\pm}12.8{\pm}7.7$	$916.8 {\pm} 12.2 {\pm} 7.4$	$31.9 {\pm} 0.4 {\pm} 0.3$	1.046	$865.8 {\pm} 11.6 {\pm} 7$
786.7	$913.5 {\pm} 5.1 {\pm} 7.4$	$872.3 \pm 4.8 \pm 7$	$30.4 {\pm} 0.2 {\pm} 0.2$	1.047	$819.1{\pm}4.5{\pm}6.6$
789.45	$934.6{\pm}14.1{\pm}7.5$	$903.1 \pm 13.7 \pm 7.3$	$31.7 {\pm} 0.5 {\pm} 0.3$	1.035	$850.9 {\pm} 12.9 {\pm} 6.9$
793.91	$890.4{\pm}10{\pm}7.2$	$867.8 \pm 9.7 \pm 7$	$30.7{\pm}0.3{\pm}0.2$	1.026	$823.1 {\pm} 9.2 {\pm} 6.6$
797.66	$858.9{\pm}10.1{\pm}6.9$	$836.3 {\pm} 9.9 {\pm} 6.7$	$29.8{\pm}0.4{\pm}0.2$	1.027	$795.8 {\pm} 9.4 {\pm} 6.4$
803.98	$819.5{\pm}10.5{\pm}6.6$	$791.4{\pm}10.1{\pm}6.4$	$28.6 {\pm} 0.4 {\pm} 0.2$	1.036	$755.4 {\pm} 9.6 {\pm} 6.1$
821.79	$654.8 {\pm} 5.6 {\pm} 5.3$	$608.7 \pm 5.2 \pm 4.9$	$22.8 {\pm} 0.2 {\pm} 0.2$	1.076	$583 \pm 5 \pm 4.7$
843.36	$496.6 {\pm} 5.8 {\pm} 4$	$438 {\pm} 5.1 {\pm} 3.6$	$17.1{\pm}0.2{\pm}0.1$	1.134	$420.4 \pm 4.9 \pm 3.4$
862.68	$382.2 \pm 4.6 \pm 3.1$	$321.2 \pm 3.9 \pm 2.6$	$13{\pm}0.2{\pm}0.1$	1.19	$309 \pm 3.7 \pm 2.5$
883.19	$303.2{\pm}6.7{\pm}2.5$	$242.1 \pm 5.3 \pm 2$	$10.2{\pm}0.2{\pm}0.1$	1.252	$233.5{\pm}5.1{\pm}1.9$

