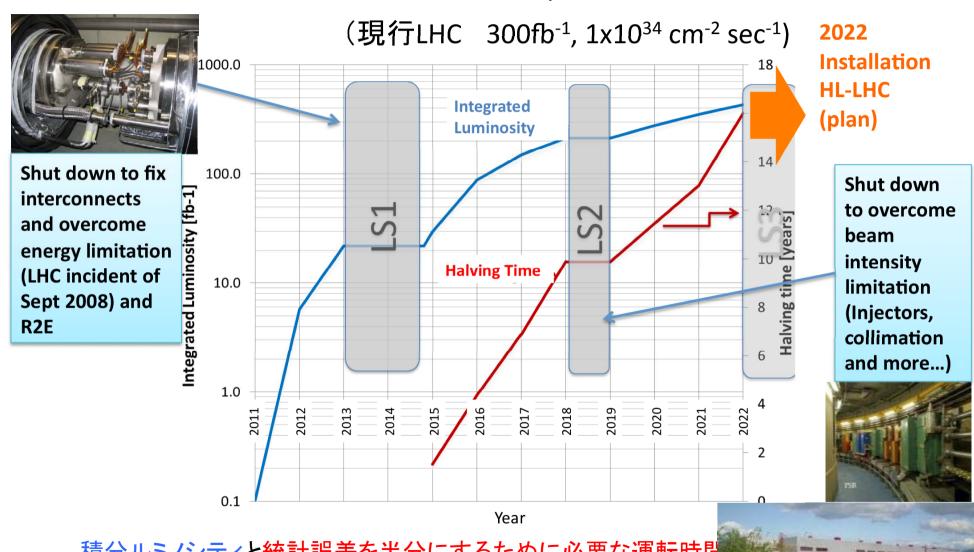
LHC高輝度アップグレード

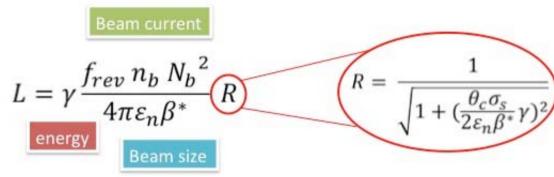
- 全体像と日本の貢献 -

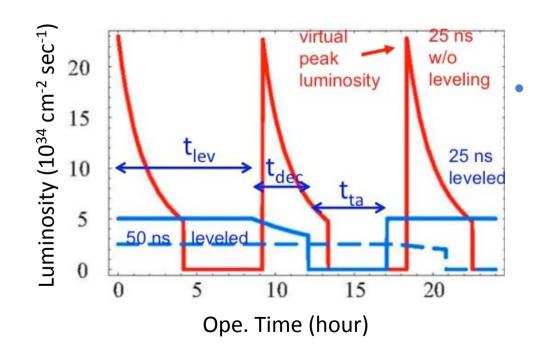
高エネルギー加速器研究機構(KEK) 中本建志


全体計画とR&Dの現状

https://espace.cern.ch/HiLumi/2012/SitePages/Home.aspx

https://indico.fnal.gov/conferenceDisplay.py?confld=6164


LHC高輝度化アップグレード - HL-LHC -


HL-LHCの目標: 3000fb⁻¹, 5x10³⁴ cm⁻² sec⁻¹

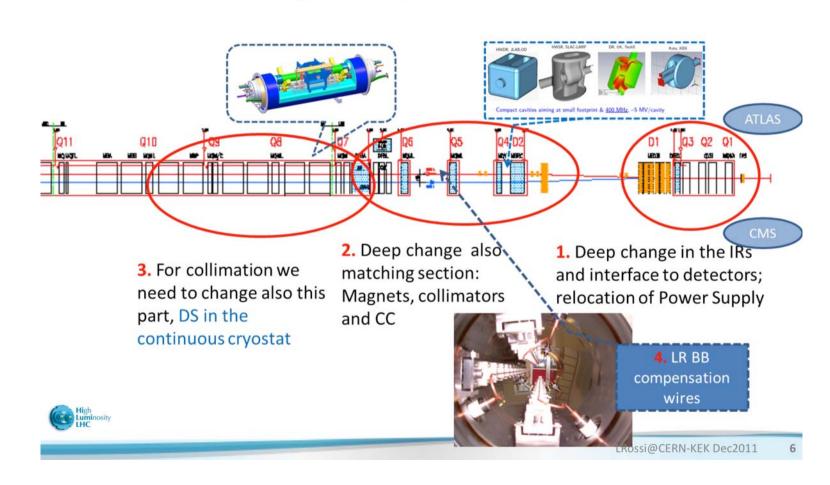
積分ルミノシティと統計誤差を半分にするために必要な運転時間

シナリオ

- Peak Luminosityの向上
 - 陽子数の増加、β*の減少
 - Injector upgrade (LIU)
 - New optics & Layout
 (Achromatic Telescopic
 Squeeze, crossing angle...)
 - IR magnets
- パイルアップイベント抑制
 - レベリング
 - Detuning by Crab-Cavities
 - マシン防護、性能向上
 - ビームパワー対策
 - Collimation, e-Lens
 - 11T dipole (DS at IR 3/7)
 - 耐放射線対策
 - SC Link + PC移設
 - R2E (Radiation to Electronics)
 - 熱負荷対策
 - Cryo-plants
 - Shield in BP

HL-LHCのパラメータ(最新版?)

