

B → $D^{(*)}\pi^+\pi^-l^-\nu$ and prospects for measuring related decay modes

Bob Kowalewski

University of Victoria

on behalf of the BaBar Collaboration

Thank you to the Kobayashi-Maskawa Institute for the kind invitation

- Weak interactions have a rich history at Nagoya – in science and perhaps in literature too?
- If you've read this novel (whose main characters grow up in Nagoya) you'll agree that Tsukuru Tazaki is a singlet that doesn't interact strongly...

Outline of talk

- Importance of higher-mass $B \rightarrow X_c lv$ ($l = e \text{ or } \mu$) decays as potential sources of background for $B \rightarrow D^{(*)} \tau v$ measurements
- Current status of $B \rightarrow X_c lv$ decays
- **BABAR** measurement of $B \rightarrow D^{(*)}\pi^+\pi^- l\nu$ decays
- Prospects for measuring additional modes at Belle II and LHCb

A source of background for $B \rightarrow D^{(*)} \tau v$

- Unmeasured $B \rightarrow X_c lv$ decays are of concern because they
 - have higher multiplicity (more opportunities for particles to escape detection and fake additional neutrinos)
 - have higher mass (bigger overlap with kinematics of $B \rightarrow X_c \tau v$ decays)
- Measurements of B→D^(*)τν use B→D^(*)π⁰lν control samples to assess uncertainties coming from these unknown decays
 - method assumes ratio of B→D^(*)τν
 background to B→D^(*)π⁰lv yield is
 the same in data and MC
 - departures must be modeled based on assumptions about the decays that contribute background

The presence of intermediate resonances in multi-body hadronic final states (e.g. $D^{(*)}\pi\pi$) makes isospin relations between modes with and without π^0 model dependent. This is reflected in the estimate given later in this talk:

$$\frac{BF(B \rightarrow D^{(*)}\pi^{+}\pi^{-}\ell\nu)}{BF(B \rightarrow D^{(*)}\pi \ \pi \ \ell\nu)} = 0.50 \pm 0.17$$

$B \rightarrow X_c lv$ decays – current status

- Inclusive BF from global fit to moments (HFAG 2016); *quoted as B⁰ BF* it is • $BF(B^0 \rightarrow X_c | v) = 10.25 \pm 0.15\%$
- Recent measurements of D^{*}lv are lower than previous; HFAG 2016 input • $BF(B^0 \rightarrow D^{*+} | v) = 4.88 \pm 0.10\%$ $BF(B^0 \rightarrow D^+ lv) = 2.13 \pm 0.07\%$
- $D^{(*)}\pi^+l\nu$ measured for B⁺ and B⁰ (HFAG); estimate π^0 modes from isospin • $BF(B^{0} \rightarrow D^{*}\pi Iv) = 0.47 \pm 0.05\% + \frac{1}{2} \times (\tau_{0}/\tau_{+}) \times (0.60 \pm 0.06\%) = 0.75 \pm 0.06\%$ BF(B⁰→Dπlv) = 0.42 ± 0.06% + $\frac{1}{2} \times (\tau_0/\tau_+) \times (0.41 \pm 0.05\%) = 0.61 \pm 0.06\%$
- $D_{c}Klv + D_{c}^{*}Klv$ measured (PDG): ٠ $BF(B^0 \rightarrow D_s^{(*)}KIv) = (0.06 \pm 0.01\%) \times (\tau_0/\tau_+)$ B⁺ decays
- So far: $\Sigma = 8.43 \pm 0.15\%$ ٠
- $D^{(*)}\pi^{+}\pi^{-}lv$ measured for B⁺ and B⁰; $\pi^{+}\pi^{0}$, $\pi^{0}\pi^{0}$ unknown; take $\pi^{+}\pi^{-}/\pi\pi \cong 0.50\pm0.17$ • $BF(B^0 \rightarrow D^* \pi^+ \pi^- |v) = 0.09 \pm 0.03\%;$ $BF(B^0 \rightarrow D\pi^+ \pi^- |v) = 0.14 \pm 0.03\%$ $BF(B^0 \rightarrow D^{(*)}(\pi \pi)_{all}|v) = 0.47 + 0.26 - 0.15\%$
- All measurements (as B⁰): $\Sigma_{all} = 8.90 \pm 0.30\%$ so gap is 1.36 ± 0.34% •

