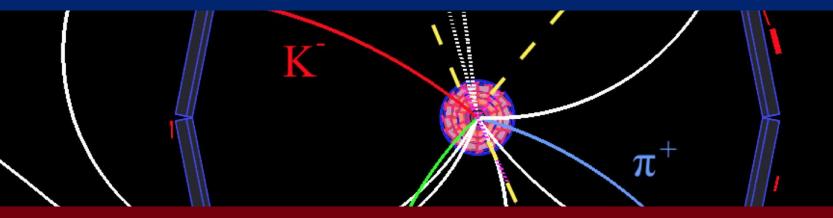
Semileptonic decays into excited charmed mesons



Workshop on Semi-tauonic decays Nagoya 27 Mar 2017

Florian Bernlochner University of Bonn, Germany

Programm

DFG

- Why are decays into excited charmed mesons important and how can we improve our understanding of them?
 F. Bernlochner, Z. Ligeti, Phys. Rev. D95, 014022 (2017)
- 2. Some brief remarks on model dependence and how we should carry out future R(D) and R(D*) measurements

1. Excited Charmed mesons

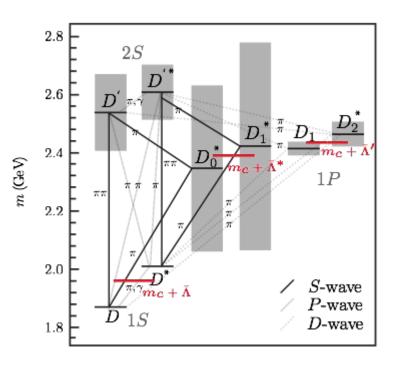
F. Bernlochner, Z. Ligeti, Phys. Rev. D95, 014022 (2017) F. Bernlochner, D. Robinson, M. Papucci, Z. Ligeti, in preparation

Overview

Colloquial: excited charmed mesons are called D** = D**(1*P*)

 $D^{**} = \{D_0^*, D_1^*, D_1, D_2^*\},\$

- Important background for measurements of D/D*
 - E.g. $|V_{cb}|$ or R(D) & R(D*)
- ~15% of all $\mathbf{B} \to \mathbf{X}_{c} \mathbf{I} \mathbf{v}$ decays
 - Relevant for e.g. |V_{ub}| using lepton spectrum or R(X)
- $\mathbf{B} \rightarrow \mathbf{X}_{c} \tau v$ seemingly saturated by B \rightarrow D(*) τv
 - Not much space for $B \rightarrow D^{**} \tau v$, if due to NP why not enhanced as well?



Decay mode	Branching fraction
$B^+ \to \bar{D}_2^{*0} l \bar{\nu}$	$(0.30 \pm 0.04) \times 10^{-2}$
$B^+ \to \bar{D}^0_1 l \bar{\nu}$	$(0.67 \pm 0.05) \times 10^{-2}$
$B^+ \to \bar{D}_1^{*0} l \bar{\nu}$	$(0.20 \pm 0.05) \times 10^{-2}$
$B^+ \to \bar{D}_0^{*0} l \bar{\nu}$	$(0.44 \pm 0.08) \times 10^{-2}$

What do we know about D**(1P)

Semileptonic experimental knowledge:

- Measured in D(*) π^+
 - More detailed overview: **Bob Kowalewski's talk**
 - Most of the observed $D(\star) \pi^+$ can be attributed to D**(1P)
 - Evidence for contributions beyond D**(1P) in D(*) π π

Theory expectation:

- Two narrow and two broad states
 - Quark-model: combine heavy b with light quarks with orbital angular momentum L=1
 - Heavy Quark Limit
 - spin-parity of light dof conserved: $s_l^{\pi_l}$
 - In decay rate: narrow >> broad
 - Violation known as '½ versus 3/2 puzzle' arXiv:1411.3563, arXiv:0708.1621 (Eur. Phys. J. C52:975-9 2007),..

