

Future prospects for tau and low-multiplicity physics at Belle II

Kiyoshi Hayasaka (Niigata Univ.)

2016/03/15

WRU Symposium 2016

1

 m_{ee}^2 $m_{e\mu}^2$ $m_{e\tau}^2$ $m_{\mu e}^2$ $m^2_{\mu\mu}$ $m_{\mu\tau}^2$ $m_{\tau\tau}^2$ $m_{\tau e}^2$ $m_{\tau\mu}^2$

Through the study of lepton flavor structure, find the New Physics

 $m_{e\tau}^2$ m_{ee}^2 $m_{e\mu}^2$ $m^2_{\mu\mu}$ $m_{\mu\tau}^2$ $m^2_{\mu e}$ τLFV $m_{ au au}^2$ $m_{ au\mu}^2$

Through the study of lepton flavor structure, find the New Physics

 $m_{e\tau}^2$ m_{ee}^2 $m_{e\mu}^2$ $m^2_{\mu\mu}$ $m_{\mu\tau}^2$ $m^2_{\mu e}$ τLFV τEDM/MDM $m_{\tau\tau}^2$ $m_{ au\mu}^2$

Through the study of lepton flavor structure, find the New Physics

 m_{ee}^2 $m_{e\mu}^2$ $m_{e\tau}^2$ μ g-2 m^2 m^2 μμ μτ µe τLFV **τEDM/MDM** $m_{ au\mu}^2$

Through the study of lepton flavor structure, find the New Physics

 m_{ee}^2 $m_{e\tau}^2$ $m_{e\mu}^2$ μ g-2 m^2 m^2 μμ μτ τLFV µe **τEDM/MDM** $m_{ au\mu}^2$

Through the study of lepton flavor structure, find the New Physics

 m_{ee}^2 $m_{e\mu}^2$ $m_{e\tau}^2$ μ g-2 m^2 m^2 Uμ µe $\mu\tau$ τLFV τEDM/MDM $m_{ au\mu}^2$ $m_{ au au}$? Phase?

Through the study of lepton flavor structure, find the New Physics

B2TiP

• Belle II Theory Interface Platform

https://belle2.cc.kek.jp/~twiki/bin/view/B2TiP

Details will be introduced by Mishima-san later.

WG8:tau & low-multi group

→We care tau and low-multiplicity (events with small number of tracks (2-6)) physics

5 golden mode

Tau WG page	$B[10^{-9}]$	${\rm LFV}\tau\to\mu\mu\mu$
		${\rm CPV} \ \tau \to K_S \pi^0 \nu$
		Dark Photon to invisible
		$\pi^+\pi^-$ cross section
		$\pi^0{\rm TFF}$

tau Lepton Flavor Violation

2016/03/15

11

Tau LFV at Belle → Belle II

WRU Symposium 2016

NP contribution for $\tau \rightarrow \mu \mu \mu$ Dalitz analysis is possible using 3μs.

Alejandro Celis,^{1,*} Vincenzo Cirigliano,^{2,†} and Emilie Passemar^{2,‡}

$\tau \rightarrow 3\mu$ on LHCb

- LHCb
 - At 14 TeV, 100x more tau will be produced.
 - Trigger efficiency will be doubled.
 - 20fb⁻¹ data sample will be accumulated.
 - $\sqrt{1400} = 40 \rightarrow 1.1 \times 10^{-9}$

- Belle II
 - x70 (2.1x10⁻⁸)→3x10⁻¹⁰

10 BGs in 2sigma elipse are found. \rightarrow with 50ab⁻¹, 1000 events will be...

10 BGs in 2sigma elipse are found. \rightarrow with 50ab⁻¹, 1000 events will be...

10 BGs in 2sigma elipse are found. \rightarrow with 50ab⁻¹, 1000 events will be...

If main BG(ISR γ + SM leptonic decay) can be reduced, sensitivity is drastically modified. If you have any good idea possible to distinguish signal from this BG kinematically, please inform us! There, energy of system for tau-pair is lower than that of usual tau-pair due to ISR. But, we have no simple way to reconstruct tau-pair.