first word of caution

$B \rightarrow X_c lv$ decays – current status

second word of caution

Filling up the electron spectrum

BABAR

 $D^{(*)}\pi e\nu$

 $D^{**}e\nu$

 $X_u e \nu$

 $D \rightarrow e$

 r_L/r

 $X e \nu$

 $D'^{(*)}e\nu$

 $De\nu$ $D^*e\nu$ DN

 2.311 ± 0.095

 5.838 ± 0.059

 2.348 ± 0.096

 0.054 ± 0.015

 10.70 ± 0.05

< 0.099

0.154

0.981

1.0002

- Fit to inclusive electron spectrum (BaBar arXiv: 1611:05624, accepted by PRD) needs more D*
- These fits suggest $BF(B^0 \rightarrow D^{*+} lv) \simeq 5.6 \pm 0.2\%$
- If this were the case, the gap would be 0.61 ± 0.35
- Due to kinematics, it's hard to mimic D*+lv ٠ with higher-mass X_c – so what's going on?

93 Average $B^+/B^0 \rightarrow X_c lv BF$

BLNP

92.7/85

 $\chi^2/ndof$

(0)

94.0/85

°0

(o/VeM0c)/ stneye

BaBar B \rightarrow D^(*) $\pi^+\pi^-l^-\nu$ measurement

- Search for signal B decays $B \rightarrow D^{(*)}\pi^+\pi^- I^- \nu$; $I^- = e^-$ or μ^-
- Reconstruct both signal B and tag B in each event
- Tag B reconstruction based on charm meson seed plus additional hadrons; 2968 different decay channels
- $\varepsilon \times BF$ for tag B is not precisely known, so normalize using ratio

$$R_{\pi^{+}\pi^{-}}^{(*)} \equiv \frac{BF(B \rightarrow D^{(*)}\pi^{+}\pi^{-}\ell^{-}\nu)}{BF(B \rightarrow D^{(*)}\ell^{-}\nu)}$$

- Calculate missing 4-momentum p_{miss} = p(e⁺e⁻) − p(B_{tag}) − p(B_{sig})
- Use U = E_{miss} $|\mathbf{p}_{miss}|$ to discriminate signal from backgrounds
- Keep signal decays blinded

B-tagged analyses

- B mesons produced nearly at rest; decay products overlap
- Hadronic B tagging allows assignment of particles to signal B and determines the B momentum vector
- Works beautifully for *low-multiplicity* signal modes like $B \rightarrow \pi l^{-} v$
- High-multiplicity signals (like
 B → D^(*)π⁺π⁻l⁻ν with subsequent
 D^(*) decay) are much more
 challenging due to assignment
 ambiguities; leads to cross-feed
 components that behave differently
 from signal or other backgrounds

Selection criteria

- Require identified e or μ with $p_{cms} > 0.6 \text{ GeV}$
- Reconstruct D or D^{*} (charged or neutral), π^+ and π^-
- High multiplicity → multiple
 B_{tag}B_{sig} combinations: select
 B_{tag} candidate with energy
 closest to √s/2
- Veto $D^{*+}\pi^{-}l^{-}\nu$ reconstructed as $D^{0}\pi^{+}\pi^{-}l^{-}\nu$
- Construct Fisher discriminant in each signal channel to reduce non-semileptonic backgrounds

Fit procedure, PDFs

- Unbinned max-likelihood fit to U = E_{miss} - |**p**_{miss}| distribution; only free parameters are yields
- PDFs from MC histograms using parametric kernel estimation
- Fit components for $B \rightarrow D^{(*)}\pi^+\pi^- l^- \nu$:
 - 1. true $B \rightarrow D \pi^+\pi^- l^- \nu$;
 - 2. true $B \rightarrow D^* \pi^+ \pi^- l^- \nu$;
 - 3. true $B \rightarrow D^{(*)}\pi I^{-}\nu$;
 - 4. true $B \rightarrow D^{(*)} I^{-} v$;
 - 5. other BBbar
 - 6. continuum qqbar