HL-LHC Performance Estimates

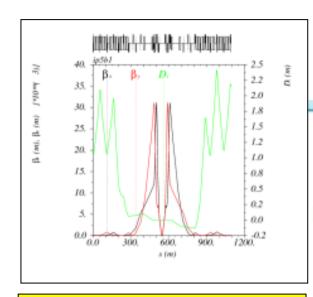

'Stretched' Baseline Parameters following 2nd HL-LHC-LIU:

Parameter	nominal	25ns	50ns	6.2 10 ¹⁴ and 4.9 10 ¹⁴		
N	1.15E+11	2.2E+11	3.5E+11	p/beam		
n _b	2808	2808	1404	→ sufficient room for leveli (with Crab Cavities)		
beam current [A]	0.58	1.12	0.89			
x-ing angle [μrad]	300	590	590	,		
beam separation $[\sigma]$	9.9	12.5	11.4	100		
B* [m]	0.55	0.15	0.15	Virtual luminosity (25ns) of		
_n [μm]	3.75	2.5	3.0	$L = 7.4 / 0.305 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$		
ε _L [eVs]	2.51	2.51	2.51	= 24 10 ³⁴ cm ⁻² s ⁻¹ ('k' = 5)		
energy spread	1.20E-04	1.20E-04	1.20E-04	- 2 / 20 CM 5 (N - 5)		
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	Virtual luminosity (50ns) of		
[BS horizontal [h]	80 -> 106	18.5	17.2	$L = 8.5 / 0.331 10^{34} \text{cm}^{-2} \text{s}^{-1}$		
[BS longitudinal [h]	61 -> 60	20.4	16.1	= 26 10 ³⁴ cm ⁻² s ⁻¹ ('k' = 10)		
Piwinski parameter	0.68	3.12	2.85	- 20 10 Cm 3 (K - 10)		
geom. reduction	0.83	0.305	0.331			
beam-beam / IP	3.10E-03	3.3E-03	4.7E-03	(1 avalad to E 1034 ava-2 av1		
Peak Luminosity	1 1034	7.4 1034	8.5 1034	(Leveled to 5 1034 cm-2 s-1		
Virtual Luminosity	1.2 1034	24 10 ³⁴	26 10 ³⁴	and 2.5 10 ³⁴ cm ⁻² s ⁻¹)		
vents / crossing (pea	ak & leveled L) 19	-> 28 207	476	140 140		

「先端加速器LHCが切り拓くテラスケールの素粒子物理学」研究会@名古屋大学

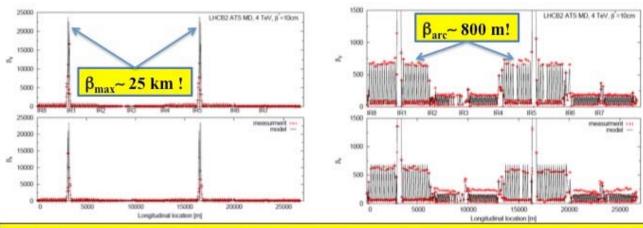
HL-LHCに向けた研究開発

IR Magnets (triplet, D1, D2, MQ4, ...)
SC Crab Cavities, IR Collimation


HL-LHCプロジェクト: WPの構成

1 project — 1 structure: HL-LHC FP7 HiLumi Design Study just covers part of it

※LIU計画は別。次の大森さんの発表を参照

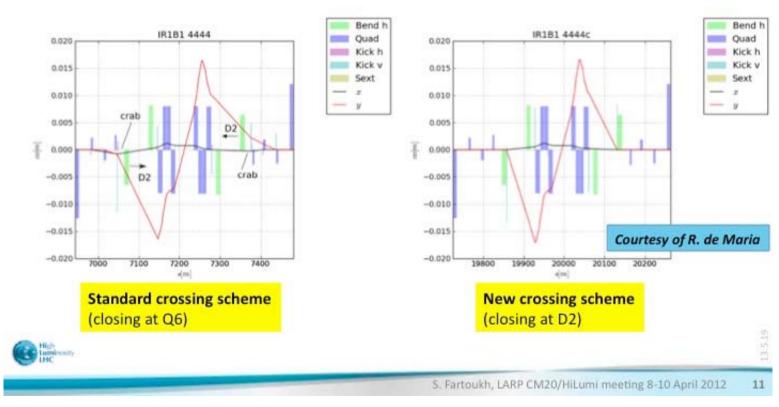

WP2: Accelerator Physics

ATLAS & CMS: $\beta^*=10$ cm (..."ultimately")

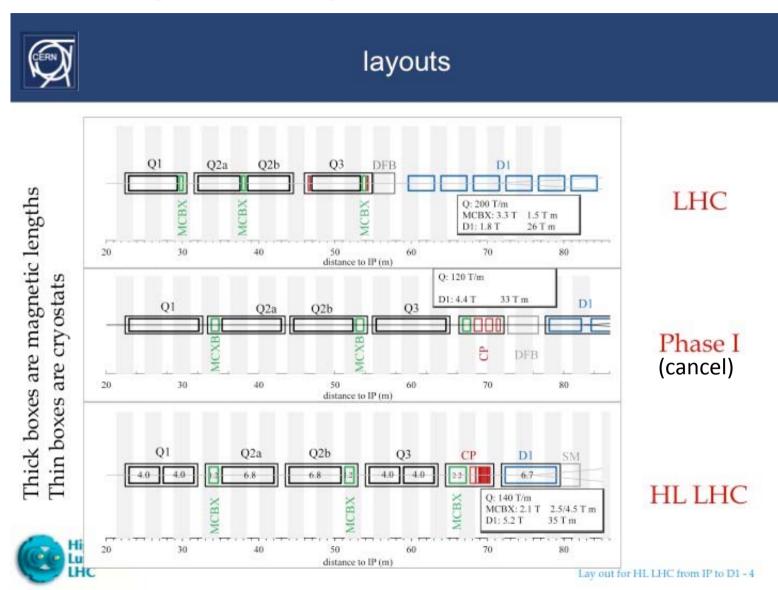
HL-LHC baseline optics (1/4)

 The Achromatic Telescopic Squeeze (ATS) is now firmly established as baseline for the HL-LHC.

 \rightarrow β^* ~10 cm demonstrated in MD (with some β -beating and special machine configuration) including a full chromatic correction, thank to the ATS: CERN-ATS-2013-004 MD. ... of course not (yet) usable for operation (not enough magnet aperture) !