BG can be classified into 2 categories:

• Main BG is very similar to that of $\tau \rightarrow \mu\gamma$ when $\tau \rightarrow \mu\nu\nu$ is replaced by $\tau \rightarrow e\nu\nu$.

Main BG is very similar to that of τ→μγ when τ→μνν is replaced by τ→eνν.
But the detection efficiency in the Belle analysis is lower than that of τ→μγ:
□ τ→μγ:5%
□ τ→ey:3%

 Main BG is very similar to that of τ→μγ when τ→μνν is replaced by τ→evv.
 But the detection efficiency in the Belle analysis is lower than that of τ→μγ:

□ τ→μγ:5%
□ τ→eγ:3%

To veto Bhabha events, events dropping high energy into calorimeter are rejected by trigger at Belle. Some of $\tau \rightarrow e\gamma$ events are also rejected. At Belle II, more sophisticated trigger will be introduced and it gets similar to that of $\tau \rightarrow \mu\gamma$.

CPV in tau sector Similarly to charged LFV, CPV in the lepton sector has not been observed yet. \rightarrow The observation indicates NP. Some model where new scalar propagates similarly to W predicts CPV in lepton sector. $\rightarrow \tau^{\pm} \rightarrow \pi^{\pm} K_{S}^{0} \nu$ (Phys. Rev. Lett. 107, 131801 (2011)) How to observe CPV? \rightarrow Evaluate decay angle from τ^+ and τ^- .

CPV search in $\tau \rightarrow \pi K_S^0 v$

Differential decay width and CPV

 $\frac{d\Gamma(\tau^{-})}{dQ^{2}d\cos\theta d\cos\beta} = \left[A(Q^{2}) - B(Q^{2})(3\cos^{2}\Psi - 1)(3\cos^{2}\beta - 1)\right] \cdot |F|^{2} + m_{\tau}^{2} |F_{s}|^{2}$ $-C(Q^{2})\cos\beta\cos\psi \cdot \operatorname{Re}(FF_{s}^{*}(\eta_{s})) \longleftarrow CPV \text{ appears here!}$

 $Q^2 = M_{\kappa\pi^2}$, $A(Q^2), B(Q^2), C(Q^2)$: known function.

 β : direction of Ks in K_s π rest frame

Since η is complex, this term can be extracted.

 Ψ : direction of τ in the K_sπ rest frame.

(θ : direction of $K_s \pi$ system in the τ rest frame. Correlated with Ψ)

$$A_{i}^{cp} = \frac{\iint_{Q_{1,i}^{2}}^{Q_{2,i}^{2}} \cos\beta\cos\psi\left(\frac{d\Gamma_{\tau^{-}}}{d\omega} - \frac{d\Gamma_{\tau^{+}}}{d\omega}\right)d\omega}{\frac{1}{2}\iint_{Q_{1,i}^{2}}^{Q_{2,i}^{2}}\left(\frac{d\Gamma_{\tau^{-}}}{d\omega} + \frac{d\Gamma_{\tau^{+}}}{d\omega}\right)d\omega}$$
$$\simeq \langle\cos\beta\cos\psi\rangle_{\tau^{-}}^{i} - \langle\cos\beta\cos\psi\rangle_{\tau^{+}}^{i} \qquad \text{Values measured} experimentally}$$

with $d\omega = dQ^2 d\cos\theta d\cos\beta$.

Belle result and prospect at Belle II

Data sample: 700fb⁻¹

 $\begin{aligned} \mathcal{A}_{cp} &= (\mathbf{1.8} \pm \mathbf{2.1}(\textit{stat}) \pm \mathbf{1.4}(\textit{sys})) \times \mathbf{10}^{-3} \\ |\text{Im}(\eta_s)| < (0.012 - 0.026) \text{ at } 90 \ \%\text{C.L.} \\ \text{Corrected using control sample } (\tau \rightarrow \pi\pi\pi\nu), \text{ since} \\ \text{final state of } \tau \rightarrow \pi\pi\pi\nu \text{ is same as that of } \tau \rightarrow K_s^{0}\pi\nu \text{ .} \\ \text{Main contribution to systematics is the statistics} \\ \text{of this control sample. So, it is expected that} \end{aligned}$

systematics is also scaled by luminosity.

