2018 WPI-next Mini-workshop
"Hints for New Physics in Heavy Flavors"

Charged Lepton Flavour Violation

Lorenzo Calibbi
 ITP CAS, Beijing

Nagoya University, November $16^{\text {th }} 2018$

Outline

Introduction to CLFV

Lepton flavour (non)universality and CLFV

Outline

Introduction to CLFV

Lepton flavour (non)universality and CLFV

Outline

Introduction to CLFV

for a pedagogical review cf. : LC, G. Signorelli, arXiv:1709.00294 [hep-ph].

Lepton flavour (non)universality and CLFV

In the SM fermion masses, thus the flavour sector, stems from the Yukawa interactions:

$$
-\mathcal{L}_{Y}=\left(Y_{u}\right)_{i j} \bar{Q}_{L i} u_{R j} \widetilde{\Phi}+\left(Y_{d}\right)_{i j} \bar{Q}_{L i} d_{R j} \Phi+\left(Y_{e}\right)_{i j} \bar{L}_{L i} e_{R j} \Phi+h . c .
$$

Rotations to the fermion mass basis:

$$
Y_{f}=V_{f} \hat{Y}_{f} W_{f}^{\dagger}, \quad f=u, d, e
$$

Unitary rotation matrices, couplings to photon and Z remain flavour-diagonal:

$$
e \bar{f} \gamma_{\mu} f A^{\mu} \quad\left(g_{L} \bar{f}_{L} \gamma_{\mu} f_{L}+g_{R} \bar{f}_{R} \gamma_{\mu} f_{R}\right) Z^{\mu}
$$

Couplings to the Higgs are also flavour-conserving (aligned to the mass matrix):

$$
\frac{m_{f}}{v} \bar{f}_{L} f_{R} h
$$

No (tree-level) flavour-changing neutral currents

In the SM fermion masses, thus the flavour sector, stems from the Yukawa interactions:
$-\mathcal{L}_{Y}=\left(Y_{u}\right)_{i j} \bar{Q}_{L i} u_{R j} \widetilde{\Phi}+\left(Y_{d}\right)_{i j} \bar{Q}_{L i} d_{R j} \Phi+\left(Y_{e}\right)_{i j} \bar{L}_{L i} e_{R j} \Phi+h . c$.

Rotations to the fermion mass basis:

$$
Y_{f}=V_{f} \hat{Y}_{f} W_{f}^{\dagger}, \quad f=u, d, e
$$

Flavour violation occurs in charged currents only:

$$
\begin{aligned}
& \mathcal{L}_{c c}=\frac{g}{\sqrt{2}}\left(\bar{u}_{L} \gamma^{\mu}\left(V_{u}^{\dagger} V_{d}\right) d_{L}+\bar{\nu}_{L} \gamma^{\mu}\left(V_{\nu}^{\dagger} V_{e}\right) e_{L}\right) W_{\mu}^{+}+\text {h.c. } \\
& V_{\mathrm{CKM}} \equiv V_{u}^{\dagger} V_{d} \quad U_{\mathrm{PMNS}} \equiv V_{\nu}^{\dagger} V_{e}
\end{aligned}
$$

However, if neutrinos are massless, we can choose:

$$
V_{\nu}=V_{e}
$$

No LFV (Y_{e} only 'direction' in the leptonic flavour space)

- Neutrinos oscillate \rightarrow Lepton family numbers are not conserved!
- PMNS becomes 'physical': neutrino mass eigenstates couple to charged leptons of different flavours
- In the SM + massive neutrinos:

$$
\frac{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right)}{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \nu \bar{\nu}\right)}=\frac{3 \alpha}{32 \pi}\left|\sum_{k=1,3} U_{\alpha k} U_{\beta k}^{*} \frac{m_{\nu_{k}}^{2}}{M_{W}^{2}}\right|^{2}
$$

$\Longrightarrow \mathrm{BR}(\mu \rightarrow e \gamma) \approx \operatorname{BR}(\tau \rightarrow e \gamma) \approx \operatorname{BR}(\tau \rightarrow \mu \gamma)=10^{-55} \div 10^{-54}$
Large mixing, but huge suppression due to small neutrino masses
\Longrightarrow In presence of NP at the TeV we can expect large effects!

Borzumati Masiero '86;
Hisano et al. '95

$$
\frac{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right)}{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \nu \bar{\nu}\right)}=\frac{3 \alpha}{32 \pi}\left|\sum_{k=1,3} U_{\alpha k} U_{\beta k}^{*} \frac{m_{\nu_{k}}^{2}}{M_{W}^{2}}\right|^{2}
$$

$$
\frac{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right)}{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \nu \bar{\nu}\right)} \sim \frac{1}{G_{F}^{2} m_{\mathrm{SUSY}}^{4}}
$$

- Unambiguous signal of New Physics
- Stringent test of NP models
- It probes scales far beyond the LHC reach

CLFV has been sought for more than 70 years...

Plenty of stringent limits

Reaction	Present limit	C.L.	Experiment	Year
$\mu^{+} \rightarrow e^{+} \gamma$	$<4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^{+} \rightarrow e^{+} e^{-} e^{+}$	$<1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^{-} \mathrm{Ti} \rightarrow e^{-} \mathrm{Ti}^{\dagger}$	$<6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^{-} \mathrm{Pb} \rightarrow e^{-} \mathrm{Pb}^{\dagger}$	$<4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-} \mathrm{Au} \rightarrow e^{-} \mathrm{Au}{ }^{\dagger}$	$<7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^{-} \mathrm{Ti} \rightarrow e^{+} \mathrm{Ca}^{*}+$	$<3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^{+} e^{-} \rightarrow \mu^{-} e^{+}$	$<8.3 \times 10^{-11}$	90%	SINDRUM	1999
$\tau \rightarrow e \gamma$	$<3.3 \times 10^{-8}$	90%	BaBar	2010
$\tau \rightarrow \mu \gamma$	$<4.4 \times 10^{-8}$	90%	BaBar	2010
$\tau \rightarrow e e e$	$<2.7 \times 10^{-8}$	90%	Belle	2010
$\tau \rightarrow \mu \mu \mu$	$<2.1 \times 10^{-8}$	90%	Belle	2010
$\tau \rightarrow \pi^{0} e$	$<8.0 \times 10^{-8}$	90%	Belle	2007
$\tau \rightarrow \pi^{0} \mu$	$<1.1 \times 10^{-7}$	90%	BaBar	2007
$\tau \rightarrow \rho^{0} e$	$<1.8 \times 10^{-8}$	90%	Belle	2011
$\tau \rightarrow \rho^{0} \mu$	$<1.2 \times 10^{-8}$	90%	Belle	2011