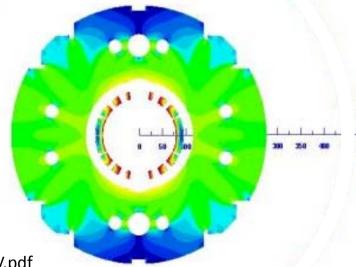

Luminosit

S. Fartoukh, LARP CM20/HiLumi meeting 8-10 April 2012


WP2: Accelerator Physics

HL-LHC baseline optics (4/5)

 The new crossing scheme is closed at D2 before the crabcavities but requiring very strong orbit corrector (see later)

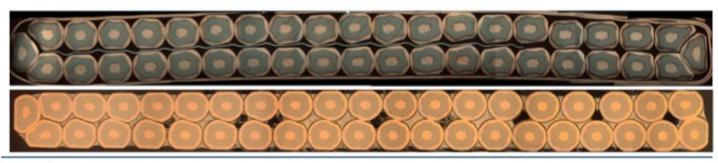

WP3: IR Magnets, Layout

WP3: IR Magnets

- Aperture selection: Q1-Q3 150 mm, D1: 160 mm, Q4: 90 mm
- Energy deposition and heat load targets
 - Targets for peak values: 40 MGy 4 mW/cm³
 - Achieved with large shieding with beam screen and W
 - Higher temperature in the coil: 1.9+0.75 K (midplane)
- Most critical triplet features, priorities for 2013
 - Performance: 80% on the loadline tight but achieved in LARP quads – instabilities are still an issue
 - Conductor: smaller filament size, but where to stop?
 - Coil fabrication, electrical integrity
 - Protection critical (HQ affected/protected by quenchback)
- D1 tentative choice: 1 layer LHC cable, 5.2 T, 7.6 m long
- Q4 tentative choice: 1 layer LHC cable, 120 T/m, 4.5 m long

IT-Quad MQXF (Nb3Sn, 150 mm, G=140 T/m, B_{peak}= 12 T)

Beam separation Dipole (NbTi, 160 mm, B=5.2 T, B_{peak}= 6 T)


Nb₃Sn-IT超伝導四極磁石の技術開発(チャレンジング)については以下を参照。 http://cry3-aps.kek.jp/~cryoweb/publicdocs/20120915HLLHCMagnetNakamotoSV.pdf

WP3: Nb₃Sn SC Cable for IT Quad. (150mm)

SQXF status Cable R&D

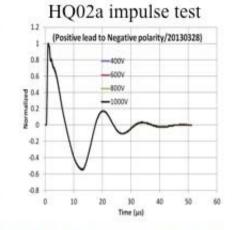
- •素線フィラメントサイズ
- •幅の拡大

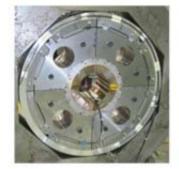
- Target criteria established
 - Mechanical stability during winding
 - Stability current I_s ≥ 3*I_{op}
 - RRR after cabling > 150
 - No shear planes in micrograph images
- First iteration completed in 03/2013
 - Winding tests, cross-section images, extracted strand meas.
 - · No cable reached all targets
- Second iteration has started
 - Cabling, winding tests, micrograph images in 04/2013
 - Extracted strand measurements in 05/2013
 - Cable parameters for first set of coils by end of 05/2013
- Cable R&D will continue (PIT strand, improved parameters...)

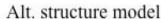
G. Ambrosio and P. Ferracin

09/04/2013

WP3: HQ (120 mm) Model Study


HQ and LHQ status

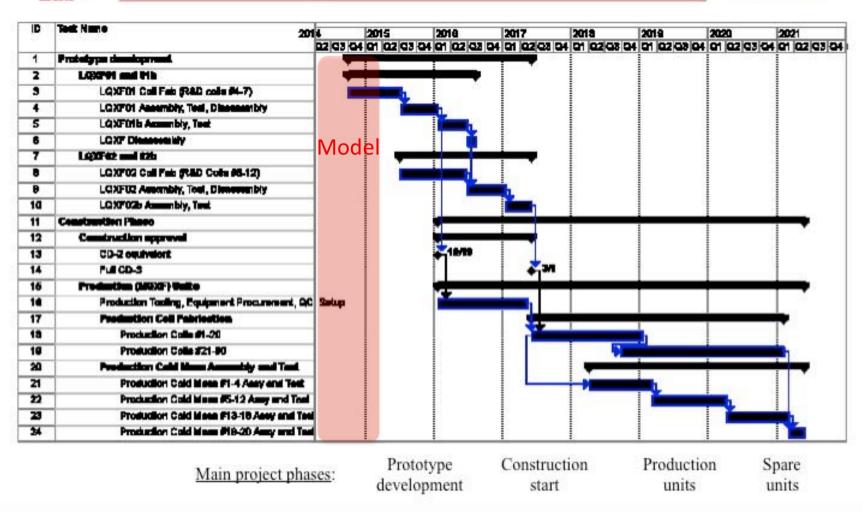



Assembled HQ02a magnet

HQ02a pre-load

Fabrication of first LHQ practice coil

LARP/Hi-Lumi CM20, April 8, 2013

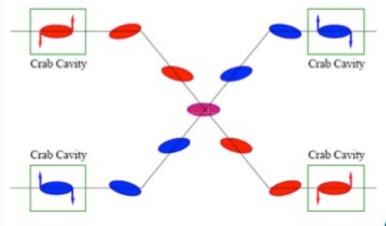

Magnet Project - G. Sabbi

WP3: Schedule of IT Quad.

Project schedule

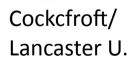
「先端加速器LHCが切り拓くテラスケールの素粒子物理学」研究会@名古屋大学

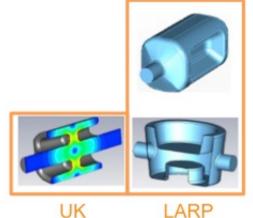
WP4: Crab Cavities


Integration in LHC tunnel – IP1

Closest Cavern

RR13




Crab Cavities

Technical Challenges

- Crab cavities have only barely been shown to work.
 - Never in hadron machines
- LHC bunch length → low frequency (400 MHz)
- 19.4 cm beam separation → "compact" (exotic) design
- Additional benefit
 - · Crab cavities are an easy way to level luminosity!
- Currently aiming for:
 - Down-select -next year
 - SPS test in 2015

ODU/SLAC

Point 1 (ATLAS)

Closest Cavern **RR17** shielding???