-	Particle	$s_l^{\pi_l}$	J^P	$m \; ({ m MeV})$	Γ (MeV)
-	D_0^*	$\frac{1}{2}^{+}$	0^+	2330	270
	D_1^*	$\frac{1}{2}^{+}$	1^+	2427	384
	D_1	$\frac{3}{2}^+$	1^{+}	2421	34
:97	75- <u>98</u> 5,	$\frac{3}{2}^{+}$	2^+	2462	48

Form factors

Starting point: effective Lagrangian: $\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left(\bar{c} \gamma_{\mu} P_L b \right) \left(\bar{\nu} \gamma^{\mu} P_L \ell \right) + h.c.,$

Narrow: D_1 , D_2 *

$$\frac{\langle D_1(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_1}m_B}} = f_{V_1}\epsilon^{*\mu} + (f_{V_2}v^{\mu} + f_{V_3}v'^{\mu})(\epsilon^* \cdot v),$$

$$\frac{\langle D_1(v',\epsilon)|A^{\mu}|B(v)\rangle}{\sqrt{m_{D_1}m_B}} = i f_A \varepsilon^{\mu\alpha\beta\gamma}\epsilon^*_{\alpha}v_{\beta}v'_{\gamma},$$

$$\frac{\langle D_2^*(v',\epsilon)|A^{\mu}|B(v)\rangle}{\sqrt{m_{D_2^*}m_B}} = k_{A_1}\epsilon^{*\mu\alpha}v_{\alpha}$$

$$+ (k_{A_2}v^{\mu} + k_{A_3}v'^{\mu})\epsilon^*_{\alpha\beta}v^{\alpha}v^{\beta},$$

$$\frac{\langle D_2^*(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_2^*}m_B}} = i k_V \varepsilon^{\mu\alpha\beta\gamma}\epsilon^*_{\alpha\sigma}v^{\sigma}v_{\beta}v'_{\gamma},$$
(5)

Broad: D₀^{*}, D₁^{*}

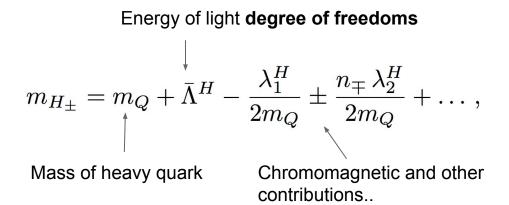
$$\frac{\langle D_0^*(v')|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_0^*}m_B}} = 0,
\frac{\langle D_0^*(v')|A^{\mu}|B(v)\rangle}{\sqrt{m_{D_0^*}m_B}} = g_+ (v^{\mu} + v'^{\mu}) + g_- (v^{\mu} - v'^{\mu}),
\frac{\langle D_1^*(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_1^*}m_B}} = g_{V_1}\epsilon^{*\mu} + (g_{V_2}v^{\mu} + g_{V_3}v'^{\mu})(\epsilon^* \cdot v),
\frac{\langle D_1^*(v',\epsilon)|A^{\mu}|B(v)\rangle}{\sqrt{m_{D_1^*}m_B}} = i g_A \varepsilon^{\mu\alpha\beta\gamma} \epsilon^*_{\alpha} v_{\beta} v'_{\gamma}.$$
(6)

\rightarrow 2 x 4 Form Factors \rightarrow 2 + 4 Form Factors

Large number of unknown functions reduce in HQL into **single** universal Isgur-**W**ise function; first systematic analysis by **LLSW (Phys. Rev. Lett. 78, 3995, Phys. Rev. D 57, 308)**

Mass splittings and form factors

Mass of heavy quark spin symmetry doublet:



\rightarrow Energy of light degrees of freedom enter the form factors

Realization that lead to the LLSW prediction;

	_	Particle	$s_l^{\pi_l}$	J^P	$m \; ({ m MeV})$	$\Gamma (MeV)$		
	_	D_0^*	$\frac{\frac{1}{2}^{+}}{\frac{1}{2}^{+}}$	0^+	2330	270	_	
		D_1^*		1^{+}	2427	384		
	-	D_1	$\frac{3}{2}^+$ $\frac{3}{2}^+$	1^{+}	2421	34		
		D_2^*	$\frac{3}{2}^{+}$	2^+	2462	48		
					•			
-	Parameter	$\bar{\Lambda}$		$\bar{\Lambda}'$	$ar{\Lambda}^*$	$\bar{\Lambda}_s$	$ar{\Lambda}'_s$	
	Value [GeV]] 0.4	0	0.80	0.76	0.49	0.90	

m (MeV)	Γ (MeV)	reference
2405 ± 36	274 ± 45	FOCUS [13]
2308 ± 36	276 ± 66	Belle [14]
2297 ± 22	273 ± 49	BABAR [15]
2360 ± 34	255 ± 57	LHCb [16]
2330 ± 15	270 ± 26	our average