Black: data Blue: control sample $(\tau \rightarrow \pi \pi \pi \nu)$ Red: MC sample with (large) CPV

Belle result and prospect at Belle II

Black: data Blue: control sample $(\tau \rightarrow \pi \pi \pi \nu)$ Red: MC sample with (large) CPV

Data sample: 700fb⁻¹

 $\begin{aligned} \mathcal{A}_{cp} &= (\mathbf{1.8} \pm \mathbf{2.1}(\textit{stat}) \pm \mathbf{1.4}(\textit{sys})) \times \mathbf{10^{-3}} \\ |\text{Im}(\eta_s)| < (0.012 - 0.026) \text{ at } 90 \ \%\text{C.L.} \\ \text{Corrected using control sample } (\tau \rightarrow \pi\pi\pi\nu), \text{ since} \\ \text{final state of } \tau \rightarrow \pi\pi\pi\nu \text{ is same as that of } \tau \rightarrow K_s^0 \pi\nu \text{ .} \\ \text{Main contribution to systematics is the statistics} \\ \text{of this control sample. So, it is expected that} \end{aligned}$

systematics is also scaled by luminosity.

50ab⁻¹: x70 statistic $2.1 \rightarrow 0.3$ systematic $1.4 \rightarrow 0.2$

Belle result and prospect at Belle II

Black: data Blue: control sample $(\tau \rightarrow \pi \pi \pi \nu)$ Red: MC sample with (large) CPV

Data sample: 700fb⁻¹

 $\begin{aligned} \mathcal{A}_{cp} &= (\mathbf{1.8} \pm \mathbf{2.1}(\textit{stat}) \pm \mathbf{1.4}(\textit{sys})) \times \mathbf{10}^{-3} \\ |\text{Im}(\eta_s)| < (0.012 - 0.026) \text{ at } 90 \ \%\text{C.L.} \\ \text{Corrected using control sample } (\tau \rightarrow \pi\pi\pi\nu), \text{ since} \\ \text{final state of } \tau \rightarrow \pi\pi\pi\nu \text{ is same as that of } \tau \rightarrow K_s^{0}\pi\nu \text{ .} \\ \text{Main contribution to systematics is the statistics} \\ \text{of this control sample. So, it is expected that} \end{aligned}$

systematics is also scaled by luminosity.

50ab⁻¹: x70 statistic 2.1 \rightarrow 0.3 systematic 1.4 \rightarrow 0.2 We will obtain

one order more sensitive result.

tau EDM/MDM

In SM, tau EDM is almost 0 while some BSMs predict sizable tau EDM. Most opportunistic prediction is $O(10^{-18})$. Belle's sensitivity is $O(10^{-17})$. At Belle II?

PHYSICAL REVIEW D 81, 033007 (2010) Tarek Ibrahim^{1,2} and Pran Nath²

TABLE I. A sample illustration of the contributions to the electric dipole moments of ν_{τ} and τ . The inputs are as follows: $\tan\beta = 5$, $|f_3| = 90$, $|f_4| = 120$, $|f_5| = 75$, $m_0 = 150$, $|A_0| = 100$, $\tilde{m}_1 = 75$, $\tilde{m}_2 = 150$, $\mu = 130$, $\chi_3 = 1.0$, $\chi_4 = 0.6$, $\chi_5 = -0.8$, $\alpha_E = 0.3$ and $\alpha_N = 0.6$. All masses are in units of GeV and all angles are in radian.