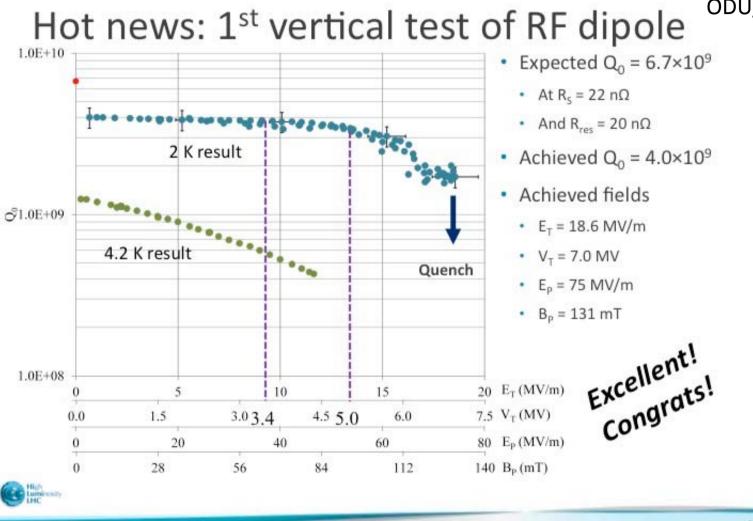
ATLAS

~155 m

Nearest Equipment Space

Access through tunnel

BNL


Prebys - Joint HiLumi/LARP Meeting

Novemer 14, 2012

•3バージョンが並行して開発中

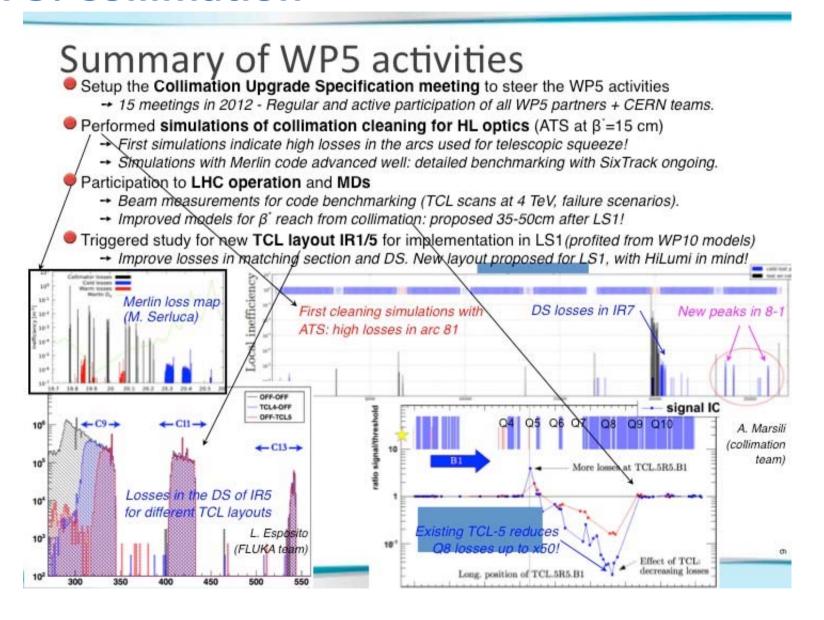
•SPSでのビーム試験を計画

WP4: Crab Cavities

ODU/SLAC

Volta

Freq

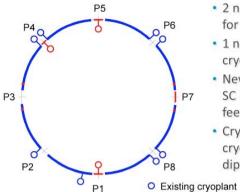

Qext

• Cavi

RF p


Bear

WP5: Collimation


WP6: Cold Powering

先進超伝導線材(MgB₂, 高温超伝導線材) の大規模応用

WP9: Cryogenics


Overall HL-LHC layout

- HL-LHC cryo-upgrade:
- 2 new cryoplants at P1 and P5 for high luminosity insertions
- 1 new cryoplant at P4 for SRF cryomodules
- New cooling circuits at P7 for SC links and deported current feed boxes
- Cryogenic design support for cryo-collimators and 11 T dipoles at P3 and P7

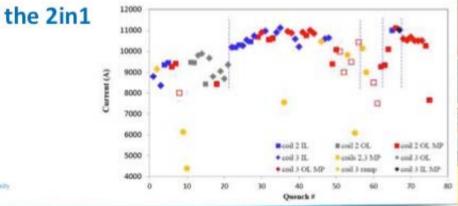
O New HL-LHC cryoplant

P4 cryogenic process & flow diagram

WP11: 11 T dipole for DS

- •Fermilab-CERN
- •Nb3Sn超伝導線
- ●タイトなスケジュール(LS2)

Technical Progress (incomplete ...) - 8


- WP 11 (11 T dipole)
- 2 m long single bore: test in June/July 2012

10.4 T at low dI/dt,

95% of the goal, coil damage recognized

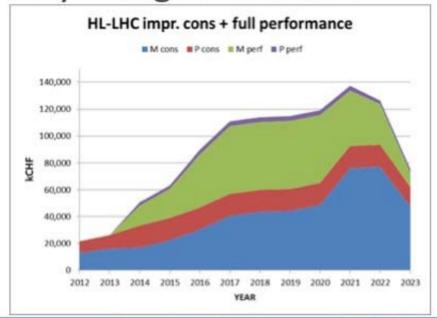
new 1 m single bore to test in February

Then one 2 m single bore in 2013 and after

1

Upgrades: "Enhanced Consolidation" & "Full Performance"

HiLumi: Two branches (with overlap)


- Enhanced Consolidation upgrade (1000-1200 fb⁻¹)
- Magnet rad. damage and enhanced cooling
- Cryogenics (P4, IP4,IP5)
 with separation Arc form
 RF and from IR
- Collimation
- SC links (in part)
- QPS and Machine Prot.
- Kickers
- Interlock system

- Full performance upgrade (3000 fb⁻¹)
- Maximum low-β Quads aperture
- Crab Cavities
- HB feedback system (SPS)
- Advanced collimation systems
- E-lens (?)
- SC links (all)
- R2E and remote handling for 3000 fb⁻¹

予算見積り(CERN)

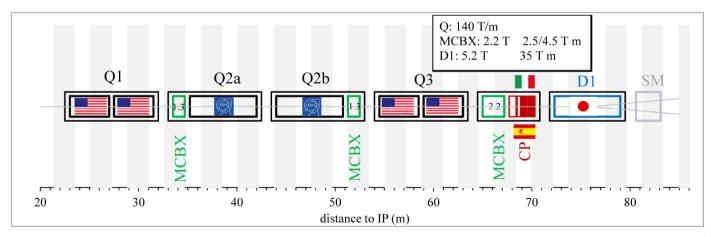
Preliminary budget estimate

	Improving Consolidation	Full performance	Total HL-LHC
Mat. (MCHF)	476	360	836
Pers. (MCHF)	182	31	213
Pers. (FTE-y)	910	160	1070
TOT (MCHF)	658	391	1,049

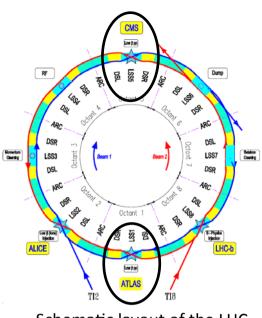
[参考]

US-LARP: \$200M (Plan)

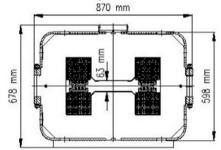
KEKでの超伝導磁石開発

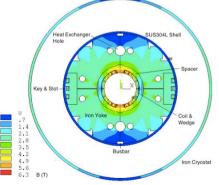

他の方々の貢献は、すみませんが、割愛させてください...

- LHC Injector Upgrade: 大森さん(次の御講演)
- ビーム力学: 大見さん、Molodozhentsevさん
- 超伝導クラブ空洞: 森田さん


13.5.24

Objective: New D1


- For HL-LHC upgrade, needs for new Inner Triplet system at IR1 & IR5.
 - Large aperture (150 mm) HF Quadrupoles, corrector package.
- New beam separation dipole (D1) should be accommodated with large aperture IT Quads; which will have a even larger aperture than IT Quads and 50% increase in original integrated field (26 T m → 35~40 T m).


Schematic layout of the IR(分担案)

Schematic layout of the LHC

Current D1 (MBXW) at IR1 & IR5

ビーム分離用大口径双極磁石: D1

Magnetic field distribution at nominal current

コイル内径: 160 mm

磁場長: 40 T m

定格磁場: 5.2 T @ 11kA

ロードライン比: 70 %(直線部ピーク磁場5.9T)

運転温度: 1.9 K (超流動He冷却)

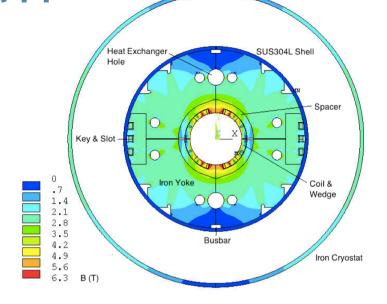
超伝導コイル: 15mm厚1層コイル

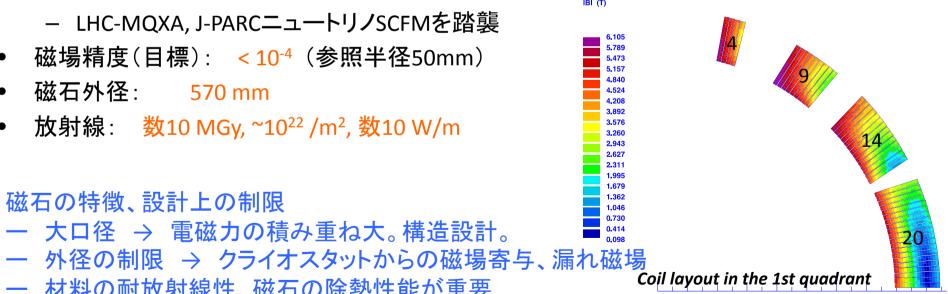
- LHC主双極磁石外層コイル用NbTiケーブル

機械構造: 鉄ヨークカラー

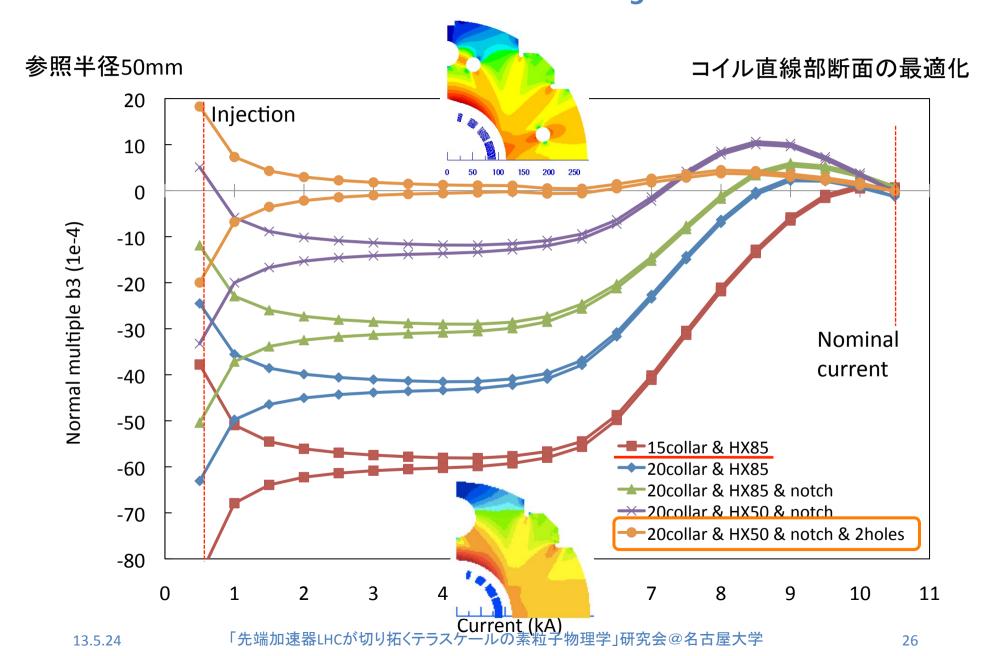
- LHC-MQXA, J-PARCニュートリノSCFMを踏襲

磁場精度(目標): < 10⁻⁴ (参照半径50mm)