Heavy Quark Limit

Expansion of the form factors to order **1/m**_{c.b}

Leading IW function: $\tau = \tau(w)$ Chromomagnetic contributions: $\eta_{b,1,2,3}$ Sub-leading IW functions: $\tau_{1,2}$ Mass splittings: $\bar{\Lambda}(')$

$$\begin{split} \sqrt{6} \, f_A &= -(w+1)\tau - \varepsilon_b \left\{ (w-1) \left[(\bar{\Lambda}' + \bar{\Lambda})\tau - (2w+1)\tau_1 - \tau_2 \right] + (w+1)\eta_b \right\} \\ &- \varepsilon_c \left[4(w\bar{\Lambda}' - \bar{\Lambda})\tau - 3(w-1)(\tau_1 - \tau_2) + (w+1)(\eta_{\rm ke} - 2\eta_1 - 3\eta_3) \right], \\ \sqrt{6} \, f_{V_1} &= (1 - w^2)\tau - \varepsilon_b (w^2 - 1) \left[(\bar{\Lambda}' + \bar{\Lambda})\tau - (2w+1)\tau_1 - \tau_2 + \eta_b \right] \\ &- \varepsilon_c \left[4(w+1)(w\bar{\Lambda}' - \bar{\Lambda})\tau - (w^2 - 1)(3\tau_1 - 3\tau_2 - \eta_{\rm ke} + 2\eta_1 + 3\eta_3) \right], \\ \sqrt{6} \, f_{V_2} &= -3\tau - 3\varepsilon_b \left[(\bar{\Lambda}' + \bar{\Lambda})\tau - (2w+1)\tau_1 - \tau_2 + \eta_b \right] \\ &- \varepsilon_c \left[(4w - 1)\tau_1 + 5\tau_2 + 3\eta_{\rm ke} + 10\eta_1 + 4(w - 1)\eta_2 - 5\eta_3 \right], \\ \sqrt{6} \, f_{V_3} &= (w - 2)\tau + \varepsilon_b \left\{ (2 + w) \left[(\bar{\Lambda}' + \bar{\Lambda})\tau - (2w + 1)\tau_1 - \tau_2 \right] - (2 - w)\eta_b \right\} \\ &+ \varepsilon_c \left[4(w\bar{\Lambda}' - \bar{\Lambda})\tau + (2 + w)\tau_1 + (2 + 3w)\tau_2 \\ &+ (w - 2)\eta_{\rm ke} - 2(6 + w)\eta_1 - 4(w - 1)\eta_2 - (3w - 2)\eta_3 \right]. \end{split}$$

Decay rates with full lepton mass

One thing that was missing in the original paper :

Decay rates with full lepton mass effects:

$$\rho_\ell = m_\ell^2/m_B^2$$

$$\begin{aligned} \frac{\mathrm{d}\Gamma_{D_{1}}}{\mathrm{d}w\,\mathrm{d}\cos\theta} &= 3\Gamma_{0}\,r^{3}\sqrt{w^{2}-1}\left(1+r^{2}-\rho_{\ell}-2rw\right)^{2} \end{aligned} \tag{9} \\ \times \left\{ \sin^{2}\theta \left[\frac{\left[f_{V_{1}}(w-r)+(f_{V_{3}}+rf_{V_{2}})(w^{2}-1)\right]^{2}}{(1+r^{2}-2rw)^{2}} + \rho_{\ell} \int_{V_{1}}^{f_{V_{1}}^{2}} + \left(2f_{A}^{2}+f_{V_{2}}^{2}+f_{V_{3}}^{2}+2f_{V_{1}}f_{V_{2}}+2wf_{V_{2}}f_{V_{3}}\right)(w^{2}-1)}{2(1+r^{2}-2rw)^{2}} \right] \\ &+ (1+\cos^{2}\theta) \left[\frac{f_{V_{1}}^{2}+f_{A}^{2}(w^{2}-1)}{1+r^{2}-2rw} + \rho_{\ell} \int_{V_{1}}^{f_{V_{1}}} + (w^{2}-1)f_{V_{3}}^{2}](2w^{2}-1+r^{2}-2rw)}{2(1+r^{2}-2rw)^{3}} \\ &+ \rho_{\ell} w^{2}-1) \frac{2f_{V_{1}}f_{V_{2}}(1-r^{2})+4f_{V_{1}}f_{V_{3}}(w-r)+f_{V_{2}}^{2}(1-2rw-r^{2}+2r^{2}w^{2})+2f_{V_{2}}f_{V_{3}}(w-2r+r^{2}w)}{2(1+r^{2}-2rw)^{3}} \right] \\ &- 2\cos\theta\,\sqrt{w^{2}-1} \left[\frac{2f_{A}f_{V_{1}}}{1+r^{2}-2rw} - \rho_{\ell} \int_{U_{1}}^{f_{V_{1}}(w-r)+(f_{V_{3}}+rf_{V_{2}})(w^{2}-1)} \right] \left[f_{V_{1}}+f_{V_{2}}(1-rw)+f_{V_{3}}(w-r)\right]} \right] \right\}, \end{aligned}$$