$m_E(\text{TeV})$	$m_N(\text{TeV})$	d_{τ}^{W} e · cm	$d_{ au}^{\chi^+} \mathbf{e} \cdot \mathbf{cm}$	$d_{\tau}^{\chi^0} \mathbf{e} \cdot \mathbf{cm}$	$d_{\nu}^{W} \mathbf{e} \cdot \mathbf{cm}$	$d_{\tau}^{\chi^+} \mathbf{e} \cdot \mathbf{cm}$
0.1 2.0	0.2 1.0	$6.5 imes 10^{-18} \ 4.0 imes 10^{-20}$	$-3.4 imes 10^{-18}\ -7.2 imes 10^{-22}$	$5.0 imes 10^{-19}$ $3.0 imes 10^{-23}$	3.7×10^{-18} 5.1×10^{-20}	$-2.4 imes 10^{-18} \ -7.1 imes 10^{-22}$

EDM of flying tau?

www

τ

EDM of flying tau

τ

From tau-pair creation vertex, EDM/MDM will be measured.

EDM of flying tau

τ

From tau-pair creation vertex, EDM/MDM will be measured via cross-section of tau-pair.

EDM of flying tau

τ

From tau-pair creation vertex, EDM/MDM will be measured via cross-section of tau-pair. via optimal observable.

Optimal observable

Amplitude for tau-pair creation: $\mathcal{M}_{prod}^2 = \mathcal{M}_{SM}^2 + Re(d_\tau)\mathcal{M}_{Re}^2 + Im(d_\tau)\mathcal{M}_{Im}^2$ $\mathcal{M}_{SM}^2 = \frac{e^4}{k_0^2} [k_0^2 + m_\tau^2 + |\mathbf{k}^2| (\hat{\mathbf{k}}\hat{\mathbf{p}})^2 - S_+ S_- |\mathbf{k}|^2 (1 - ((\hat{\mathbf{k}}\hat{\mathbf{p}})^2)]$ $+2(\hat{\mathbf{k}}S_{+})(\hat{\mathbf{k}}S_{-})(|\mathbf{k}|^{2}+(k_{0}-m_{\tau})^{2}(\hat{\mathbf{k}}\hat{\mathbf{p}})^{2})$ $-2k_0(k_0-m_\tau)(\hat{\mathbf{k}}\hat{\mathbf{p}})((\hat{\mathbf{k}}S_+)(\hat{\mathbf{p}}S_-)+(\hat{\mathbf{k}}S_+)(\hat{\mathbf{p}}S_-))$ $+2k_0^2(\hat{p}S_+)(\hat{p}S_-)$ $\mathcal{M}_{Re}^{2} = 4\frac{e^{3}}{k_{0}}|\mathbf{k}|[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{\mathbf{k}}\hat{p})^{2})(S_{+} \times S_{-})\hat{k}$ $+k_0(\hat{\mathbf{k}}\hat{p})(S_+\times S_-)\hat{p}$

$$\mathcal{L} = \overline{\tau} (i\partial - eA)\tau - \frac{i}{2} d_{\tau} \overline{\tau} \sigma^{\mu\nu} \gamma_5 \tau F_{\mu\nu} + O(d_{\tau}^2)$$

 $p:e^+$ momentum $k: \tau^+$ momentum $S_+: \tau^{\pm}$ spin

By defining

$$\begin{split} \mathcal{O}_{Re} &= \frac{\mathcal{M}_{Re}^2}{\mathcal{M}_{SM}^2} \quad \langle \mathcal{O}_{Re} \rangle \propto \int \mathcal{O}_{Re} d\sigma \propto \int \mathcal{O}_{Re} \mathcal{M}_{prod}^2 d\phi \\ &= \int \mathcal{M}_{Re}^2 d\phi + \underbrace{Re(d_{\tau})}_{SM} \int \frac{(\mathcal{M}_{Re}^2)^2}{\mathcal{M}_{SM}^2} d\phi \\ & \text{Offset} \qquad \text{EDM} \qquad \begin{array}{c} \text{Sensi} \\ \text{tivity} \end{array} \end{split}$$

By extracting offset and sensitivity from MC, we can obtain d_{τ} .