Plenty of stringent limits

Reaction	Present limit	C.L.	Experiment	Year
$\pi^{0} \rightarrow \mu e$	$<3.6 \times 10^{-10}$	90%	KTeV	2008
$K_{L}^{0} \rightarrow \mu e$	$<4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_{L}^{0} \rightarrow \pi^{0} \mu^{+} e^{-}$	$<7.6 \times 10^{-11}$	90%	KTeV	2008
$K^{+} \rightarrow \pi^{+} \mu^{+} e^{-}$	$<1.3 \times 10^{-11}$	90%	BNL E865	2005
$J / \psi \rightarrow \mu e$	$<1.5 \times 10^{-7}$	90%	BESIII	2013
$J / \psi \rightarrow \tau e$	$<8.3 \times 10^{-6}$	90%	BESII	2004
$J / \psi \rightarrow \tau \mu$	$<2.0 \times 10^{-6}$	90%	BESII	2004
$B^{0} \rightarrow \mu e$	$<1.0 \times 10^{-9}$	90%	LHCb	2017
$B^{0} \rightarrow \tau e$	$<2.8 \times 10^{-5}$	90%	BaBar	2008
$B^{0} \rightarrow \tau \mu$	$<2.2 \times 10^{-5}$	90%	BaBar	2008
$B \rightarrow K \mu e \ddagger$	$<3.8 \times 10^{-8}$	90%	BaBar	2006
$B^{0} \rightarrow K^{* 0} \mu e$	$<1.8 \times 10^{-7}$	90%	Belle	2018
$B^{+} \rightarrow K^{+} \tau \mu$	$<4.8 \times 10^{-5}$	90%	BaBar	2012
$B^{+} \rightarrow K^{+} \tau e$	$<3.0 \times 10^{-5}$	90%	BaBar	2012
$B_{s}^{0} \rightarrow \mu e$	$<5.4 \times 10^{-9}$	90%	LHCb	2017
$\Upsilon(1 s) \rightarrow \tau \mu$	$<6.0 \times 10^{-6}$	95%	CLEO	2008

Plenty of stringent limits

Reaction	Present limit	C.L.	Experiment	Year
$Z \rightarrow \mu e$	$<7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \rightarrow \tau e$	$<9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z \rightarrow \tau \mu$	$<1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h \rightarrow e \mu$	$<3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h \rightarrow \tau \mu$	$<2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \rightarrow \tau e$	$<6.1 \times 10^{-3}$	95%	LHC CMS	2017

Probing high energy scales

Dimension-6 effective operators that can induce CLFV

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{a} C_{a}^{(5)} Q_{a}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{a} C_{a}^{(6)} Q_{a}^{(6)}+\ldots \\
& \text { Grzadkowski et al. ‘10 } \\
& \text { 4-leptons operators } \\
& \text { 2-lepton 2-quark operators } \\
& \text { Lepton-Higgs operators } \\
& \text { Crivellin Najjari Rosiek '13 }
\end{aligned}
$$

Probing high energy scales

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{a} C_{a}^{(5)} Q_{a}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{a} C_{a}^{(6)} Q_{a}^{(6)}+\ldots
$$

	$\left\|C_{a}\right\|[\Lambda=1 \mathrm{TeV}]$	$\Lambda(\mathrm{TeV})\left[\left\|C_{a}\right\|=1\right]$	CLFV Process
$C_{e \gamma}^{\mu e}$	2.1×10^{-10}	6.8×10^{4}	$\mu \rightarrow e \gamma$
$C_{\ell e}^{\mu \mu \mu e, e \mu \mu \mu}$	1.8×10^{-4}	75	$\mu \rightarrow e \gamma$ [1-loop]
$C_{\ell e}^{\mu \tau \tau e, e \tau \tau \mu}$	1.0×10^{-5}	312	$\mu \rightarrow e \gamma$ [1-loop]
$C_{e \gamma}^{\mu e}$	4.0×10^{-9}	1.6×10^{4}	$\mu \rightarrow$ eee
$C_{\ell \ell, e e}^{\mu e e e}$	2.3×10^{-5}	207	$\mu \rightarrow$ eee
$C_{\ell e}^{\mu e e e, e e \mu e}$	3.3×10^{-5}	174	$\mu \rightarrow$ eee
$C_{e \gamma}^{\mu e}$	5.2×10^{-9}	1.4×10^{4}	$\mu^{-} \mathrm{Au} \rightarrow e^{-} \mathrm{Au}$
$C_{\ell q, \ell d, e d}^{e \mu}$	1.8×10^{-6}	745	$\mu^{-} \mathrm{Au} \rightarrow e^{-} \mathrm{Au}$
$C_{e q}^{e \mu}$	9.2×10^{-7}	1.0×10^{3}	$\mu^{-} \mathrm{Au} \rightarrow e^{-} \mathrm{Au}$
$C_{\ell u, e u}^{e \mu}$	2.0×10^{-6}	707	$\mu^{-} \mathrm{Au} \rightarrow e^{-} \mathrm{Au}$
$C_{e \gamma}^{\tau \mu}$	2.7×10^{-6}	610	$\tau \rightarrow \mu \gamma$
$C_{e \gamma}^{\tau e}$	2.4×10^{-6}	650	$\tau \rightarrow e \gamma$
$C_{\ell \ell, e e}^{\mu \tau \mu \mu}$	7.8×10^{-3}	11.3	$\tau \rightarrow \mu \mu \mu$
$C_{\ell e}^{\mu \tau \mu \mu, \mu \mu \mu \tau}$	1.1×10^{-2}	9.5	$\tau \rightarrow \mu \mu \mu$
$C_{\ell \ell, e e}^{e \tau e e}$	9.2×10^{-3}	10.4	$\tau \rightarrow$ eee
$C_{\ell e}^{\text {eree,eeet }}$	1.3×10^{-2}	8.8	$\tau \rightarrow$ eee

... and we have experiments!