Approximations A, B and C

Recoil parameter *W* (the recoil-parameter = $v_B \times v_D^{(*)}$) range:

- \rightarrow For D and D* ranges from 1 1.6
- \rightarrow For D** the effective range is 1 ~ 1.3
- Can expand decay rate in *w* and truncate expansion
 - Reduces the number of terms, but only accurate at low *w*

Approximation A

- Can keep all orders
 - Fit slope and normalization of leading Isgur-Wise function
 - To reduce number of free parameters, drop chromomagnetic terms and model sub-leading IW functions
 - Approximation B
- Mass splitting between D₀ and D₁* seem to imply that chromomagnetic contributions are not necessarily small
 - Fit **slope** and **normalization** of **leading Isgur-Wise** function and **normalization** of **sub-leading IW functions**
 - Evaluate the impact of chromomagnetic terms
 - Approximation C

Approximations A, B and C

Recoil parameter *W* (the recoil-parameter = $v_B \times v_D^{(*)}$) range:

- \rightarrow For D and D* ranges from 1 1.6
- \rightarrow For D** the effective range is 1 ~ 1.3
- Can expand decay rate in *w* and truncate expansion
 - Reduces the number of terms, but only accurate at low *w*
 - Approximation A
- Can keep all orders
 - Fit **slope** and **normalization** of **leading Isgur-Wise function**
 - To reduce number of free parameters, drop chromomagnetic terms and model sub-leading IW functions
 - Approximation B
- Mass splitting between D_0 and D_1^* seem to imply that
 - chromomagnetic contributions are not necessarily small
 - Fit slope and normalization of leading lsgur-Wise function and normalization of sub-leading IW functions
 - Evaluate the impact of chromomagnetic terms
 - Approximation C

Approximations A, B and C

Recoil parameter *W* (the recoil-parameter = $v_B x v_D^{(*)}$) range:

- \rightarrow For D and D* ranges from 1 1.6
- \rightarrow For D** the effective range is 1 ~ 1.3
- Can expand decay rate in w and truncate expansion
 - Reduces the number of terms, but only valid for low *w*
 - Approximation A
- Can keep all orders
 - Fit **slope** and **normalization** of **leading Isgur-Wise function**
 - To reduce number of free parameters, drop chromomagnetic terms and model sub-leading IW functions
 - Approximation B
- Mass difference between D₀ and D₁* seem to imply that chromomagnetic contributions are not necessarily small
 - Fit slope and normalization of leading lsgur-Wise function and normalization of sub-leading IW functions
 - Evaluate the impact of chromomagnetic terms
 - Approximation C

Experimental information

Experimental information to constrain form factors:

- Total Decay Rates
- Differential decay rates (D_2^*, D_0^*)