Sensitivity at Belle and Belle II

PLB551, 16(2003)

 At Belle, the result using 30fb⁻¹ is published. Now, the new analysis using 825fb⁻¹ is on-going.(x27 larger sample)

Re $(d_{\tau}) \times 10^{17}$:1.15±1.70 (ecm) Im $(d_{\tau}) \times 10^{17}$:-0.83±0.86 (ecm) Re $(d_{\tau}) \times 10^{17}$: ±0.33 (ecm) Im $(d_{\tau}) \times 10^{17}$: ±0.30 (ecm)

The total error of the real part is proportional to the square root of the data sample while systematics become dominant in the imaginary part. This depends on the understandings of MC for tau decay. So, we need to understand MC sample at Belle II deeply.

muon g-2 and New Physics

(b) $\tan\beta = 10$

A_,=0

 $m_{\widetilde{L}} = m_{\widetilde{E}}$

(d) $\tan\beta = 50$

A_=0

1500

 $m_{\widetilde{\tau}} = m_{\widetilde{\tau}}$

µ=800 GeV

2000

µ=800 GeV

 $a_{\mu}^{exp} - a_{\mu}^{SM} = 29.2(8.9) \times 10^{-10} \Rightarrow 3.3\sigma$ (TAU2014)

For example, MSSM can predict the allowed region for slepton, gaugino mass from the difference between the observed g-2 and SM prediction.

As Mibe-san reported, at FNAL and J-PARC, experiments for 0.1ppm measurement of muon g-2 is on constructing.

Cho, Hagiwara, Matsumoto, Nomura JHEP11(2011)068

2016/03/15

Prediction of muon g-2 and budget of each contribution

	(Numbers taken from HLMNT11, arXiv:1105.3149)		
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy	
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg	
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰		
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein	
NLO hadronic	-9.8 (0.1) $\times 10^{-10}$	HLMNT11	
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11	
Hadronic contribu	tion		
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al	
\ensuremath{QED} contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al	

Prediction of muon g-2 and budget of each contribution

QED contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al
\ensuremath{EW} contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al
Hadronic contribu	ition	$- \int \frac{ds}{\pi(s-a^2)} \ln$
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	had. had. Experimentally
NLO hadronic	-9.8 (0.1) ×10 ⁻¹⁰	$2 \operatorname{Im} \sim \operatorname{Ad}_{had.} = \sum_{had.} \int d\Phi \left \sim \left \gamma \right \gamma \rightarrow hadrons should be$
light-by-light	$10.5 (2.6) \times 10^{-10}$	Prades, de Rafael & Vainshtein evaluated.
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰	
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy
	(Numbers taken from H	HLMNT11, arXiv:1105.3149)

Prediction of muon g-2 and budget of each contribution

QED contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al
EW contribution Hadronic contribu LO hadronic	15.4 (0.2) $\times 10^{-10}$ tion 694.9 (4.3) $\times 10^{-10}$	Czarnecki et al The largest uncertainty comes from the experimental measurement! HLMNT11
NLO hadronic	-9.8 (0.1) ×10 ⁻¹⁰	HLMNT11
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰	
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy
	(Numbers taken from I	HLMNT11, arXiv:1105.3149)

Content of LO Hadronic

e⁺e⁻ process	Contribution to $a_{\mu}^{had, LO}$ [x10 ⁻¹⁰] val ± sta. ± process sys. ± common sys.	Total error
π ⁺π⁻	507.80 ± 1.22 ± 2.50 ± 0.56	2.88
π ⁺ π ⁻ π ⁰	46.00 ± 0.42 ± 1.03 ± 0.98	1.48
K⁺K⁻	21.63 ± 0.27 ± 0.58 ± 0.36	0.73
π ⁺ π ⁻ π ⁰ π ⁰	18.01 ± 0.14 ± 0.17 ± 0.40	0.46
π ⁺ π ⁻ π ⁺ π ⁻	13.35 ± 0.10 ± 0.43 ± 0.29	0.53
K _s ^o K _L ^o	12.96 ± 0.18 ± 0.25 ± 0.24	0.39
π ^ο γ	4.42 ± 0.08 ± 0.13 ± 0.12	0.19
$K\overline{K}\pi$ (partly from isospin)	2.39 ± 0.07 ± 0.12 ± 0.08	0.16
K \overline{K} ππ (partly from isospin)	1.35 ± 0.09 ± 0.38 ± 0.03	0.39
π⁺π⁻η	1.15 ± 0.06 ± 0.08 ± 0.03	0.10
Total a $_{\mu}^{had, LO}$	692.3 ± 1.4 ± 3.1 ± 2.4 ± 0.2 $_{\psi}$ ± 0.3 $_{\rm QCD}$	4.18