Reaction	Present limit	Expected Limit	Reference	Experiment
$\mu^{+} \rightarrow e^{+} \gamma$	$<4.2 \times 10^{-13}$	5×10^{-14}	[316]	MEG II
$\mu^{+} \rightarrow e^{+} e^{-} e^{+}$	$<1.0 \times 10^{-12}$	10^{-16}	[46]	Mu3e
$\mu^{-} \mathrm{Al} \rightarrow e^{-} \mathrm{Al}^{\dagger}$	$<6.1 \times 10^{-13}$	10^{-17}	[321, 324]	Mu2e, COMET
$\mu^{-} \mathrm{Si} / \mathrm{C} \rightarrow e^{-} \mathrm{Si} / \mathrm{C}^{\dagger}$	-	5×10^{-14}	[282]	DeeMe
$\tau \rightarrow e \gamma$	$<3.3 \times 10^{-8}$	5×10^{-9}	[339]	Belle II
$\tau \rightarrow \mu \gamma$	$<4.4 \times 10^{-8}$	10^{-9}	[339]	"
$\tau \rightarrow$ eee	$<2.7 \times 10^{-8}$	5×10^{-10}	[339]	"
$\tau \rightarrow \mu \mu \mu$	$<2.1 \times 10^{-8}$	5×10^{-10}	[339]	"
$\tau \rightarrow e \mathrm{had}$	$<1.8 \times 10^{-8 \ddagger}$	3×10^{-10}	[339]	"
$\tau \rightarrow \mu \mathrm{had}$	$<1.2 \times 10^{-8 \ddagger}$	3×10^{-10}	[339]	"
had $\rightarrow \mu e$	$<4.7 \times 10^{-12}$ §	10^{-12}	[340]	NA62
$h \rightarrow e \mu$	$<3.5 \times 10^{-4}$	3×10^{-5} ¢	[341]	HL-LHC
$h \rightarrow \tau \mu$	$<2.5 \times 10^{-3}$	3×10^{-4} ¢	[341]	"
$h \rightarrow \tau e$	$<6.1 \times 10^{-3}$	3×10^{-4} ¢	[341]	"

Aushev et al. '10

Also colliders: LFV Higgs decays

In the SM only one lepton Yukawa \rightarrow flavour conserving

$$
\left(m_{f}\right)_{i j}=\frac{v}{\sqrt{2}}\left(Y_{f}\right)_{i j}, \quad-\mathcal{L}_{h \bar{f} f}=\frac{m_{f}}{v} \bar{f}_{L} f_{R} h+\text { h.c. }
$$

This is not the case if there is 2 nd Higgs doublet or ops like $\bar{L}_{L} e_{R} \Phi\left(\Phi^{\dagger} \Phi\right)$ Useful parameterisation: $\quad-\mathcal{L} \supset\left(m_{e}\right)_{i} \bar{e}_{L i} e_{R i}+\left(Y_{e}^{h}\right)_{i j} \bar{e}_{L i} e_{R j} h+$ h.c.

These couplings induce both LFV Higgs decays and low-energy processes:

Also colliders: LFV Higgs decays

In the SM only one lepton Yukawa \rightarrow flavour conserving

$$
\left(m_{f}\right)_{i j}=\frac{v}{\sqrt{2}}\left(Y_{f}\right)_{i j}, \quad-\mathcal{L}_{h \bar{f} f}=\frac{m_{f}}{v} \bar{f}_{L} f_{R} h+\text { h.c. }
$$

This is not the case if there is 2nd Higgs doublet or ops like $\bar{L}_{L} e_{R} \Phi\left(\Phi^{\dagger} \Phi\right)$
Useful parameterisation: $\quad-\mathcal{L} \supset\left(m_{e}\right)_{i} \bar{e}_{L i} e_{R i}+\left(Y_{e}^{h}\right)_{i j} \bar{e}_{L i} e_{R j} h+$ h.c.

Process	Coupling	Bound
$h \rightarrow \mu e$	$\sqrt{\left\|Y_{\mu \mu}^{h}\right\|^{2}+\left\|Y_{e \mu}^{h}\right\|^{2}}$	$<5.4 \times 10^{-4}$
$\mu \rightarrow e \gamma$	$\sqrt{\left\|Y_{\mu \mu}^{h}\right\|^{2}+\left\|Y_{e \mu}^{h}\right\|^{2}}$	$<2.1 \times 10^{-6}$
$\mu \rightarrow e e e$	$\sqrt{\left\|Y_{\mu e}^{h}\right\|^{2}+\left\|Y_{e \mu}^{h}\right\|^{2}}$	$\lesssim 3.1 \times 10^{-5}$
$\mu \mathrm{Ti} \rightarrow e \mathrm{Ti}$	$\sqrt{\left\|Y_{\mu e}^{h}\right\|^{2}+\left\|Y_{e \mu}^{h}\right\|^{2}}$	$<1.2 \times 10^{-5}$
$h \rightarrow \tau e$	$\sqrt{\left\|Y_{\tau e}^{h}\right\|^{2}+\left\|Y_{e \tau}^{h}\right\|^{2}}$	$<2.3 \times 10^{-3}$
$\tau \rightarrow e \gamma$	$\sqrt{\left\|Y_{\tau e}^{h}\right\|^{2}+\left\|Y_{e \tau}^{h}\right\|^{2}}$	<0.014
$\tau \rightarrow e e e$	$\sqrt{\left\|Y_{\tau e}^{h}\right\|^{2}+\left\|Y_{e \tau}^{h}\right\|^{2}}$	$\lesssim 0.12$
$h \rightarrow \tau \mu$	$\sqrt{\left\|Y_{\tau \mu}^{h}\right\|^{2}+\left\|Y_{\mu \tau}^{h}\right\|^{2}}$	$<1.4 \times 10^{-3}$
$\tau \rightarrow \mu \gamma$	$\sqrt{\left\|Y_{\tau \mu}^{h}\right\|^{2}+\left\|Y_{\mu \tau}^{h}\right\|^{2}}$	<0.016
$\tau \rightarrow \mu \mu \mu$	$\sqrt{\left\|Y_{\tau \mu}^{h}\right\|^{2}+\left\|Y_{\mu \tau}^{h}\right\|^{2}}$	$\lesssim 0.25$
	$\left(Y_{e e}^{h}, Y_{\mu \mu}^{h}, Y_{\tau \tau}^{h}\right) \approx\left(10^{-6}, 10^{-4}, 10^{-2}\right)$	Harnik Kopp Zupan '12