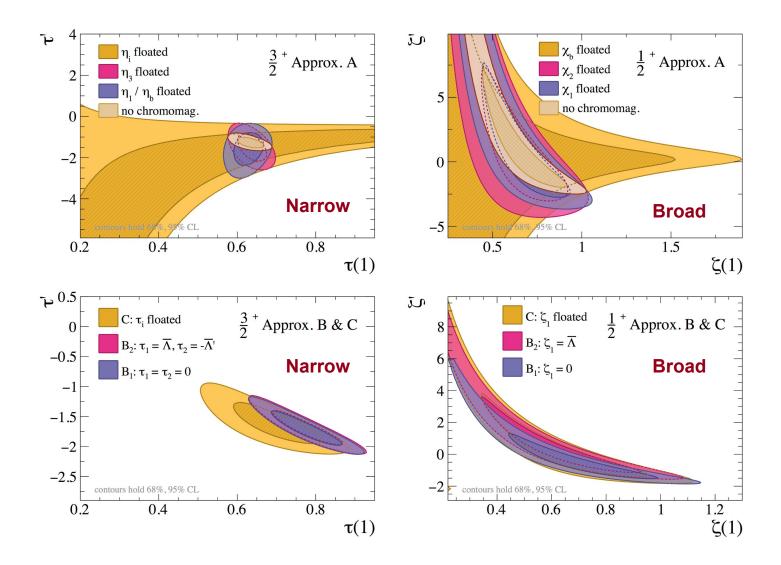
Decay mode	Branching fraction	w	$B^+ \to \bar{D}_2^{*0} l \bar{\nu}$	$B^+ \to \bar{D}_0^{*0} l \bar{\nu}$
$B^+ \rightarrow \bar{D}_2^{*0} l \bar{\nu}$	$(0.30 \pm 0.04) \times 10^{-2}$	1.00 - 1.08	0.06 ± 0.02	0.05 ± 0.02
$B^+ \rightarrow \bar{D}^0_1 l \bar{\nu}$	$(0.67 \pm 0.05) \times 10^{-2}$	1.08 - 1.16	0.30 ± 0.05	0.02 ± 0.05
1	(1.16 - 1.24	0.38 ± 0.03	0.30 ± 0.08
$B^+ \to \bar{D}_1^{*0} l \bar{\nu}$	$(0.20 \pm 0.05) \times 10^{-2}$	1.24 - 1.32	0.26 ± 0.06	0.30 ± 0.09
$B^+ \to \bar{D}_0^{*0} l \bar{\nu}$	$(0.44 \pm 0.08) \times 10^{-2}$	1.32 - 1.40		0.33 ± 0.13

• Non-leptonic rates:
$$\Gamma_{\pi} = \frac{3\pi^2 |V_{ud}|^2 C^2 f_{\pi}^2}{m_B^2 r} \left(\frac{\mathrm{d}\Gamma_{\mathrm{sl}}}{\mathrm{d}w}\right)_{w_{\mathrm{max}}}$$

Decay mode	Branching fraction
$B^0 \to D_2^{*-} \pi^+$	$(0.59 \pm 0.13) \times 10^{-3}$
$B^0 \to D_1^- \pi^+$	$(0.75 \pm 0.16) imes 10^{-3}$
$B^0 \to D_0^{*-} \pi^+$	$(0.09 \pm 0.05) \times 10^{-3}$

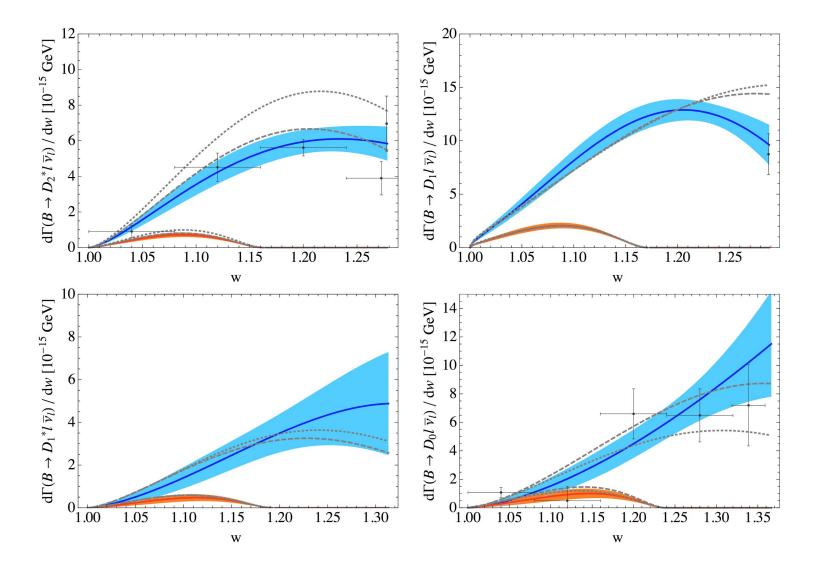
Form factor fit(s)