[1] M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C (2011) 71: 1515 [DOI 10.1140/epjc/s10052-010-1515-z].

Taken from Jason D. Crnkovic's TAU2012 talk

2016/03/15

Recent status for $e^{-(9 \text{ GeV})} \sqrt{s} = 10.6 \text{ GeV}$

The recent big issue is the difference of the results on BaBar and KLOE. Belle can not measure it since the trigger is not designed to measure it.

2016/03/15

Recent status for $e \rightarrow \pi \pi(\gamma)^{\sqrt{s} = 10.6 \text{ GeV}}$

At Belle II, new trigger to keep relating events is designed. We expect the similar accuracy as that of BaBar. $\rightarrow \sim 40\%$ more accurate result?

2016/03/15

Recent status for $e \rightarrow \pi \pi(\gamma)^{\sqrt{s} = 10.6 \text{ GeV}}$

At Belle II, new trigger to keep relating events is designed. $\pi\pi\pi^0\gamma$, KK γ should be. We expect the similar accuracy as that of BaBar. $\rightarrow \sim 40\%$ more accurate result?

2016/03/15

Two-Photon Process

Transition Form Factor using single tag process

A roadmap for HLbL

Pion pole

- input the doubly-virtual and singly-virtual pion transition form factors *F*_{γ*γ*π⁰} and *F*_{γ*γπ⁰}
- dispersive analysis of transition form factor:

 \rightarrow Hoferichter et al., EPJC 74 (2014) 3180

Dark Photon search Introduction

- Dark Photon A' motivated by Dark Matter, g-2, ..
- Minimal Dark Matter model: Dark Matter particle χ and a new scalar or gauge Boson A' as s-channel annihilation mediator (m_{A'} > 2m_χ)
- Additional U(1)' symmetry → Kinetic mixing* of massive Dark Photon with the SM photon

3

*Holdom, Phys. Lett B166, 1986

Reach in near future

2016/03/15

elle II

Summary

- Utilizing Belle II data sample, we like to reveal lepton flavor structure (~10 years)
 - Off-diagonal: LFV
 - Diagonal: EDM/g-2

 Complex component: CPV
 We expect to peep the new physics world around several hundred GeV or a few TeV.

まとめ

- Belle IIのデータを利用して、レプトンのフレーバ構造を明らかにしていく(~10年)
 - 非対角要素はLFV
 - 対角要素はEDM/g-2
 - 複素成分はCPV
 - ターゲットは数百~千GeV <u>もっと面白いアイディア</u>がある!という方は B2TiPに来てください

Lepton Flavor Violating (LFV) decays $H \rightarrow \mu \tau_e, H \rightarrow \mu \tau_h$ (CMS)

_ ₽

10

 10^{-2}

10-3

10

10-4

10⁻³

19.7 fb⁻¹ (8 TeV)

 For LFV Higgs and nothing else: LHC bound

 $BR(\tau \rightarrow \mu \gamma) < 2.2 \times 10^{-9}$

 $BR(\tau \rightarrow \mu \pi \pi) < 1.5 \times 10^{-11}$

By E.Passemar at TAU2014

ATLAS also has a result: Best fit $Br(H \rightarrow \mu \tau_{had}) = (0.77 \pm 0.62)\%$

No significant excess of data over SM BGs 95% CL Br(H \rightarrow µ τ_{had}) obs (exp.) < 1.85% (1.24 +0.50 -0.35)%

All categories combined, each category weighted by significance (S/(S + B))

- A slight excess of signal events still consistent within background uncertainties
 - significance of 2.4 standard deviations
- Best fit branching fraction
 - $B(H \rightarrow \mu \tau) = (0.84 + 0.39 0.37)\%$
- Constraint on the branching fraction
 - $B(H \rightarrow \mu \tau) < 1.51~(0.75)\%$ at 95% CL

Th. Lagouri, Yale Univ.