Also colliders: LFV Higgs decays

In the SM only one lepton Yukawa \rightarrow flavour conserving

$$
\left(m_{f}\right)_{i j}=\frac{v}{\sqrt{2}}\left(Y_{f}\right)_{i j}, \quad-\mathcal{L}_{h \bar{f} f}=\frac{m_{f}}{v} \bar{f}_{L} f_{R} h+\text { h.c. }
$$

This is not the case if there is 2nd Higgs doublet or ops like $\bar{L}_{L} e_{R} \Phi\left(\Phi^{\dagger} \Phi\right)$ Useful parameterisation: $\quad-\mathcal{L} \supset\left(m_{e}\right)_{i} \bar{e}_{L i} e_{R i}+\left(Y_{e}^{h}\right)_{i j} \bar{e}_{L i} e_{R j} h+$ h.c.

$$
\left(Y_{e e}^{h}, Y_{\mu \mu}^{h}, Y_{\tau \tau}^{h}\right) \approx\left(10^{-6}, 10^{-4}, 10^{-2}\right)
$$

Charged Lepton Flavour Violation in SUSY

Slepton mass matrix:

$$
m_{\tilde{\ell}}^{2}=\left(\begin{array}{cc}
\left(\tilde{m}_{L}^{2}\right)_{i j}+\left(m_{\ell}^{2}\right)_{i j}-m_{Z}^{2}\left(\frac{1}{2}-\sin ^{2} \theta_{W}\right) \delta_{i j} & A_{j i}^{\ell *} v_{d}-\left(m_{\ell}\right)_{j i} \mu \tan \beta \\
A_{i j}^{\ell} v_{d}-\left(m_{\ell}\right)_{i j} \mu^{*} \tan \beta & \left(\tilde{m}_{E}^{2}\right)_{i j}+\left(m_{\ell}^{2}\right)_{i j}-m_{Z}^{2} \sin ^{2} \theta_{W} \delta_{i j}
\end{array}\right)
$$

Flavour-conserving counterparts:

$$
\mathrm{g}-2, \mathrm{EDMs}
$$

Comparing LFV and LHC bounds

What is the impact of direct searches for SUSY particles at the LHC on the discovery prospects of LFV processes at low-energy experiments?

We can study LFV/LHC complementarity within the simplified models used by the collaborations for the interpretation of the searches

Examples that can address the muon g-2 anomaly:

LFV vs LHC bounds within simplified models

$$
\begin{gathered}
\tilde{e}_{L}, \tilde{\mu}_{L}, \tilde{\tau}_{L} \\
\tilde{e}_{R}, \tilde{\mu}_{R}, \tilde{\tau}_{R} \\
\tilde{B}^{2}
\end{gathered}
$$

Bounds from $\tau \rightarrow \mu \gamma$

LFV vs LHC bounds within simplified models

$$
\tilde{e}_{L}, \tilde{\mu}_{L}, \tilde{\tau}_{L}
$$

$\widetilde{W} \quad \widetilde{H}$

Bounds from $\tau \rightarrow \mu \gamma$
Eckel et al. arXiv:1408.2841

$$
\Delta a_{\mu} \equiv\left|a_{\mu}^{\mathrm{TH}}-a_{\mu}^{\mathrm{EXP}}\right| \lesssim 2 \sigma
$$

Outline

Introduction to CLFV

Lepton flavour (non)universality and CLFV

B-physics anomalies

Two classes of anomalies:
I. In charged-current processes of the type $b \rightarrow c \ell \nu$ II. In neutral-current $b \rightarrow s \ell^{+} \ell^{-}$transitions

Class I.

$$
R_{D^{(*)}} \equiv \frac{\operatorname{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\operatorname{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)}, \ell=e, \mu
$$

Test of the Lepton Flavour Universality

B-physics anomalies

Two classes of anomalies:
I. In charged-current processes of the type $b \rightarrow c \ell \nu$ II. In neutral-current $b \rightarrow s \ell^{+} \ell^{-}$transitions

Class II.

SM diagrams:

$$
R_{K^{(*)}} \equiv \frac{\mathrm{BR}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathrm{BR}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

$=1+-0.01$ in the SM : lepton flavour universality Bordone et al. ' 16

LHCb measurements:

$$
R_{K}=0.745_{-0.074}^{+0.090} \pm 0.036 \quad R_{K^{*}}=0.685_{-0.069}^{+0.113} \pm 0.047 \quad \approx 2.5 \sigma \text { off }
$$

Few sigma discrepancies in other obs with larger hadronic uncertainties:

Angular observables in

$$
B \rightarrow K^{*} \mu^{+} \mu^{-}
$$

Some $b \rightarrow s \mu^{+} \mu^{-}$BRs

It seems that we have to fit a deficit of muon events

$$
\mathcal{O}_{9}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \quad \mathcal{O}_{10}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

Fits to the data: non-standard contributions preferred at the 4-5 σ level

> Capdevilla et al . '17, Altmannshofer et al. '17, D'Amico et al. '17, Geng et al. '17, Ciuchini et al. '17, Neshatpour et al. '17 + many older refs.