Likelihood fit to all experimental information



Form factor fit(s)

Likelihood fit of all experimental information:



Predictions for R(D)**

Using these form factors, R(D**) can be predicted

 \rightarrow Expansion of form factors in **1/m**_{c,b} provide all necessary expressions, also for the form factors ~ m_{τ}

Approximation C predictions:

$$R(D_2^*) = 0.07 \pm 0.01 \,,$$

$$R(D_1) = 0.10 \pm 0.02 \,,$$

$$R(D_1^*) = 0.06 \pm 0.02 \,,$$

 $R(D_0) = 0.08 \pm 0.04 \,,$

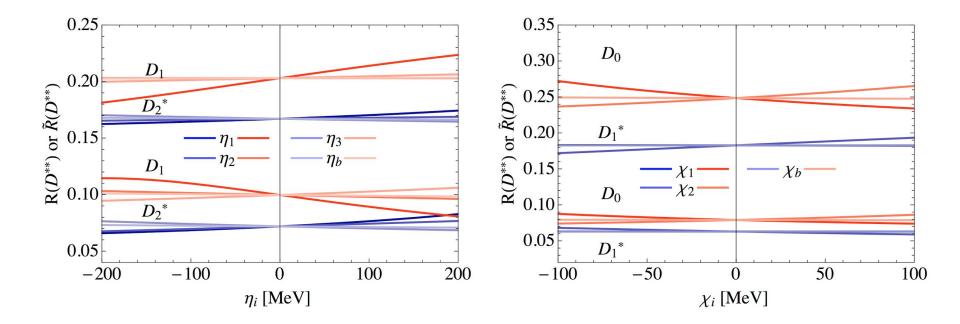
$$egin{aligned} \widetilde{R}(D_2^*) &= 0.17 \pm 0.01 \ , \ &\widetilde{R}(D_1) &= 0.20 \pm 0.02 \ , \ &\widetilde{R}(D_1^*) &= 0.18 \pm 0.02 \ , \ &\widetilde{R}(D_0) &= 0.25 \pm 0.06 \ , \end{aligned}$$

$$R(D^{**}) = 0.085 \pm 0.012$$
.

Chromomagnetic contributions

Impact of chromomagnetic contributions tested by variations within reasonable bounds

 \rightarrow Range motivated by constraints when fitting individual contributions, no real sensitivity to fully profile all chromomagnetic terms



New Physics sensitivity

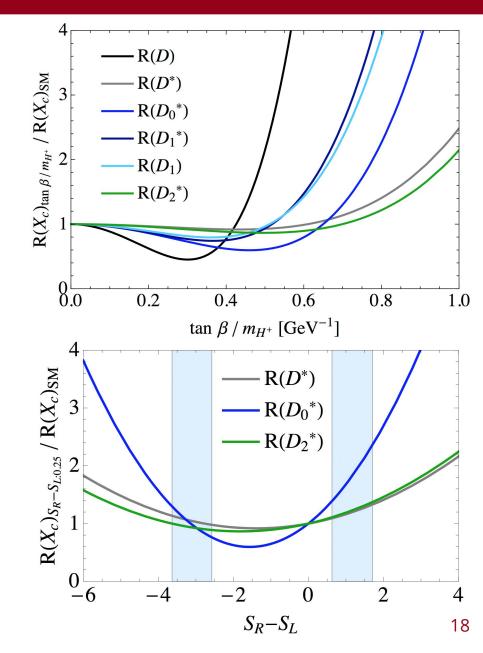
Additional scalar interaction:

$$H_t \to H_t^{\rm SM} \left[1 + (S_R \pm S_L) \, \frac{q^2}{m_\tau(m_b \mp m_c)} \right],$$

→ 2HDM type II **(top)** → 2HDM type III **(bottom)**

Full operator analysis left for future work

• FB, D. Robinson, M. Papucci, Z. Ligeti, in preparation



2. Model dependence

Or why we should take any phenomenological fit to R(D) and R(D*) with a grain of salt

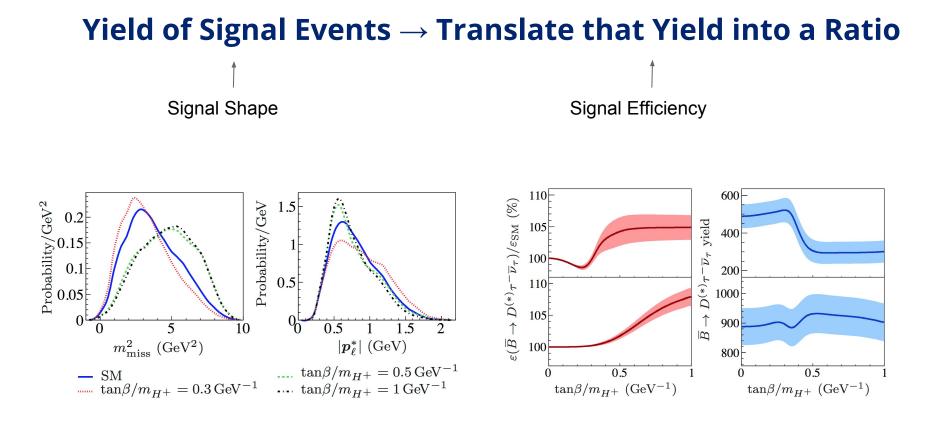
Model dependence

The problem: When measuring R(D) and R(D*) we make certain assumptions

Yield of Signal Events \rightarrow Translate that Yield into a Ratio

Model dependence

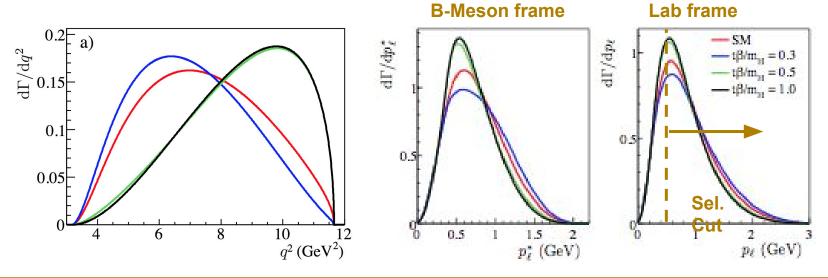
The problem: When measuring R(D) and R(D*) we make certain assumptions



Model dependence

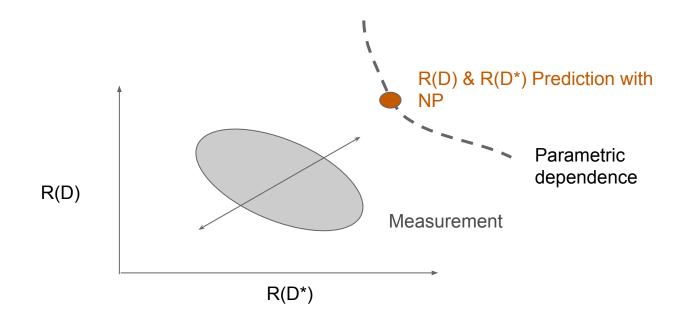
Physics behind this

- 1.) Change of **kinematics** $\leftarrow \rightarrow$ Impacts predominantly m_{miss}^{2}
- 2.) Change of **fraction of LH** *versus* **RH** $\leftarrow \rightarrow$ changes p_1
 - → Fraction affects in $\tau \rightarrow I \nu \nu$ kinematic of secondary I drastically LH τ : I emitted preferentially in τ flight direction RH τ : opposite is true



Thus

If your favorite model fit to R(D^(*)) **alters the kinematics (most of the operators you add will)** and the **RH/LH fraction (most of the operators will)**, beware of drawing too strong conclusions: the measured values depend on these details



Can we do better?

Alternatives:

• Fiducial measurements

- Make the experimental cuts part of the definition of $R(D^{(*)})$
 - Not clear this is fully feasible; does not resolve kinematic dependence of signal shapes
 - Measuring $R(D^{(*)})$ as a function of q^2 might resolve the latter
- Maintain an interface to **recast analyses**
 - Some effort in the LHC community to setup things this way

• Measure pseudo-observables that allow interpretations later

- Make measurements in Wilson coefficients and quote limits
 - Can be easily combined across experiments
 - Consistency important

Needs a dialogue between Experiments and also between the Theory community and the Experiments. Maybe this workshop is a good opportunity to start such a discussion.