 BR limit <1.51% constrain the μ-τ Yukawa couplings <3.6x10⁻³

10⁻²

10⁻¹

|Υ_{μτ}|

• It improves the indirect current bound by an order of magnitude.

 $H \rightarrow e\tau$, $H \rightarrow e\mu$ will be published soon!

EPS HEP (22-29 Jul 2015)

7

2016/03/15

Lepton Flavor Violating (LFV) decays $H \rightarrow \mu \tau_e, H \rightarrow \mu \tau_h$ (CMS)

_ ₽

10

 10^{-2}

10-3

10

10-4

10⁻³

19.7 fb⁻¹ (8 TeV

 For LFV Higgs and nothing else: LHC bound

 $BR(\tau \rightarrow \mu \gamma) < 2.2 \times 10^{-9}$

By E.Passemar at TAU2014

ATLAS also has a result: Best fit $Br(H \rightarrow \mu \tau_{had}) = (0.77 \pm 0.62)\%$

No significant excess of data over SM BGs 95% CL Br(H \rightarrow µ τ_{had}) obs (exp.) < 1.85% (1.24 +0.50 -0.35)%

Weighted mean: $(0.82\pm0.32)\%$ and UL is also similar.

All categories combined, each category weighted by significance (S/(S + B))

- A slight excess of signal events still consistent within background uncertainties
 - significance of 2.4 standard deviations
- Best fit branching fraction
 - $B(H \rightarrow \mu \tau) = (0.84 + 0.39 0.37)\%$
- Constraint on the branching fraction
 - + B(H $\rightarrow \mu\tau)$ < 1.51 (0.75)% at 95% CL

Th. Lagouri, Yale Univ.

 BR limit <1.51% constrain the μ-τ Yukawa couplings <3.6x10⁻³

10⁻²

10⁻¹

 $|\mathbf{Y}_{\mu\tau}|$

• It improves the indirect current bound by an order of magnitude.

H→eτ, H→eμ will be published soon!

EPS HEP (22-29 Jul 2015)

WRU Symposium 2016

55

Lepton Flavor Violating (LFV) decays $H \rightarrow \mu \tau_e, H \rightarrow \mu \tau_h$ (CMS)

_ ۳

10

 10^{-2}

10-3

10

10-4

19.7 fp⁻¹ (8 TeV

 For LFV Higgs and nothing else: LHC bound

 $BR(\tau \rightarrow \mu \pi \pi) < 1.5 \times 10^{-11}$

By E.Passemar at TAU2014

ATLASも出してきた Best fit Br(H→µt_{had}) = (0.77±0.62)%

No significant excess of data over SM BGs 95% CL Br(H \rightarrow µ τ_{had}) obs (exp.) < 1.85% (1.24 +0.50 -0.35)%

注意点は:

τ→μγを使ってHiggs→τµを 探索した場合Br<2x10⁻⁹まで いかないと同程度の探索に ならないというだけの話

 $100 < M_{col} < 150 \text{ GeV}$ 19.7 fb¹ (8 TeV)
1

Post-Fit M_{col}

All categories combined, each category weighted by significance (S/(S + B))

- A slight excess of signal events still consistent within background uncertainties
 - significance of 2.4 standard deviations
- Best fit branching fraction
 - $B(H \rightarrow \mu \tau) = (0.84 + 0.39 0.37)\%$
- Constraint on the branching fraction
 - + $B(H \rightarrow \mu \tau) < 1.51~(0.75)\%$ at 95% CL

Th. Lagouri, Yale Univ.

 BR limit <1.51% constrain the μ-τ Yukawa couplings <3.6x10⁻³

10⁻²

 10^{-1}

|Υ_{μτ}|

 10^{-3}

• It improves the indirect current bound by an order of magnitude.

H→eτ, H→eμ will be published soon!

EPS HEP (22-29 Jul 2015)

2016/03/15

Lepton Flavor Violating (LFV) decays $H \rightarrow \mu \tau_e, H \rightarrow \mu \tau_h$ (CMS)

_ ۳

10

 10^{-2}

10-3

10

10-4

19.7 fp⁻¹ (8 TeV

 For LFV Higgs and nothing else: LHC bound

By E.Passemar at TAU2014

 $BR(\tau \rightarrow \mu\pi\pi) < 1.5 \times 10^{-11}$

ATLASも出してきた Best fit Br(H→µt_{had}) = (0.77±0.62)%

No significant excess of data over SM BGs 95% CL Br(H \rightarrow µ τ_{had}) obs (exp.) < 1.85% (1.24 +0.50 -0.35)%

注意点は: Higgs→τ μ をLHCでやったら $\tau \rightarrow \mu \gamma$ の探索がBr<2x10⁻⁹まで 済んだという話では **決してありません**。

All categories combined, each category weighted by significance (S/(S + B))

- A slight excess of signal events still consistent within background uncertainties
 - significance of 2.4 standard deviations
- Best fit branching fraction
 - $B(H \rightarrow \mu \tau) = (0.84 + 0.39 0.37)\%$
- Constraint on the branching fraction
 - + B(H \rightarrow $\mu\tau)$ < 1.51 (0.75)% at 95% CL

Th. Lagouri, Yale Univ.

BR limit <1.51% constrain the μ - τ Yukawa couplings <3.6x10⁻³

10⁻²

 10^{-1}

|Υ_{μτ}|

 10^{-3}

• It improves the indirect current bound by an order of magnitude.

 $H \rightarrow e\tau$, $H \rightarrow e\mu$ will be published soon!

EPS HEP (22-29 Jul 2015)

2016/03/15

observed events

$\tau \rightarrow 3\mu$ on LHCb

- LHCb
 - At 14 TeV, 100x more tau will be produced.
 - Trigger efficiency will be doubled.
 - 20fb⁻¹ data sample will be accumulated.
 - $\sqrt{1400} = 40 \rightarrow 1.1 \times 10^{-9}$

- Belle II
 - x70 (2.1x10⁻⁸)→3x10⁻¹⁰

Z. Phys. C 68, 25-28 (1995)

A search for the lepton-flavour violating decays $\tau \rightarrow e\alpha, \tau \rightarrow \mu \alpha$

ARGUS Collaboration

3π系をpseudo tauとして、 信号のtauの4 momentum を仮定 Pτ-PμからPαを評価 2体なのでmonochromatic pseudoなので広がりがある

 p_{lab} [GeV/c]

Trigger Efficiency at Belle

			Y.Unno
	Bhabha(%)	Cosmic(%)	Physics(%)
$B^+ \rightarrow K^+ \pi^-$	0 ± 0	0.06 ± 0.03	98.8±0.2
$B^0 \rightarrow \pi^0 \pi^0$	1.1 ± 0.2	0.2 ± 0.1	98.0 ± 0.2
B⁰ → ρ⁰γ	0.04 ± 0.03	0.06 ± 0.03	99.2±0.1
$B^+ \rightarrow \tau^+ \nu$	0 ± 0	0.10 ± 0.04	97.7±0.2
$\tau^+ \rightarrow \mu^+ \gamma$	9.0 ± 0.4	4.5 ± 0.3	73.5 ± 0.6
e⁺e⁻→ μ⁺μ⁻γ	60.8 ± 0.7	11.0 ± 0.4	20.6 ± 0.6
Contraction of the			@214Me

- 60% vetoed by Bhabha trigger. Similar or worse for $\pi^+\pi^-\gamma$.
- Scale factor for the radiative $\mu\mu$ trigger makes it difficult that no. of the $\mu\mu\gamma$ events is correctly estimated.
- At Belle II, more sophisticated Bhabha trigger ensures high efficiency.