SU(2)-invariant operators:
Differ by $\operatorname{SU}(2)$ contractions:

$$
\begin{array}{ll}
\left(Q_{\ell q}^{(1)}\right)_{\mu \mu b s}=\left(\bar{L}_{L 2}^{a} \gamma^{\mu} L_{L 2}^{a}\right)\left(\bar{Q}_{L 2}^{b} \gamma_{\mu} Q_{L 3}^{b}\right) & \text { "singlet-singlet" } \\
\left(Q_{\ell q}^{(3)}\right)_{\mu \mu b s}=\sum_{I=1,3}\left(\bar{L}_{L 2}^{a} \gamma^{\mu}\left(\tau_{I}\right)_{a b} L_{L 2}^{b}\right)\left(\bar{Q}_{L 2}^{c} \gamma_{\mu}\left(\tau_{I}\right)_{c d} Q_{L 3}^{d}\right) & \text { "triplet-triplet" }
\end{array}
$$

They both give $C_{9}=-C_{10}$
it gives also rise to charged-current, it can address the $1^{\text {st }}$ class anomalies

One can attempt to explain class 1 and 2 anomalies simultaneously
Relevant constraints from $B \rightarrow K^{(*)} \nu \bar{\nu}$ which can be however relaxed if $C_{S}=C_{T}$

SU(2)-invariant operators:

Differ by $\operatorname{SU}(2)$ contractions:

$$
\begin{array}{ll}
\left(Q_{\ell q}^{(1)}\right)_{\mu \mu b s}=\left(\bar{L}_{L 2}^{a} \gamma^{\mu} L_{L 2}^{a}\right)\left(\bar{Q}_{L 2}^{b} \gamma_{\mu} Q_{L 3}^{b}\right) & \text { "singlet-singlet" } \\
\left(Q_{\ell q}^{(3)}\right)_{\mu \mu b s}=\sum_{I=1,3}\left(\bar{L}_{L 2}^{a} \gamma^{\mu}\left(\tau_{I}\right)_{a b} L_{L 2}^{b}\right)\left(\bar{Q}_{L 2}^{c} \gamma_{\mu}\left(\tau_{I}\right)_{c d} Q_{L 3}^{d}\right) & \text { "triplet-triplet" }
\end{array}
$$

$$
\begin{array}{rll}
\mathcal{L}_{\mathrm{NP}}=\frac{1}{\Lambda^{2}}\left[\left(C_{1}+C_{3}\right) \lambda_{i j}^{d} \lambda_{k l}^{e}\left(\bar{d}_{L i} \gamma^{\mu} d_{L j}\right)\left(\bar{e}_{L k} \gamma_{\mu} e_{L}\right)+\right. & B \rightarrow K^{(*)} \ell \ell^{\prime} \\
& \left.\left(C_{1}-C_{3}\right) \lambda_{i j}^{d} \lambda_{k l}^{e}\left(\bar{d}_{L i} \gamma^{\mu} d_{L j}\right)\left(\bar{\nu}_{L k} \gamma_{\mu} \nu_{L I}\right)\right]+ & B \rightarrow K^{(*)} \nu \nu \\
\left.2 C_{3}\left(V \lambda^{d}\right)_{i j} \lambda_{k l}^{e}\left(\bar{u}_{L i} \gamma^{\mu} d_{L j}\right)\left(\bar{e}_{L k} \gamma_{\mu} \nu_{L}\right)+h . c .\right] & B \rightarrow D^{(*)} \ell \nu
\end{array}
$$

[Calibbi, Crivellin, Ota, '15]

$$
\lambda_{i j}^{d}=V_{d 3 i}^{*} V_{d 3 j} \quad \lambda_{i j}^{e}=U_{e 3 i}^{*} U_{e 3 j} \quad V_{u}^{\dagger} V_{d}=V_{\mathrm{CKM}} \equiv V
$$

Effective field theory approach

Ops with only $3^{\text {rd }}$ family:

$$
Q_{\ell q}^{(1)}=\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right), Q_{\ell q}^{(3)}=\left(\bar{L}_{3} \gamma^{\mu} \tau_{I} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} \tau^{I} Q_{3}\right.
$$

(in the interaction basis)

Flavour structure justified by:

- Theoretical considerations (SM hierarchies, MFV paradigm, ...)
- Observed anomalies (3rd generation affected more than 2nd generation, 2nd generation more than 1 st generation)

Operators involving 2 nd generations generated by rotations to the mass basis:

$$
Y^{f}=V^{f \dagger} \hat{Y}^{f} W^{f}, \quad f=u, d, e
$$

Giving e.g. :

$$
\begin{gathered}
C_{S}\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right) \longrightarrow C_{S} V_{23}^{d} V_{33}^{d *}\left|V_{23}^{e}\right|^{2}\left(\bar{L}_{2} \gamma^{\mu} L_{2}\right)\left(\bar{Q}_{2} \gamma_{\mu} Q_{3}\right) \\
\longmapsto b>s \mu \mu
\end{gathered}
$$

Effective field theory approach

Ops with only $3^{\text {rd }}$ family:

$$
Q_{\ell q}^{(1)}=\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right), Q_{\ell q}^{(3)}=\left(\bar{L}_{3} \gamma^{\mu} \tau_{I} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} \tau^{I} Q_{3}\right)
$$

(in the interaction basis)

Flavour structure justified by:

- Theoretical considerations (SM hierarchies, MFV paradigm, ...)
- Observed anomalies (3rd generation affected more than 2nd generation, 2nd generation more than 1 st generation)

Operators involving 2 nd generations generated by rotations to the mass basis:

$$
Y^{f}=V^{f \dagger} \hat{Y}^{f} W^{f}, \quad f=u, d, e
$$

Correlated LFV operators are generated too:

$$
\begin{aligned}
& C_{S}\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right) \longrightarrow C_{S} V_{23}^{d} V_{33}^{d *} V_{23}^{e} V_{33}^{e *}\left(\bar{L}_{2} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{2} \gamma_{\mu} Q_{3}\right) \\
& \quad \overrightarrow{ } b \rightarrow s \tau \mu
\end{aligned}
$$

Effective field theory approach
Ops with only $3^{\text {rd }}$ family:

$$
\begin{array}{ll}
Q_{\ell q}^{(1)}=\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right), & Q_{\ell q}^{(3)}=\left(\bar{L}_{3} \gamma^{\mu} \tau_{I} L_{3}\right. \\
=1 \mathrm{TeV}) & C_{T}=C_{S}=-1
\end{array}
$$

$$
\mathrm{BR}\left(B \rightarrow K^{*} \tau \mu\right) \approx 2 \times \mathrm{BR}(B \rightarrow K \tau \mu) \approx 2 \times \mathrm{BR}\left(B_{s} \rightarrow \tau \mu\right) \lesssim 10^{-6}
$$