Normalization mode yields

- Large yields in all B \rightarrow D^(*) l⁻v channels
- Large feed-down from D^{*}
 to D; separate using
 U = E_{miss} |**p**_{miss}|
- Backgrounds from other sources are small

BaBar PRL 116, 041801 (2016)

$B \rightarrow D^{(*)}\pi^+\pi^- l^- \nu$ yields

BaBar PRL 116, 041801 (2016)

	VISPA – Victoria Subatomic Phys								
Channel	Yield	$\epsilon \times 10^4$	${\mathcal S}$	$ \mathcal{S}_{tot} $					
$D^0\pi^+\pi^-\ell^-\overline{ u}$	171 ± 30	1.18 ± 0.03	5.4	5.0					
$D^+\pi^+\pi^-\ell^-\overline{ u}$	56 ± 17	0.51 ± 0.02	3.5	3.0					
$D^{*0}\pi^+\pi^-\ell^-\overline{ u}$	74 ± 36	1.11 ± 0.02	1.8	1.6					
$D^{*+}\pi^+\pi^-\ell^-\overline{\nu}$	65 ± 18	0.49 ± 0.02	3.3	3.0					

S = statistical significance

 S_{tot} = significance with systematics

Kowalewski - Nagoya 2017

$B \rightarrow D^{(*)}\pi^+\pi^- l^- \nu$ yields

BaBar PRL 116, 041801 (2016)

		VICDA - Victoria Subatomic Dhysics							
Channel	Yield	$\epsilon \times 10^4$	${\mathcal S}$	$ \mathcal{S}_{tot} $					
$D^0\pi^+\pi^-\ell^-\overline{ u}$	171 ± 30	1.18 ± 0.03	5.4	5.0					
$D^+\pi^+\pi^-\ell^-\overline{ u}$	56 ± 17	0.51 ± 0.02	3.5	3.0					
$D^{*0}\pi^+\pi^-\ell^-\overline{ u}$	74 ± 36	1.11 ± 0.02	1.8	1.6					
$D^{*+}\pi^+\pi^-\ell^-\overline{ u}$	65 ± 18	0.49 ± 0.02	3.3	3.0					

The only known source of $B \rightarrow D\pi^+\pi^-l^-\nu$ decays is $B \rightarrow D_1(2420) l^-\nu$ with $D_1(2420) \rightarrow D\pi^+\pi^-$.

If these decays are vetoed the yields become 84.3 \pm 27.7 for B⁻ \rightarrow D⁰ $\pi^+\pi^-l^-\nu$ 37.3 \pm 15.9 for B⁰ \rightarrow D⁺ $\pi^+\pi^-l^-\nu$

VISPA – Victoria Subatomic Physics and Accelerator Research Centre

Results for
$$R_{\pi^+\pi}^{(*)}$$

BABAR.

- Ratios measured for both B⁺ and B⁰
- BF determined using PDG values for normalization modes
- Semileptonic widths for B⁺, B⁰ are equal:
 Isospin average shown

 $R_{\pi^+\pi^-}^{(*)} imes 10^3$ $\mathsf{B}^{\scriptscriptstyle +}\,\mathsf{BF}\,\mathcal{B} imes 10^5$ Channel $D^0\pi^+\pi^-\ell^-\overline{\nu}$ $71 \pm 13 \pm 8$ $161 \pm 30 \pm 18 \pm 8$ $D^+\pi^+\pi^-\ell^-\overline{\nu}$ $58 \pm 18 \pm 12$ $127 \pm 39 \pm 26 \pm 7$ $D^{*0}\pi^+\pi^-\ell^-\overline{\nu}$ $14 \pm 7 \pm 4$ $80 \pm 40 \pm 23 \pm 3$ $D^{*+}\pi^+\pi^-\ell^-\overline{\nu}$ $28 \pm 8 \pm 6$ $138 \pm 39 \pm 30 \pm 3$ $D\pi^+\pi^-\ell^-\overline{
u}$ $67 \pm 10 \pm 8$ $152 \pm 23 \pm 18 \pm 7$ $D^*\pi^+\pi^-\ell^-\overline{\nu}$ $19 \pm 5 \pm 4$ $108 \pm 28 \pm 23 \pm 4$

