

Experimental Inputs to HVP and HLbL at the BESIII Experiment

Riccardo Aliberti Muon g-2 Theory Initiative Workshop KEK (online), 28 June 2021

- New result from FNAL confirms tension with SM (4.2 σ !)
- Improvement of SM prediction highly desirable
- Uncertainty dominated by HVP and HLbL
- BESIII can provide important inputs to reduce the uncertainty!

The BESIII Experiment (1)

• 93% coverage of the solid angle

The BESIII Experiment (2)

- World largest τ -charm dataset in e^+e^- annihilation
- Detailed studies in:
 - Charmonium spectroscopy and charm physics
 - Light hadron dynamics
 - τ-physics
 - R-scan

Initial State Radiation: Scan at Fixed Energy

$$a_{\mu}^{HVP,LO} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

- Dominated by low energy region
- Not accessible in scan mode
- Initial State Radiation (ISR)

$$\sqrt{s'} = \sqrt{s - 2\sqrt{s}E_{\gamma}}$$

[Brodsky, de Rafael, 1988]

• Effectively reduces \sqrt{s}

• Emission suppressed by
$$\frac{\alpha}{\pi}$$

• Radiator function relates ISR to non-radiative process

$$\frac{d\sigma_{ISR}(\sqrt{s'})}{d\sqrt{s'}} = \frac{2\sqrt{s'}}{s} W\left(s, E_{\gamma}, \theta_{\gamma}\right) \sigma(\sqrt{s'})$$

28/6/2021

Initial State Radiation: Analysis Strategy

- High statistics
- Only high masses accessible (>900 MeV)
- Small background

ISR photon detected

- Access to had. threshold region
- Large background at high masses

In the following results from 2.93 fb⁻¹ at 3.773 GeV

The Golden Channel: $e^+e^- \rightarrow \pi^+\pi^-$

Tagged analysis

5000

- Background only from $\mu\mu(\gamma)$ events
- π/μ separation based on neural network (ANN)

- Selecting muons using ANN
- Perfect agreement with QED prediction
- Measurement of J/ψ electronic width

The Golden Channel: $e^+e^- \rightarrow \pi^+\pi^-$

- Tagged analysis
- Background only from $\mu\mu(\gamma)$ events
- π/μ separation based on neural network (ANN)
- Careful evaluation of systematics

Uncertainty (%)
0.2
0.3
0.2
0.2
0.1
0.1
0.2
0.2
0.2
0.5
0.5
0.9

Ц Ц

0.6

0.65

0.7

[Phys.Lett.B753 (2016) 629]

0.8

0.85

0.9

0.75

Vs' [GeV]

- Form factor evaluation for $0.6 \le m_{\pi\pi} \le 0.9 \text{ GeV}$
 - 70% of total 2π contribution
 - 50% of a_{μ}^{HVP} contribution
 - Fit with Gounaris-Sakurai parameterization

0.15

0.1

0.05

-0.

-0.15 0.6

0.65

0.7

0.75

|F |² / BESIII fit - 1 0.0

Experimental inputs to HVP and HLbL at the BESIII experiment

The golden channel: $e^+e^- \rightarrow \pi^+\pi^-$

- Tagged analysis
- Background only from $\mu\mu(\gamma)$ events
- π/μ separation based on neural network (ANN)
- Careful evaluation of systematics

- Systematic shifts wrt previous (best) measurements
 - Below p/ω interference wrt BaBar
 - Above ρ/ω interference wrt KLOE

0.9

π⁺π⁻π⁺π⁻, π⁰γ, E > 1.8 GeV: 7% K_sK_L, K+K·:....

 $\sigma^2(HVP)$

B€SIII π⁺π⁻: 65'

The Golden Channel: $e^+e^- \rightarrow \pi^+\pi^-$

- Precision competitive with current best results:
 - BESIII: 1.0%
 - BaBar: 0.7%
 - KLOE: 0.6%
- Evaluation of covariance matrix corrected [Phys.Lett.B812 (2021) 135982]
 - Lower statistical uncertainty
- Work on going to resolve the "KLOE-BaBar puzzle"

The golden channel: $e^+e^- \rightarrow \pi^+\pi^-$

Aim to reach 0.5% precision with new analysis:

- 20 fb⁻¹ of data at 3.773 GeV (before only 2.9 fb⁻¹)
- Normalization to $\mu\mu$ (γ) events
- Improved $\pi/\mu/e$ separation
- 2 independent analyses (Tagged and Untagged)
- + Full $m_{\pi\pi}$ coverage up to 3 GeV
- Successful DFG funding request

$$\stackrel{\text{fb-1})}{R} = \frac{N_{2\pi\gamma}}{N_{2\mu\gamma}} \cdot \frac{\epsilon^{2\mu\gamma} \cdot \left(1 + \delta_{FSR}^{2\mu}\right)}{\epsilon^{2\pi\gamma} \cdot \left(1 + \delta_{FSR}^{2\pi}\right)}$$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ [arXiv:1912.11208]

- Reconstructing events with $\pi^+\pi^- 2\gamma + \gamma_{ISR}$
- Kinematic Fit + constrain $m_{\gamma\gamma} = m_{\pi^0}$
- Both tagged and untagged configurations considered

 $\gamma_{\rm ISR}$ polar angle

Strong reduction of background

 π^0 veto

- Check combination of $\gamma_{\rm ISR}$ with any other photon
- Measure $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ to correct background description

- Precision comparable to latest calculations
- Paper to be published soon
- Statistics limited
- Improvement foreseen with the upcoming dataset at 3.773 GeV!