Considerably below current limit $\mathrm{O}\left(10^{-5}\right)$
LC, Crivellin, Ota '15

Radiatively generated LFV and LFUV effects
Ops with only 3 rd family: $\quad Q_{\ell q}^{(1)}=\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right), Q_{\ell q}^{(3)}=\left(\bar{L}_{3} \gamma^{\mu} \tau_{I} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} \tau^{I} Q_{3}\right)$
Important radiative effects:
Feruglio Paradisi Pattori '16 \& '17

$$
\frac{\mathrm{BR}(Z \rightarrow \tau \tau)}{\operatorname{BR}(Z \rightarrow e e)}
$$

(LFU in Z couplings tested at the permil level)

$$
\frac{\operatorname{BR}(\tau \rightarrow \ell \nu \bar{\nu})}{\operatorname{BR}(\mu \rightarrow e \nu \bar{\nu})}
$$

(LFU in tau decays tested below the percent level)

$: \tau \rightarrow \mu \ell \ell$

$\tau \rightarrow \mu \rho$ Tau CLFV!

Radiatively generated LFV and LFUV effects

Ops with only $3^{\text {rd }}$ family:
 $$
Q_{\ell q}^{(1)}=\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right), Q_{\ell q}^{(3)}=\left(\bar{L}_{3} \gamma^{\mu} \tau_{I} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} \tau^{I} Q_{3}\right.
$$

Feruglio Paradisi Pattori '16 \& '17

LFV tests of the B anomalies

Ops with only $3^{\text {rd }}$ family:

$$
Q_{\ell q}^{(1)}=\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} Q_{3}\right), Q_{\ell q}^{(3)}=\left(\bar{L}_{3} \gamma^{\mu} \tau_{I} L_{3}\right)\left(\bar{Q}_{3} \gamma_{\mu} \tau^{I} Q_{3}\right.
$$

All constraints imposed but $\mathrm{R}_{\mathrm{D}}{ }^{(*)}$

$$
\mathscr{B}(\tau \rightarrow 3 \mu) \approx 5 \times 10^{-8} \frac{\left(C_{1}-C_{3}\right)^{2}}{\Lambda^{4}\left(\mathrm{TeV}^{4}\right)}\left(\frac{\lambda_{23}^{e}}{0.3}\right)^{2} \quad \mathscr{B}(\tau \rightarrow \mu \rho) \approx 5 \times 10^{-8} \frac{\left(C_{1}-1.3 C_{3}\right)^{2}}{\Lambda^{4}\left(\mathrm{TeV}^{4}\right)}\left(\frac{\lambda_{23}^{e}}{0.3}\right)^{2}
$$

Feruglio Paradisi Pattori '16 \& '17

Combined explanations to class I and II anomalies

- LFV and LFUV observables limit the possibility of addressing both class of anomalies simultaneously
- On the other hand, these observables (in particular tau LFV decays) are expected to be in the reach of Belle II if there is NP behind the B anomalies
- A more general flavour structure (ops directly involving 2nd generations, 2-3 LH quark rotations > $V_{u b}$ etc.) can still allow a combined explanation, although at the price of some tuning, see e.g. Buttazzo, Greljo, Isidori, Marzocca ' 17
- LFV processes are still a prediction/test of such construction!

Combined explanations to class I and II anomalies

Buttazzo, Greljo, Isidori, Marzocca '17

Simplified UV completions:

- Colorless vectors: $\quad B(1,1,0) \quad \mathrm{W}(1,3,0)$
- Scalar Leptoquarks: $S_{1}(3,1,1 / 3) S_{3}(3,3,1 / 3)$
- Vector Leptoquarks: $U_{1}(3,1,2 / 3) \quad U_{3}(3,3,2 / 3)$
$\mathrm{U}(2)_{q} \times U(2)_{l}$ flavour structure

$$
\text { A single vector LQ } U_{1} \text { can do the job }
$$

Combined explanations to class I and II anomalies

Buttazzo, Greljo, Isidori, Marzocca '17

Simplified UV completions:

- Colorless vectors: $\quad B(1,1,0) \quad \mathrm{W}(1,3,0)$
- Scalar Leptoquarks: $S_{1}(3,1,1 / 3) S_{3}(3,3,1 / 3)$
- Vector Leptoquarks: $U_{1}(3,1,2 / 3) \quad U_{3}(3,3,2 / 3)$
U_{1} has the quantum numbers of a $\mathrm{SU}(4)$ gauge boson! Recent attempts to build Pati-Salam-like models

Di Luzio Greljo Nardecchia '17
LC Crivellin Li '17 Bordone Cornelia Fuentes Isidori '17

Combined explanations to class I and II anomalies

LFV processes are still a prediction/test of such construction! Examples:

Combined explanations to class I and II anomalies

LFV processes are still a prediction/test of such construction! Examples:

Concluding remarks

CLFV observables among the cleanest and most stringent test of physics beyond the Standard Model

CLFV in the tau sector nicely complementary to muon observables as a model discriminator (e.g. SUSY seesaw typically predicts tau LFV rates below the reach of Belle II)

B anomalies favours new physics more strongly coupled to 3rd generation fermions

LFUV and LFV involving taus are key observables to test the models addressing the anomalies (the latter typically predicted within the future Belle II/LHCb sensitivity)

Additional Slides

Probing high energy scales

Dimension- 6 effective operators that can induce CLFV

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{a} C_{a}^{(5)} Q_{a}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{a} C_{a}^{(6)} Q_{a}^{(6)}+\ldots \\
\mathcal{L} \supset \frac{C_{e \gamma}^{e \mu}}{\Lambda^{2}} \frac{v}{\sqrt{2}} \bar{e} \sigma_{\mu \nu} P_{R} \mu F^{\mu \nu}+\frac{C_{e \gamma}^{\mu e}}{\Lambda^{2}} \frac{v}{\sqrt{2}} \bar{\mu} \sigma_{\mu \nu} P_{R} e F^{\mu \nu}+\text { h.c. },
\end{gathered}
$$