BaBar PRL 116, 041801 (2016)

- Many systematic uncertainties cancel in ratio; leading sources:
 - PDF shapes: 7—21%
 - signal decay modeling: 8—19%
 - modeling of Fisher discriminant: 4—5%

$$R_{\pi^{+}\pi^{-}}^{(*)} \equiv \frac{BF(B \rightarrow D^{(*)}\pi^{+}\pi^{-}\ell^{-}\nu)}{BF(B \rightarrow D^{(*)}\ell^{-}\nu)}$$

Extrapolation to all $B \rightarrow D^{(*)}\pi\pi$ $J^{-}\nu$ decays

- Mechanism for $B \rightarrow D^{(*)}\pi^+\pi^-l^-\nu$ unknown; consider decays $B \rightarrow X_c l^-\nu$ via Any combination of π^{\pm}, π^0
 - 1. 3-body phase space $X_c \rightarrow D^{(*)}\pi\pi$
 - 2. $X_c \rightarrow D^{(*)}f_0(500), f_0(500) \rightarrow \pi\pi$
 - 3. $X_c \rightarrow D^{(*)}\rho, \rho \rightarrow \pi\pi$
 - 4. $X_c \rightarrow Y_c \pi, Y_c \rightarrow D^{(*)} \pi$
- Use isospin factors to estimate $BF(B \rightarrow D^{(*)}\pi\pi l^{-}\nu)$ from the measured $BF(B \rightarrow D^{(*)}\pi^{+}\pi^{-}l^{-}\nu)$
- The $\pi^+\pi^-/\pi\pi$ ratio in this choice of models is covered by the factor $\pi^+\pi^-/\pi\pi = 0.50 \pm 0.17$ (33% relative uncertainty)
- This provides motivation for measuring modes with π^0

28 March 2017

Comments on other decay modes

- We talk about "states" but we measure topologies
- Given the limited success we've had measuring broad P-wave D states (and decay BFs) I'm not optimistic about measuring the resonance content of the X_c spectrum with precision
- Experimentally we should be able to measure the BF and m(X_c) distribution for
 - $B \rightarrow D^{(*)}\pi I\nu$, $B \rightarrow D^{(*)}\eta Iv...$
 - $B \rightarrow D^{(*)}\pi^{+}\pi^{-}I\nu$, $B \rightarrow D^{(*)}\pi^{+}\pi^{0}I\nu$, $B \rightarrow D^{(*)}(\pi^{+}\pi^{-}\pi^{+})I\nu$...
 - $B \rightarrow D_{s}^{(*)}KIv, B \rightarrow D_{s}^{(*)}K\pi Iv, ...$
- Only the decays in color have been measured

Comments on other decay modes (2)

- With higher statistics, B-tagged measurements of $D^{(*)}+0\pi$ and $D^{(*)}+1\pi$ modes will be clean, uncertainties will shrink. Maybe we'll even figure out what the correct $B \rightarrow D^*l^+\nu$ BF is....
- Even with Belle II and LHCb upgrades, D^(*)+2π modes are challenging, especially those with one or more π⁰s. Early studies of D^(*)π⁺π⁰ suggest that signal/noise is at least 3 times worse (lower efficiency, lower resolution, more background)
- Belle II will be able to do $D^{(*)}\eta$ ($\eta \rightarrow \gamma \gamma$) and maybe ($\eta \rightarrow 3\pi$)
- Can LHCb help with $D^{(*)}\pi^+\pi^-$ and $D^{(*)}\pi^-\pi^+\pi^-$ modes?