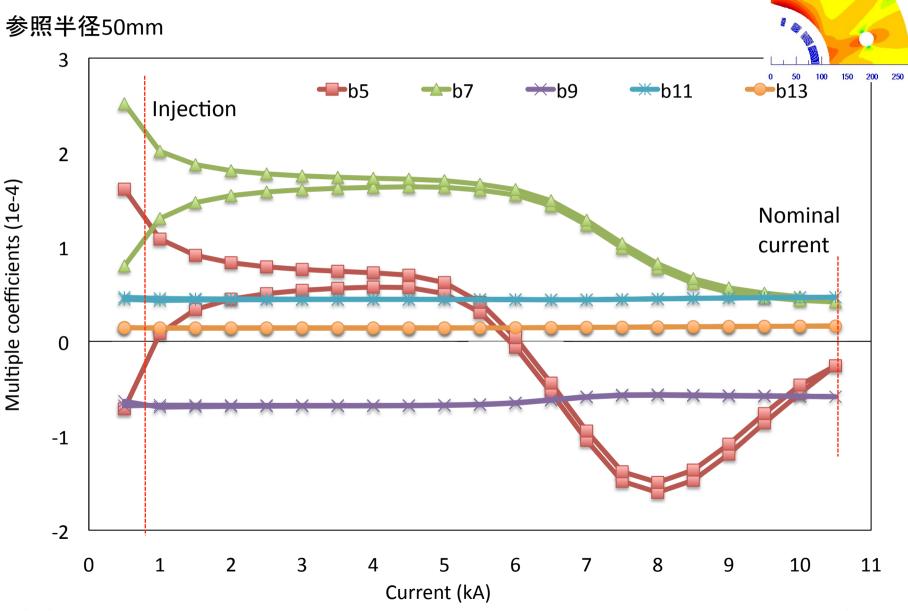

磁石外径: 570 mm


放射線: 数10 MGy, ~10²² /m², 数10 W/m

磁石の特徴、設計上の制限

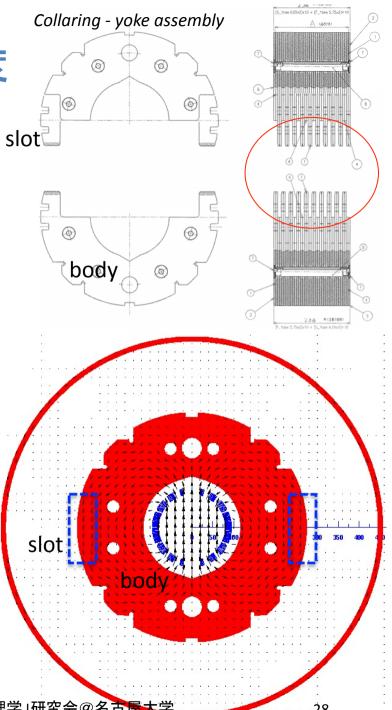

一 大口径 → 電磁力の積み重ね大。構造設計。

一 材料の耐放射線性、磁石の除熱性能が重要



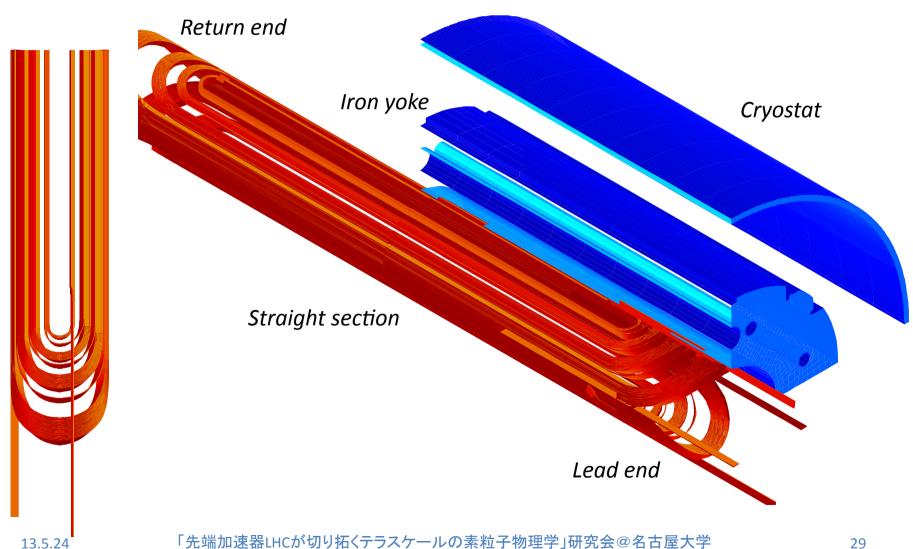
磁場設計: 磁石断面の最適化(b₃)

磁場設計: 磁石断面の最適化(b_n, n>3)

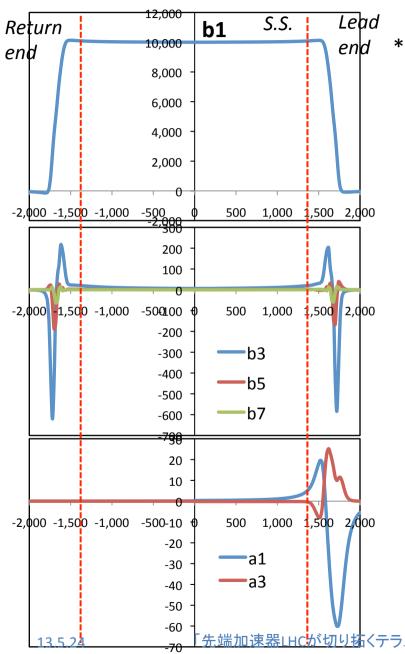


磁場への影響: 鉄ヨーク積層密度

- •Considering the packing factor variation of the iron yoke during fabrication.
- •Simulation with ROXIE; 11 kA, Rref=50mm
- •Different packing factor at slot regions

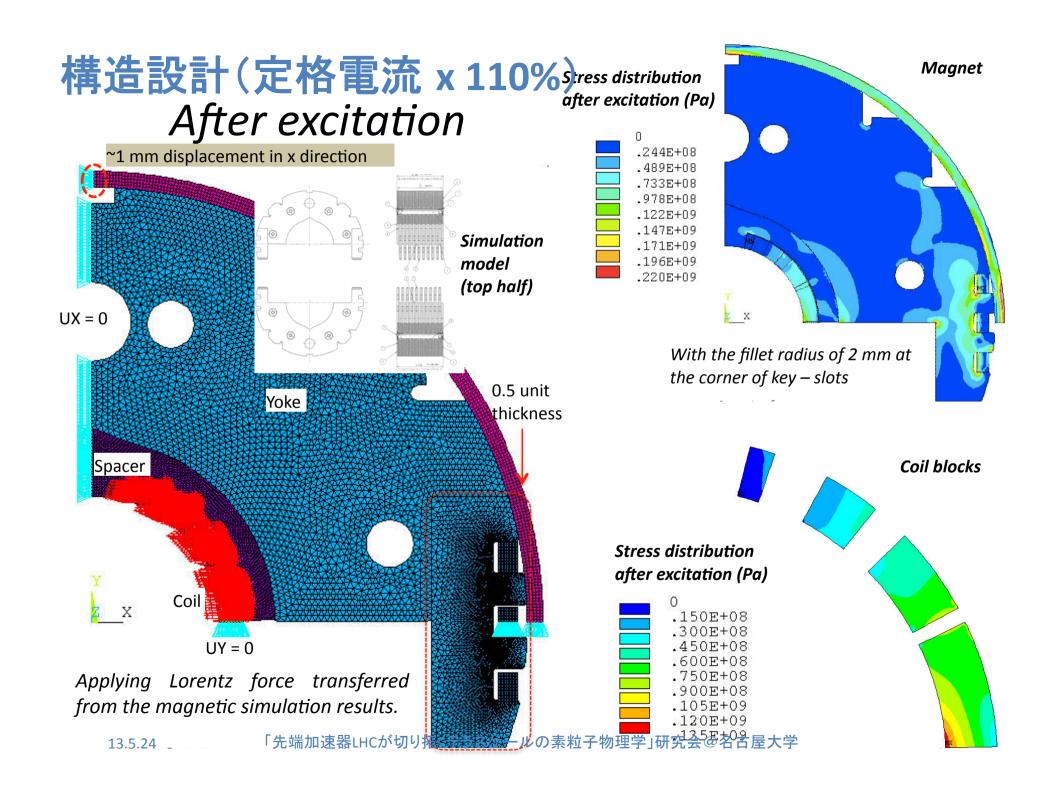

PF (body)	PF (slot)	b3	b 5	b 7	В (Т)
	1	0.21	-0.18	0.16	5.25
1	0.95	-2.1	-0.53	0.12	5.2443
	0.9	-4.48	-0.89	0.08	5.2384
	0.98	-0.1	-0.05	0.16	5.2261
0.98	0.94	-1.94	-0.33	0.13	5.2216
	0.9	-3.83	-0.62	0.09	5.2169

Importance of control of packing factor in highly saturated iron to maintain good field quality.

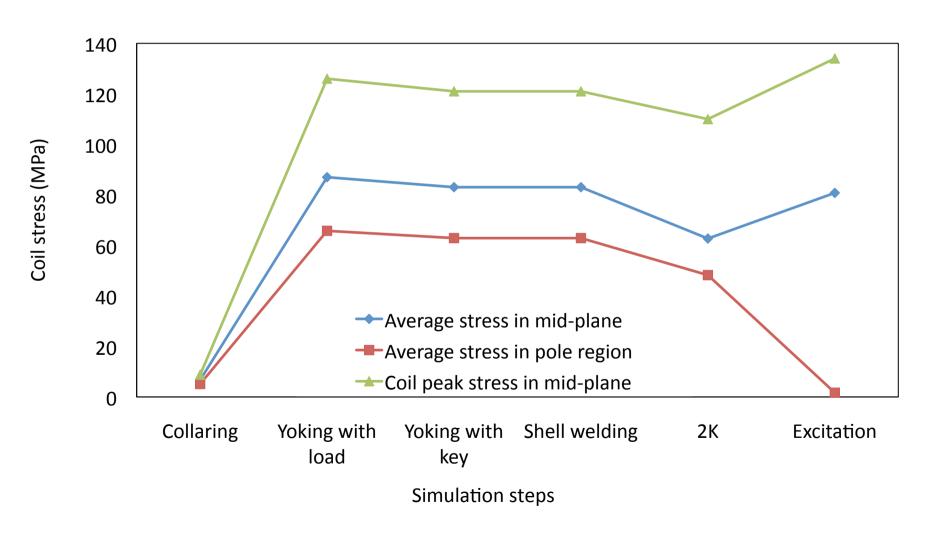


磁場設計: コイル端部形状の決定

Iron covers the whole coil ends currently. Peak field in coil ends is ~ 5% higher than straight section.


Field Integral & Magnet Length: Option 1 (Tentative)

*For Mechanical Coil Length: 3.51 m (-1757 < z < +1753)

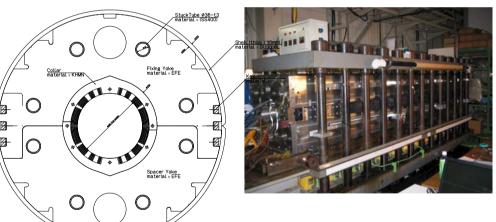

Field Integral	Return End (-2000 < z < -1400)	S.S. (-1400 < z < +1400 mm)	Lead End: (+1400 < z +2000 mm	Total
B1	1.39E+00	1.47E+01	1.49E+00	1.76E+01
В3	-9.11E-03	1.48E-02	-7.27E-03	-1.58E-03
B5	-3.42E-03	1.31E-03	-2.28E-03	-4.39E-03
В7	-1.13E-03	2.52E-04	-7.74E-04	-1.65E-03
A1		8.62E-04	-5.43E-03	-4.56E-03
A3		-1.27E-04	1.71E-03	1.59E-03

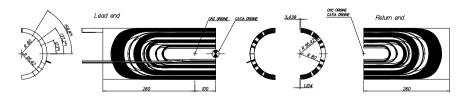
- Field integrals of higher order multipoles are designed to be less than 1 unit w.r.t. that of B1.
- Peak field in coil ends is ~ 5% higher than straight section. (Iron yoke fully covers the ends.)
- Coil length estimates
 - 35 Tm >> Mechanical coil length 6.82 m
 - 40 Tm >> Mechanical coil length 7.77 m

超伝導コイル内の応力

160 mm aperture, with 110% of the nominal current Lorentz force: 1.4 MN/m and 0.6 MN/m in X/Y direction at nominal current

モデル磁石所内開発指針


- 機械構造設計はLHC-MQXA, J-PARCニュートリノSCFMを踏襲
- J-PARC T2K SC Magnets (コイル内径173.4mm)の治具類の再利用.
 - 鉄ヨーク外径(550mm)は同じ
 - 鉄ヨーク打ち抜き金型、4m長油圧プレスなど
- NbTi超伝導ケーブル
 - LHC主双極磁石用ケーブルの余材
 - Hell冷却下での除熱性に優れた電気絶縁材料
 - → CERNとの協力(MQXC用開発+要素検証実験)


開発計画

- JFY 2013
 - 工学設計、図面(治具、部品)
 - テストコイル2個試作+構造検証用短 尺モデル開発
- JFY2014
 - モデル1号機コイル巻き線,2m長モデル磁石組み立て
 - 冷却励磁試験
- JFY2015
 - モデル2号機試作(検討中)
 - 技術設計報告書提出


Cable Insulation

NbTi SC cable: LHC MB Inner or Outer layer

Insulation: 2 candidates

MB-like: Apical tape, cured at 190-197 °C at > 15 MPa.

improved MQXA-like: Upilex tape w/ prepreg (Cyanate Ester + Epoxy), cured at 150 °C.



- MB insulation looks having better heat transfer capability.
- Insulated inner and outer cables with
 Apical tapes were delivered from CERN.
- 10 stack measurements will be made soon.
- Radiation resistance?

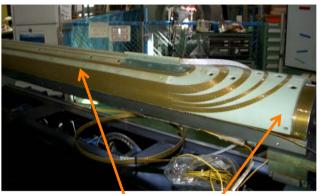
Collar, Yoke

13.5.24

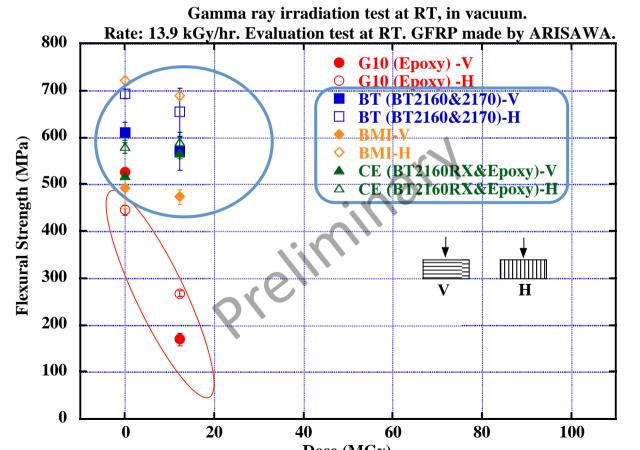

- Collaring yoke structure (Originated at RHIC-dipole, followed by MQXA)
 - Stainless collar as a spacer, vertically split iron yoke locked by keys
 - $-\,$ Both collars and yokes should have small dimensional errors (20-30 μm at smallest). $\,>>\,$ Fine-Blanking technology
- Discussion with a fine-blanking company started in March.
 - Some suggestions for the first design.
 - Waiting for answers: cost estimates, technical feasibility, delivery time.
- A set of fine-blanking die for iron yoke: very expensive, very long delivery time.
 - Yoke cross section has to be finalized soon: single or double layer coil, size and location of holes, etc. >> determined by the heat load and the cooling scheme.
- Business inquiry will be sent to vendors for stainless steel, iron yoke.
- Control of packing factor is crucial to field quality due to high saturation.

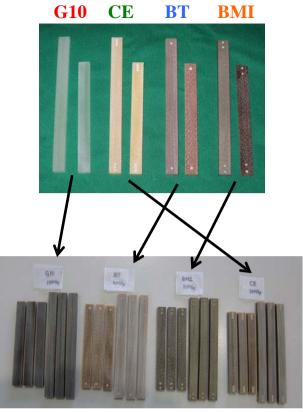
耐放射線材料の開発・評価

- New radiation resistant GFRPs (w/ S-2 Glass or T-Glass) are baseline for coil wedges, end spacers.
 - Cyanate Ester & Epoxy
 - BT (Bismaleimide Triazine)
 - BMI (Bismaleimide)
- Trial production has been made: prepreg sheets, laminated plates and pipes.
- Backup plan (in case of higher dose) would be metallic parts with Polyimide coating by "Vapor Deposition Polymerization" technology.
- 耐放射線試験(低温、常温、100 MGy)を計画
 - JAEA高崎: Co⁶⁰γ線、2MeV電子線 2012.10~
 - 京大原子炉:30MeV電子線2012.9~

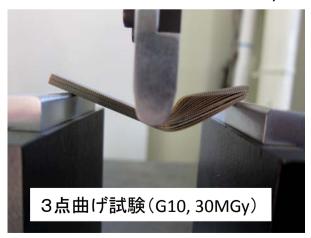

30MeV電子線照射後:10MGy相当

従来の超伝導コイル(J-PARC SCFM)。ウェッジ、スペーサーはG10(エポキシ+Eガラス)。


新規開発したBT-GFRPパイプ(φ160, L1000)


金属部品へのポリイミ

常温γ線照射試験(2013年3月時点)


- All new GFRPs (CE&Epoxy, BT, and BMI) have shown better radiation resistance up to 10 MGy.
- Samples were irradiated up to 50 MGy by May and evaluation tests will be carried out soon. Irradiation up to 100 MGy will be completed within 2013.
- Ordinary G10 already showed significant degradation at 10 MGy.

13.5.24

After irradiation of 13 MGy

「先端加速器 Press 例 などデラスケールの素粒子物理学」研究会@名古屋大学

まとめ

- さらなる高輝度化のためHL-LHCアップグレード(250-300 fb⁻¹/y、3000fb⁻¹)を計画。
 - 2022年『トンネルヘインストール』
 - 大電流化、IR1/5のLow-Beta Insertionの更新、新しいビーム設計(ATS)
 - SC Crab Cavitiesによるレベリング
 - 大ビームパワー対策、放射線対策、冷凍能力増強
- WP1-15で設計研究、R&D → 技術設計書を提出(2015) → 建設の判断(2016?)
 - EC-FP7 HiLumi-LHC
 - CERN
 - US-LARP
 - KEK(LIU、ビーム力学、超伝導磁石、クラブ空洞)
- KEKではビーム分離用大口径ダイポール(5T, 40Tm, φ160@1.9K)のR&Dをスタート。
 - 2012 概念設計
 - 2013 工学設計+テストコイル試作
 - 2014 モデル磁石試作、冷却励磁試験放射線入熱の最新結果: 口径の再検討 160mm → 150mm?

http://hilumilhc.web.cern.ch/HiLumiLHC/