Probing high energy scales

Dimension- 6 effective operators that can induce CLFV

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{a} C_{a}^{(5)} Q_{a}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{a} C_{a}^{(6)} Q_{a}^{(6)}+\ldots \\
\text { Example, dipole operators: } \\
\mathcal{L} \supset \frac{C_{e \gamma}^{e \mu}}{\Lambda^{2}} \frac{v}{\sqrt{2}} \bar{e} \sigma_{\mu \nu} P_{R} \mu F^{\mu \nu}+\frac{C_{e \gamma}^{\mu e}}{\Lambda^{2}} \frac{v}{\sqrt{2}} \bar{\mu} \sigma_{\mu \nu} P_{R} e F^{\mu \nu}+\text { h.c. } \\
\Gamma(\mu \rightarrow e \gamma)=\frac{m_{\mu}^{3} v^{2}}{8 \pi \Lambda^{4}}\left(\left|C_{e \gamma}^{e \mu}\right|^{2}+\left|C_{e \gamma}^{\mu e}\right|^{2}\right) \\
\operatorname{BR}(\mu \rightarrow e e e) \simeq \frac{\alpha}{3 \pi}\left(\log \frac{m_{\mu}^{2}}{m_{e}^{2}}-3\right) \times \operatorname{BR}(\mu \rightarrow e \gamma), \\
\mathrm{CR}(\mu \mathrm{~N} \rightarrow e \mathrm{~N}) \simeq \alpha \times \operatorname{BR}(\mu \rightarrow e \gamma) .
\end{gathered}
$$

Probing high energy scales

Dimension-6 effective operators that can induce CLFV

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{a} C_{a}^{(5)} Q_{a}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{a} C_{a}^{(6)} Q_{a}^{(6)}+\ldots
$$

Model discrimination through the different muon modes:

Model	$\mu \rightarrow e e e$	$\mu N \rightarrow e N$	$\frac{\operatorname{BR}(\mu \rightarrow e e e)}{\operatorname{BR}(\mu \rightarrow e \gamma)}$	$\frac{\operatorname{CR}(\mu N \rightarrow e N)}{\operatorname{BR}(\mu \rightarrow e \gamma)}$
MSSM	Loop	Loop	$\approx 6 \times 10^{-3}$	$10^{-3}-10^{-2}$
Type-I seesaw	Loop*	Loop*	$3 \times 10^{-3}-0.3$	$0.1-10$
Type-II seesaw	Tree	Loop	$(0.1-3) \times 10^{3}$	$\mathcal{O}\left(10^{-2}\right)$
Type-III seesaw	Tree	Tree	$\approx 10^{3}$	$\mathcal{O}\left(10^{3}\right)$
LFV Higgs	Loop †	Loop*	Loop*	$\approx 10^{-2}$
Composite Higgs	Loop* *	Lo.	$0.05-0.5$	$\mathcal{O}(0.1)$

TABLE VII. - Pattern of the relative predictions for the $\mu \rightarrow e$ processes as predicted in several models (see the text for details). It is indicated whether the dominant contributions to $\mu \rightarrow$ eee and $\mu \rightarrow e$ conversion are at the tree or at the loop level; Loop* indicates that there are contributions that dominate over the dipole one, typically giving an enhancement compared to Eq. (38, 39). ${ }^{\dagger}$ A tree-level contribution to this process exists but it is subdominant.

First class: charged-current $b \rightarrow c \ell \nu$
$R_{D^{(*)}} \equiv \frac{\operatorname{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\operatorname{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)}, \ell=e, \mu$
test of Lepton Flavour Universality (LFU)

Only two measurements available for $\mathrm{R}(\mathrm{D})$

First class: charged-current $b \rightarrow c \ell \nu$

$$
R_{J / \psi} \equiv \frac{\mathrm{BR}\left(B_{c}^{+} \rightarrow J / \psi \tau^{+} \nu_{\tau}\right)}{\mathrm{BR}\left(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}\right)}
$$

another LFU observable

$$
\mathcal{R}(J / \psi)=\frac{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \tau^{+} \nu_{\tau}\right)}{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}\right)}=0.71 \pm 0.17 \text { (stat) } \pm 0.18 \text { (syst). }
$$

LHCb, arXiv:1711.05623
$\sim 2 \sigma$ above the range predicted by the $\mathrm{SM}: 0.25-0.28$

Second class: neutral-current $b \rightarrow s \ell^{+} \ell^{-}$

$$
R_{K^{(*)}} \equiv \frac{\mathrm{BR}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\operatorname{BR}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

$=1+-0.01$ in the $\mathrm{SM}\left(q^{2}>1 \mathrm{GeV}^{2}\right)$ Bordone et al. ' 16
Most precise measurements up to date, integrated luminosity of $3 \mathrm{fb}^{-1}$

$$
\mathrm{R}_{K}=0.745_{-0.074}^{+0.090} \text { (stat) } \pm 0.036 \text { (syst) } \quad \mathrm{R}_{K^{*}}=\left\{\begin{array}{l}
0.66_{-0.07}^{+0.11} \text { (stat) } \pm 0.03 \text { (syst) }[0.045-1.1] \mathrm{GeV}^{2} \\
0.69_{-0.05}^{+0.11} \text { (stat) } \pm 0.03 \text { (syst) }[1.1-6.0] \mathrm{GeV}^{2}
\end{array}\right.
$$

Compatible with SM at

From D. Lancierini talk at SUSY17

Second class: neutral-current $b \rightarrow s \ell^{+} \ell^{-}$
Angular observables in

$$
B \rightarrow K^{*} \mu^{+} \mu^{-}
$$

... but are hadronic uncertainties fully under control?

Second class: neutral-current $b \rightarrow s \ell^{+} \ell^{-}$

Some $b \rightarrow s \mu^{+} \mu^{-}$BRs

[JHEP 06 (2014) 133]

b
b
\square

b
u, c, t

From S. Tolk talk at SUSY17
[JHEP 09 (2015) 179]
[JHEP 06 (2015) 115]

[JHEP 06 (2014) 133]

... but are hadronic uncertainties fully under control?