Conclusions

- $B \rightarrow X_c lv$ decays are background for $B \rightarrow D^{(*)} \tau v$ measurements
- Composition of B→X_clv decays not known precisely; even the largest B decay BF (D^(*)lv) may not be well understood
- First measurement of B decays to $D^{(*)}\pi^+\pi^-l^-\nu$
 - Observation of the decay $B^- \rightarrow D^0 \pi^+ \pi^- l^- \nu$
 - Evidence for $B^0 \rightarrow D^+\pi^+\pi^-l^-\nu$ and $B^0 \rightarrow D^{*+}\pi^+\pi^-l^-\nu$
- $D^{(*)}\pi\pi I^{-}\nu$ accounts for ~5% of all $B \rightarrow X_c I^{-}\nu$
- Future measurements are needed to fill in the picture
 - modes $B \rightarrow D^{(*)}\pi^{-}\pi^{0}I^{-}\nu$ and $B \rightarrow D^{(*)}\pi^{0}\pi^{0}I^{-}\nu$
 - $B \rightarrow D^{(*)}\eta I\nu; B \rightarrow D^{(*)}\pi^{-}\pi^{+}\pi^{-}I\nu, ...$

Backup

$D^{(*)}\pi^{+}\pi^{-}l^{-}\nu$ systematic uncertainties (%)

	D ⁰	D+	D*0	D*+
PDF	6.5	10.7	21.1	10.9
PID	0.7	1.5	1.1	1.3
MisID	0.6	1.1	1.0	0.8
Trk eff	0.5	0.2	1.6	4.6
Photon eff	0.4	1.0	0	1.0
D, D* BFs	0.6	0.6	0.7	0.7
Fisher	3.7	5.2	3.8	4.7
Slow π0 eff	0	0.2	1.8	1.3
Signal FF	3.0	3.2	4.4	4.4
Peaking bkg	0.9	13.8	6.3	4.4
Xc decay	6.6	10.5	13.3	13.3
neut frac	0.6	0.4	1.6	1.2
Signal B decay	4.2	0	13.8	1.9
Total	11.4	21.4	30.0	19.7

Correlation coefficients for BaBar fit to inclusive electron spectrum

BaBar arXiv:1611:05624, accepted by PRD

	$De\nu$	$D^*e\nu$	$D^{(*)}\pi e \nu$	$D^{**}e\nu$	$D'^{(*)}e\nu$	$X_u e \nu$	$D \rightarrow e$	a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5	$r_L/r_L^{(0)}$
$De\nu$	1	-0.827	0.032	-0.398	-0.449	-0.305	-0.060	0.018	-0.048	0.058	-0.036	0.023	-0.032	0.001
$D^*e\nu$		1	-0.024	-0.158	0.784	-0.128	0.309	0.050	0.029	-0.146	0.126	0.038	0.125	0.008
$D^{(*)}\pi e \nu$			1	-0.031	0.004	0.027	0.012	-0.066	0.033	0.033	-0.048	-0.044	-0.052	-0.028
$D^{**}e\nu$				1	-0.601	0.598	-0.361	-0.062	0.030	0.055	-0.063	-0.055	-0.066	-0.012
$D'^{(*)}e\nu$					1	-0.236	0.206	0.069	-0.051	-0.034	0.053	0.070	0.063	0.001
$X_u e \nu$						1	-0.252	-0.461	0.310	0.252	-0.369	-0.425	-0.363	-0.107
$D \rightarrow e$							1	-0.108	0.204	-0.189	0.104	-0.102	0.037	-0.116
a_0								1	-0.827	-0.196	0.670	0.980	0.671	0.139
a_1									1	-0.315	-0.190	-0.870	-0.209	-0.103
a_2										1	-0.801	-0.122	-0.818	0.012
a_3											1	0.610	0.947	0.035
a_4												1	0.627	0.027
a_5													1	-0.006
$r_L/r_L^{(0)}$														1