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

- Selection similar to $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 - Events with $\pi^+\pi^- 4\gamma + \gamma_{\rm ISR}$
 - Kinematic Fit + constrain $m_{\gamma\gamma} = m_{\pi^0}$

> Measure $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ to correct background description

2.5

• Result from error weighted mean of tagged and untagged

2.0

 $M_{\pi^+\pi^-\pi^0\pi^0}$ / GeV

1.5

• Strong improvement in precision

1.0

- a_{μ} compatible with BaBar result

•
$$\int_{\mu} a_{\mu}^{\pi^{+}\pi^{-}2\pi^{0},\text{LO}} = \frac{1}{4\pi^{3}} \int_{(4m_{\pi})^{2}}^{(1.8\,\text{GeV})^{2}} ds \, K(s) \sigma_{\pi^{+}\pi^{-}2\pi^{0}}(s)$$

$$a_{\mu}^{\pi^+\pi^-2\pi^0,\mathsf{LO}} = rac{1}{4\pi^3} \int\limits_{(4m_\pi)^2}^{(1.8\,\mathsf{GeV})^2} ds\, K(s) \sigma_{\pi^+\pi^-2\pi^0}(s)$$

3.5

3.0

28/6/2021

 $\frac{F\pi^{\dagger}a^{\dagger}}{a_{\mu}} = \frac{1000}{10} = 10^{10} \text{ MVP} \text{ and HLbL at the BESIII experiment}}$

 $a_{\mu}^{\pi^{+}\pi^{-}2\pi^{0},\mathsf{LO}}=rac{1}{4\pi^{3}}$

BESIII (prelimina BABAR (prelimina

> Aiming at < 3% uncertainty (BES measurement 6%)</p>

Inputs to Hadronic Light by Light

HVP 83% HLbL 17%

- Direct connection between HLbL and $\gamma\gamma$ -collision events
- $\sigma \propto \alpha^2 \ln^2 E$ and $\sigma \propto F^2(Q_1^2, Q_2^2)$ (transition form factor)
- Forward peaking kinematics: experimentally challenging
 - Untagged measurement: quasi-real photons

Single-tagged measurement: one photon offshell

• Double-tagged measurement: both photons offshell

now

future

Spacelike $\pi^0,\eta,$ and η' Transition Form Factor

- Largest contribution to a_{μ}^{HLbL}
- Based on 2.9 fb⁻¹ at 3.773 GeV
- Selecting event with:
 - Only 1 lepton (e⁺/e⁻)
 - At least 2 photons
 - Missing momentum in beam pipe
- Clear signals of π^0 and $\boldsymbol{\eta}$

Spacelike π^0 , η , and η' Transition Form Factor

- Good agreement with previous results
- Unprecedented precision (Q²<2 GeV²)
- Data in the most relevant region for a_{μ}
- Paper draft in preparation
- Advanced analysis stage also for η and η^\prime TFF
- Possibility to extend Q² range down to
 0.1 GeV²

$\gamma\gamma^{\star} \rightarrow \pi^{+}\pi^{-}$

• On the way to publication

 $\gamma^{(*)}\gamma^*$ -Physics Outlook

Many promising studies currently on going:

- $\gamma\gamma^* \rightarrow \pi^0\pi^0$ and $\gamma\gamma^* \rightarrow \pi^0\eta$: will complement Belle results
- $\gamma \gamma^* \to \pi^+ \pi^- \pi^0(\eta), \gamma \gamma^* \to \pi^+ \pi^- \pi^+ \pi^-$: axial and tensor vector mesons (f₁(1285))
- $\gamma^* \gamma^* \rightarrow \pi^0$: first double-tagged measurement!

Great improvement with upcoming 20fb⁻¹ at 3.773 GeV

Conclusion

- SM uncertainty of a_{μ} dominated by hadronic processes
- BESIII plays an important role in the most important channels:
 - $e^+e^- \rightarrow \pi^+\pi^-$
 - Measurement with 1% uncertainty [Phys.Lett. B753 (2016) 629, B812 (2021) 135982]
 - Funding for new measurement granted
 - Aim to reach 0.5% precision \rightarrow Resolution of the KLOE-BaBar puzzle!
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 - Evaluation of a_µ with O(1%) precision achieved [arXiv:1912.11208]
 - Paper to be published soon
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$
 - Preliminary results with O(3%) precision in final review stage

R measurement:

- Aim for precision < 3%
- Energy range 2.2 3.7 GeV
- Draft paper under internal review

Conclusion

- Dispersive approach to HLbL evaluation: $\gamma^{(*)}\gamma^*$ -collisions
- Unique opportunity for BESIII:
 - Access to relevant Q² range (0.1 3 GeV²)
 - Complementary to KLOE and B-factory
 - Unprecedented precision
 - $\gamma\gamma^{\star} \rightarrow \pi^{0},\eta,\eta'$
 - First coverage for $Q^2 < 0.5 \text{ GeV}^2$
 - Good agreement with latest theoretical evaluation
 - Draft in preparation (η and η' results next in line!)
 - $\gamma \gamma^{\star} \rightarrow \pi^{+} \pi^{-}$
 - First measurement of single-tagged process
 - Final stage of internal review \rightarrow Paper draft in preparation
 - Production of axial and tensor vector mesons
 - $\gamma \gamma^{\star} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{+} \pi^{-} \eta, \pi^{+} \pi^{-} \pi^{+} \pi^{-}, \dots$
 - Several analyses ongoing
 - First studies for double-tagged measurement ($\gamma^*\gamma^* \to \pi^0$)

Great boost with upcoming 20fb⁻¹ of data at 3.773 GeV