Global fits to $b \rightarrow s \ell^{+} \ell^{-}$observables

It seems that we have to fit a deficit of muon events

$$
\mathcal{O}_{9}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \quad \mathcal{O}_{10}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

RH currents not favored

Altmannshofer Stang Straub '17

Fits to the data: non-standard contributions preferred at the 4-5 σ level
Capdevilla et al . '17, Altmannshofer et al. '17, D'Amico et al. '17, Geng et al. '17, Ciuchini et al. '17, Neshatpour et al. '17 + many older refs.

Global fits to $b \rightarrow s \ell^{+} \ell^{-}$observables

It seems that we have to fit a deficit of muon events

$$
\mathcal{O}_{9}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \quad \mathcal{O}_{10}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

Altmannshofer Stang Straub '17

Fits to the data: non-standard contributions preferred at the 4-5 σ level
Capdevilla et al . '17, Altmannshofer et al. '17, D'Amico et al. '17, Geng et al. '17, Ciuchini et al. '17, Neshatpour et al. '17 + many older refs.

Global fits to $b \rightarrow s \ell^{+} \ell^{-}$observables

$$
\mathcal{O}_{9}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \quad \mathcal{O}_{10}^{\ell(\prime)} \sim\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

	All					LFUV				
1D Hyp.	Best fit	1σ	2σ	Pull ${ }_{\text {SM }}$	p-value	Beci fit	1σ	2σ	Pull $_{\text {SM }}$	p-value
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}$	-1.10	$[-1.27,-0.92]$	$[-1.43,-0.74]$	5.7	72	-1.76	$[-2.36,-1.23]$	$[-3.04,-0.76]$	3.9	$69-$
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{10 \mu}^{\mathrm{NP}}$	-0.61	$[-0.73,-0.48]$	$[-0.87,-0.36]$	5.2	61	-0.66	$[-0.84,-0.48]$	$[-1.04,-0.32]$	4.1	78
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{9 \mu}^{\prime}$	-1.01	$[-1.18,-0.84]$	$[-1.33,-0.65]$	5.4	66	-1.64	$[-2.12,-1.05]$	$[-2.52,-0.49]$	3.2	31
$\begin{gathered} \mathcal{C}_{9 \mu}^{\mathrm{NP}}=-3 \mathcal{C}_{9 e}^{\mathrm{NP}} \\ \text { Capdevilla } \end{gathered}$	$\begin{aligned} & -1.06 \\ & \text { al. '17 } \end{aligned}$	$[-1.23,-0.89]$	$[-1.39,-0.71]$	5.8	74	-135	$[-1.82,-0.95]$	[-2.38, -0.59]	4.0	71

"Clean" observables only!
Sizeable NP contribution would be required, $\mathrm{O}(10) \%$ of the SM one:

Both classes of anomalies can be explained by adding a single new field: a spin-1 leptoquark with $S U(3)_{c} x S U(2)\llcorner x U(1) y$ quantum numbers as

$$
(3,1,2 / 3)
$$

Where does such an exotic field come from? Interestingly, it has the quantum numbers of a $S U(4)$ vector boson

$$
\text { We built a Pati-Salam - } S U(4) \times S U(2)_{L} \times S U(2)_{R}-\text { model }
$$

to accommodate this vector leptoquark

We have to introduce extra vectorlike fermions embedded in the same PS representations containing the SM fermions, in order to generate flavour non-universal couplings of the leptoquark

Field content:

	$S U(4) S U(2)_{L} S U(2)_{R} U(1)_{P Q}$			
X_{i}^{L}	4	2	1	0
Y_{i}^{L}	4	2	1	0
Y_{i}^{R}	4	2	1	1
X_{i}^{R}	4	1	2	0
Z_{i}^{R}	4	1	2	0
Z_{i}^{L}	4	1	2	1
Σ	$\overline{4} \otimes 4$	1	1	-1

Contain sM doublets and extra fermions: $\quad Y_{R}=\binom{Q_{R}^{\prime}}{L_{R}^{\prime}}_{i}, \quad Y_{L}=\binom{Q_{L}}{\ell_{L}}_{i}, \quad X_{L}=\binom{q_{L}}{L_{L}}_{i}$

Because of this embedding, the leptoquark couple light to heavy fields:

SM and vectorlike quarks and leptons mix upon $\operatorname{SU}(4)$ breaking:

$\mathcal{L} \supset-v_{\Sigma}^{a b} \bar{X}_{i}^{a L} x_{i j} Y_{j}^{a R}-v_{\Sigma}^{a b} \bar{Y}_{i}^{a L} y_{i j} Y_{j}^{b R}+h . c$.
 $\mathcal{L} \supset-\left(m_{i j}^{Q} \bar{q}_{i L}+M_{i j}^{Q} \bar{Q}_{i L}\right) Q_{j R}^{\prime}-\left(M_{i j}^{L} \bar{L}_{i L}+m_{i j}^{L} \bar{\ell}_{i L}\right) L_{j R}^{\prime}$

SM/vectorlike fermion mixing generates flavour non-universal leptoquark couplings:

$$
\mathcal{L} \supset \kappa_{i j} \bar{q}_{i}^{L} \gamma^{\mu} P_{L} \ell_{j}^{L} V_{\mu}+\text { h.c. with } \kappa_{i j}=\frac{-g_{s}}{\sqrt{2}}\left(\begin{array}{ccc}
c_{1}^{Q} s_{1}^{L}+c_{1}^{L} s_{1}^{Q} & 0 & 0 \\
0 & \left(c_{2}^{Q} s_{2}^{L}+c_{2}^{L} s_{2}^{Q}\right) c_{23}^{q \ell} & -s_{23}^{q \ell}\left(c_{2}^{Q} s_{2}^{L}+c_{2}^{L} s_{2}^{Q}\right) \\
0 & \left(c_{2}^{Q} s_{2}^{L}+c_{2}^{L} s_{2}^{Q}\right) s_{12}^{q \ell} & c_{23}^{q \ell}\left(c_{3}^{Q} s_{3}^{L}+c_{3}^{L} s_{3}^{Q}\right)
\end{array}\right)_{i j}
$$

Depending on the field rotations, both class I (in blue) and class II (in red) can be fitted:

