
1 

Electric Dipole Moments: A Look 
Beyond the Standard Model 

KMI 2019 Nagoya University, 
February 2019

M.J. Ramsey-Musolf 
 
U Mass Amherst

http://www.physics.umass.edu/acfi/ 

My pronouns: he/him/his 



2 

Goals for This Talk 

•  Give a brief update on the experimental status & 
outlook for EDM searches 

•  Discuss the implications for explaining the cosmic 
matter-antimatter asymmetry 

•  Illustrate the interplay of EDM searches with collider 
searches 

•  Highlight the range of BSM mass scales EDM 
searches access 
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 
to 103 more 
sensitive 

•  CPV needed for 
BAU?  

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 

ThO 

n 

7.4 x 10-30 

1.1 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** e- equivalent 

10-35 

10-38 

10-31 

10-30 

10-29 

10-26 
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 
to 103 more 
sensitive 

•  CPV needed for 
BAU?  

Mass Scale Sensitivity 

€ 

γ

€ 

e
€ 

ψ

€ 

ϕ
€ 

ϕ sinφCP ~ 1 !  M > 5000 GeV 

M < 500 GeV ! sinφCP < 10-2  
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 
to 103 more 
sensitive 

•  CPV needed for 
BAU?  

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 
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7.4 x 10-30 

1.1 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** e- equivalent 
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10-26 

neutron 

 proton 
& nuclei 

atoms 

~ 100 x better 
sensitivity Not shown: 

muon 
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Outline 

I.  EDM Interpretation: The SM & BSM context 

II.  The Cosmic Matter-Antimatter Asymmetry 

III.  The Higgs Boson & Top Quark Portals  

IV.  EDM Complementarity 

V.  Outlook 
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I. Interpretation: The SM & BSM Context 
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EDMs & SM Physics 

 dn
SM ~ (10-16 e cm)  x  θQCD +  dn

CKM 
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EDMs & SM Physics 

 dn
SM ~ (10-16 e cm)  x  θQCD +  dn

CKM 

dn
CKM = (1 – 6) x 10-32 e cm 

C. Seng arXiv: 1411.1476 
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EDMs & SM Physics 

 dn
SM ~ (10-16 e cm)  x  θQCD +  dn

CKM 

dn
CKM = (1 – 6) x 10-32 e cm* 

C. Seng arXiv: 1411.1476 

* 3.3 x 10-33 e cm < dp < 3.3 x 10-32 e cm  
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EDMs & BSM Physics 

 d ~ (10-16 e cm)  x  (υ / Λ)2  x  sinφ  x yf F 
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EDMs & BSM Physics 

 d ~ (10-16 e cm)  x  (υ / Λ)2  x  sinφ  x yf F 

CPV Phase: large enough for baryogenesis ? 
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EDMs & BSM Physics 

 d ~ (10-16 e cm)  x  (υ / Λ)2  x  sinφ  x yf F 

BSM mass scale: TeV ? Much higher ? 
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EDMs & BSM Physics 

 d ~ (10-16 e cm)  x  (υ / Λ)2  x  sinφ  x yf F 

BSM dynamics: perturbative? Strongly coupled? 
Dependence on other parameters ?  
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EDMs & BSM Physics 

 d ~ (10-16 e cm)  x  (υ / Λ)2  x  sinφ  x yf F 

Need information from at least three “frontiers”  
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EDMs & BSM Physics 

 d ~ (10-16 e cm)  x  (υ / Λ)2  x  sinφ  x yf F 

Need information from at least three “frontiers”  

•  Baryon asymmetry    Cosmic Frontier 
•  High energy collisions   Energy Frontier 
•  EDMs        Intensity Frontier 
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BSM Physics: Where Does it Live ? 
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BSM Physics: Where Does it Live ? 
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Higgs sector… 

BSM ? 
Sterile ν’s, axions, 
dark U(1)…  
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BSM Physics: Where Does it Live ? 
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BSM Physics: T (CP) Invariant ? 
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II. The Matter-Antimatter Asymmetry 



Baryogenesis Scenarios 
E
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 (G
eV

) 

1012 

Affleck Dine 109 

10 2 

10-1 

Standard thermal lepto 

Electroweak, resonant lepto, 
WIMPY baryo, ARS lepto… 

Post-sphaleron, cold… 
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Post-sphaleron, cold… 

Era of EWSB: tuniv ~ 10 ps 
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Electroweak Baryogenesis 

Was YB generated in conjunction with 
electroweak symmetry-breaking? 

25 



EWBG: MSSM & Beyond 
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•  Strong first order EWPT: LHC ! Excluded for the 
MSSM ! Possible w/ extensions (e.g., NMSSM) 

•  CPV: Sources same as in MSSM + possible additional  



EDMs &  EWBG: MSSM & Beyond 

Heavy sfermions: LHC 
consistent & suppress 
1-loop EDMs 

Sub-TeV EW-inos: LHC & EWB -
viable but non-universal phases 

f f 

f 
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 γ, g ~ 

~ 

27 



EDMs &  EWBG: MSSM & Beyond 

Heavy sfermions: LHC 
consistent & suppress 
1-loop EDMs 

Sub-TeV EW-inos: LHC & EWB -
viable but non-universal phases 

Compatible with 
observed BAU 

Li, Profumo, RM ‘09-’10 
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ACME: ThO 
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CPV for EWBG 

EDM 

EWBG 

EDM 

Theoretical creativity 
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•  Flavored CPV 
•  “Partially secluded” CPV 
•  CPV w/ vector-like fermions 
•  … 



“Two-Step EW Baryogenesis” 
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Present de   

YB 

No EDM constraints 

Present de   

Future dn   

Future dp ?   

Inoue, Ovanesyan, R-M: 1508.05404 

“Partially Secluded CPV” Electroweak BSM CPV 

Two CPV sources for baryon asymmetry 
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III. Portals: The BSM Mass Scale & CP 
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BSM Physics: Where Does it Live ? 
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 
to 103 more 
sensitive 

•  CPV needed for 
BAU?  

Mass Scale Sensitivity 

€ 

γ

€ 

e
€ 

ψ

€ 

ϕ
€ 

ϕ sinφCP ~ 1 !  M > 5000 GeV 

M < 500 GeV ! sinφCP < 10-2  

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 

ThO 

n 

7.4 x 10-30 

1.1 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** e- equivalent 

10-35 

10-38 

10-31 

10-30 

10-29 
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EDMs: New Light CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 
to 103 more 
sensitive 

•  CPV needed for 
BAU?  

Ultralight Mass Scale Sensitivity 

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 

ThO 

n 

7.4 x 10-30 

1.1 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** e- equivalent 

10-33 

10-38 

10-31 

10-29 

10-28 

10-26 
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 dn
SM ~ (10-16 e cm)  x  θQCD +  dn

CKM 

Limits on dn & dA (199Hg) !   θ < 10 -10 

Suggests Peccei-Quinn symmetry & 
existence of axion (ultralight) 



Specific Illustrations: “Portals”  
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•  Higgs boson  

•  Top quark 

•  Dark photon 

Where is BSM CPV hiding ? 



The Higgs Portal 
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 What is the CP Nature of the Higgs Boson ? 

•  Interesting possibilities if part of an 
extended scalar sector 

•  Two Higgs doublets ? 

•  New parameters: 

H ! H1 , H2   

 tan β = <H1> / <H2> 
 sin αb   
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 What is the CP Nature of the Higgs Boson ? 

•  Interesting possibilities if part of an 
extended scalar sector 

•  Two Higgs doublets ? 

•  New parameters: 

H ! H1 , H2   

 tan β = <H1> / <H2> 
 sin αb   

CPV : scalar-pseudoscalar 
mixing from V(H1, H2) 



Higgs Portal CPV: EDMs  
CPV & 2HDM: Type II illustration  λ6,7  = 0 for simplicity

18

FIG. 10: Current and prospective future constraints from electron EDM (blue), neutron EDM (green), Mercury EDM (red) and
Radium (yellow) in flavor conserving 2HDMs. First row: type-I model; Second row: type-II model. The model parameters
used are the same as Fig. 6. Central values of the hadronic and nuclear matrix elements are used. Left: Combined current
limits. Middle: combined future limits if the Mercury and neutron EDMs are both improved by one order of magnitude. Also
shown are the future constraints if electron EDM is improved by another order of magnitude (in blue dashed curves). Right:
combined future limits if the Mercury and neutron EDMs are improved by one and two orders of magnitude, respectively.

matrix elements, there is guidance from näıve dimensional analysis, which takes into account the chiral structures of
the operators in question. However, the precise value of matrix elements involving quark CEDMs and the Weinberg
three-gluon operator are only known to about an order of magnitude, and dimensional analysis does not tell us the
signs of the matrix elements. We highlight two places where these uncertainties can change our results.

• In Figs. 7 and 8, we see that the Weinberg three-gluon operator is always subdominant as a contribution to the
neutron and mercury EDMs. It is possible, though, that the actual matrix element may be an order of magnitude
larger than the current best value. Then, the Weinberg operator would make the largest contribution to the
neutron and mercury EDMs at large tan� in the type-II model.

• In the left panel of Fig. 7, the quark EDM and CEDM contributions to nEDM in the type-I model are shown to
be nearly equal, but with opposite signs, suppressing the total neutron EDM in the type-I model. If overall sign
of the CEDM matrix element is opposite to that used here, the two e↵ects would add constructively, making
the neutron EDM limit much stronger.

In the absence of hadronic and nuclear matrix element uncertainties, improvements in neutron and diamagnetic
atom searches will make them competitive with present ThO result when in constraining CPV in 2HDM. At present,
however, theoretical uncertainties are significant, making it di�cult to draw firm quantitative conclusions regarding
the impact of the present and prospective neutron and diamagnetic EDM results.

Present Future:  

 dn x 0.1 

 dA(Hg) x 0.1 

 dThO x 0.1 

 dA(Ra) [10-27 e cm] 

Future:  

 dn x 0.01 

 dA(Hg) x 0.1 

 dThO x 0.1 

 dA(Ra) 

ThO 

 n 

Hg 

 sin αb : CPV 
scalar mixing 

Inoue, R-M, Zhang: 1403.4257 

Ra 

42 

New ThO: ACME 



 Higgs Portal CPV: EDMs & LHC 
CPV & 2HDM: Type II illustration  λ6,7  = 0 for simplicity

18

FIG. 10: Current and prospective future constraints from electron EDM (blue), neutron EDM (green), Mercury EDM (red) and
Radium (yellow) in flavor conserving 2HDMs. First row: type-I model; Second row: type-II model. The model parameters
used are the same as Fig. 6. Central values of the hadronic and nuclear matrix elements are used. Left: Combined current
limits. Middle: combined future limits if the Mercury and neutron EDMs are both improved by one order of magnitude. Also
shown are the future constraints if electron EDM is improved by another order of magnitude (in blue dashed curves). Right:
combined future limits if the Mercury and neutron EDMs are improved by one and two orders of magnitude, respectively.

matrix elements, there is guidance from näıve dimensional analysis, which takes into account the chiral structures of
the operators in question. However, the precise value of matrix elements involving quark CEDMs and the Weinberg
three-gluon operator are only known to about an order of magnitude, and dimensional analysis does not tell us the
signs of the matrix elements. We highlight two places where these uncertainties can change our results.

• In Figs. 7 and 8, we see that the Weinberg three-gluon operator is always subdominant as a contribution to the
neutron and mercury EDMs. It is possible, though, that the actual matrix element may be an order of magnitude
larger than the current best value. Then, the Weinberg operator would make the largest contribution to the
neutron and mercury EDMs at large tan� in the type-II model.

• In the left panel of Fig. 7, the quark EDM and CEDM contributions to nEDM in the type-I model are shown to
be nearly equal, but with opposite signs, suppressing the total neutron EDM in the type-I model. If overall sign
of the CEDM matrix element is opposite to that used here, the two e↵ects would add constructively, making
the neutron EDM limit much stronger.

In the absence of hadronic and nuclear matrix element uncertainties, improvements in neutron and diamagnetic
atom searches will make them competitive with present ThO result when in constraining CPV in 2HDM. At present,
however, theoretical uncertainties are significant, making it di�cult to draw firm quantitative conclusions regarding
the impact of the present and prospective neutron and diamagnetic EDM results.

Present Future:  

 dn x 0.1 

 dA(Hg) x 0.1 

 dThO x 0.1 

 dA(Ra) [10-27 e cm] 

 

Future:  

 dn x 0.01 

 dA(Hg) x 0.1 

 dThO x 0.1 

 dA(Ra)  
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Hg 

 sin αb : CPV 
scalar mixing 

Inoue, R-M, Zhang: 1403.4257 

Ra 
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LHC 300 fb-1 

LHC 3 ab-1 

Chen, Li,  R-M: 1708.00435 

Alignment limit

New ThO: ACME 

H ! Zh 



The Top Quark Portal 
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 CPV Top Quark Interactions? 

•  3rd generation quarks often have a special role in 
BSM scenarios, given mt >> all other mf 

•  If BSM CPV exists, dt  may be enhanced 
 
•  Top EDMs difficult to probe experimentally  

•  Light fermion EDMs to the rescue ! 
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 CPV Top Quark Interactions? 

+… 

 dt 

 Induced de , dlight quark 

Cordero-Cid et al ’08, Kamenik et al ‘12,  Cirigliano et al 
‘16, Fuyuto & MRM in 1706.08548 

Model-indep: independent SU(2)L & U(1)Y dipole operators: CtB , CtW !  
Tree level dt  & loop level de , dlight q 

Fuyuto & MRM ’17 
Fuyuto ‘19: Updated for new ThO 

neutron 

electron 

proton 



Dark Photon Portal 

47 



Dark Photon Portal 

Standard Model Hidden Sector 

New CPV ? 
48 



Dark Photon Portal 

Standard Model Hidden Sector 

New CPV ? 
49 Thanks: K. Fuyuto 



CPV Dark Photon 
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Thanks: K. Fuyuto 

K. Fuyuto, X.-G. He, G. Li, MJRM   1902.XXXXX  



CPV Dark Photon 
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EDM 

Thanks: K. Fuyuto 

X – γ  Mixing 



CPV Dark Photon 
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X – γ  Mixing EDM 

Thanks: K. Fuyuto 
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IV. EDM Complementarity 
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Why Multiple Systems ? 

Multiple sources & multiple scales 
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Paramagnetic Systems: Two Sources 

€ 

e−
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e−
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e−
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Electron 
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(Scalar q) 
x (PS e-) 
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Paramagnetic Systems: Two Sources 
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Chupp & R-M: 
1407.1064 
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2. Improvement of up to two orders of magnitude for the the neutron-EDM [21–26]

3. 2-3 orders of magnitude improvement for 129Xe[27, 28, 42]

4. New diamagnetic atom EDM measurements from the octupole enhanced systems 225Ra [29] and 221Rn/223Rn[30]

5. Possible new paramagnetic atom EDM measurement from Fr [14] and Cs [43]

6. Plans to develop storage-ring experiments to measure the EDMs of the proton and light nuclei 2H and 3He [44]

Some scenarios for improved experimental sensitivity and their impact are presented in Table VIII. In the first line
we summarize the current upper limits on the parameters at the 95% CL. The remainder of the table lists the impact
of one or more experiments with the improved sensitivity noted in the third column, assuming a central value of zero.
Note that we do not consider a possible future proton EDM search. While every experiment has the potential for
discovery in the sense that improving any current limit takes one into new territory, it is clear from Table VIII that
inclusions of new systems in a global analysis may have a much greater impact on constraining the parameters than
would improvement of experimental bounds in systems with current results.

For example, ThO provides such a tight correlation of de and CS , as shown in Fig. 1, that narrowing the experimental
upper and lower limits without improvements to the other experiments does not significantly improve the bounds on
de and CS . Adding a degree of freedom, such as a result in Fr, with ↵CS/↵de ⇡ 1.2 ⇥ 10�20 [12], could significantly
tighten the bounds. Similarly, a result in an octupole-deformed system, e.g. 225Ra or 221Rn/223Rn would add a

degree of freedom and over-constrain the the set of parameters CT , ḡ
(0)
⇡ , ḡ(1)⇡ and d̄n. Due to the nuclear structure

enhancement of the Schi↵ moments of such systems, their inclusion in a global analysis could have a substantial impact

on the ḡ(i)⇡ as well as on CT . In contrast , the projected 100-fold improvement in 129Xe (not octupole-deformed) would
have an impact primarily on CT . In the last line of Table VIII, we optimistically consider the long term prospects
with the neutron and 129Xe improvements and the octupole-deformed systems. The possibility of improvements to
TlF, for example with a cooled molecular beam [45] or another molecule will, of course, enhance the prospects.

From a theoretical perspective, it is interesting to consider the theoretical implications of the present and prospective
global analysis results. Perhaps, not surprisingly, the resulting constraints on various underlying CPV sources are

weaker than under the “single-source” assumption. For example, from the limit on ḡ
(0)
⇡ in Table I and the “reasonable

range” for the hadronic matrix element computations given in Ref. [1], we obtain |✓̄|  ✓̄max, with

2⇥ 10�7 <⇠ ✓̄max
<⇠ 1.6⇥ 10�6 (global) (IV.39)

a constraint considerably weaker than the order 10�10 upper bound obtained from the neutron or 199Hg EDM under

the “single-source” assumption. Similarly, for the dimensionless, isoscalar quark chromo-EDM, the ḡ(0)⇡ bounds imply

�̃
(+)
q

⇣
v

⇤

⌘2
<⇠ 0.01 . (IV.40)

where we have used the upper end of the hadronic matrix element range given in Ref. [1]. Since the quark chromo-
EDMs generally arise at one-loop order and may entail strongly interacting virtual particles, we may translate the

range in Eq. (IV.40) into a range on the BSM mass scale ⇤ by taking �̃
(+)
q ⇠ sin�CPV ⇥ (↵s/4⇡) where �CPV is a

CPV phase to obtain

⇤ >⇠ (2 TeV)⇥
p
sin�CPV Isoscalar quark chromo� EDM (global) . (IV.41)

We note, however that given the considerable uncertainty in the hadronic matrix element computation these bounds
may be considerably weaker7.

For the paramagnetic systems, the present mass reach may be substantially greater. For the electron EDM, we
again make the one-loop assumption for illustrative purposes, taking �e ⇠ sin�CPV ⇥ (↵/4⇡) so that

⇤ >⇠ (1.5 TeV)⇥
p
sin�CPV Electron EDM (global) (IV.42)

7 The uncertainty for the quark CEDM is substantially larger than for those pertaining to ✓̄ owing, in the latter case, to the constraints
from chiral symmetry as discussed in Ref. [1].
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de (e-cm) CS CT ḡ(0)⇡ ḡ(1)⇡ d̄n (e-cm)
Current Limits (95%) 5.4⇥ 10�27 4.5⇥ 10�7 2⇥ 10�6 8⇥ 10�9 1.2⇥ 10�9 12⇥ 10�23

System Current (e-cm) Projected Projected sensitivity
ThO 5⇥ 10�29 5⇥ 10�30 4.0⇥ 10�27 3.2⇥ 10�7

Fr de < 10�28 2.4⇥ 10�27 1.8⇥ 10�7

129Xe 3⇥ 10�27 3⇥ 10�29 3⇥ 10�7 3⇥ 10�9 1⇥ 10�9 5⇥ 10�23

Neutron/Xe 2⇥ 10�26 10�28/3⇥ 10�29 1⇥ 10�7 1⇥ 10�9 4⇥ 10�10 2⇥ 10�23

Ra 10�25 5⇥ 10�8 4⇥ 10�9 1⇥ 10�9 6⇥ 10�23

” 10�26 1⇥ 10�8 1⇥ 10�9 3⇥ 10�10 2⇥ 10�24

Neutron/Xe/Ra 10�28/3⇥ 10�29/10�27 6⇥ 10�9 9⇥ 10�10 3⇥ 10�10 1⇥ 10�24

TABLE VIII: Anticipated limits (95%) on P-odd/T-odd physics contributions for scenarios for improved experimental precision
compared to the current limits listed in the first line using best values for coe�cients in Table IV and V. We assume ↵g1⇡

for
199Hg is 1.6⇥ 10�17. For the octupole deformed systems (225Ra and 221Rn/223Rn) we specify the contribution of 225Ra. The
Schi↵ moment for Rn isotopes may be an order of magnitude smaller than for Ra, so for Rn one would require 10�26 and 10�27

for the fifth and sixth lines to achieve comparable sensitivity to that listed for Ra.

The scalar (quark) ⇥ pseudscalar (electron) interaction leading to a non-vanishing CS may arise at tree-level, pos-
sibly generated by exchange of a scalar particle that does not contribute to the elementary fermion mass through

spontaneous symmetry-breaking. In this case, taking ImC
(�)
eq ⇠ 1 and using the bound in Table I gives

⇤ >⇠ (1300 TeV)⇥
p

sin�CPV CS (global) (IV.43)

Under the “single-source” assumption, these lower bounds become even more stringent.
Due to the quadratic dependence of the CPV sources on (v/⇤), an order of magnitude increase in sensitivity to

any of the hadronic parameters will extend the mass reach by roughly a factor of three. In this respect, achieving
the prospective sensitivities for new systems such as Fr and combinations of diamagnetic systems such including the
neutron, 129Xe and octupole-deformed systems as indicated in Table VIII would lead to significantly greater mass
reach. Achieving these gains, together with the refinements in nuclear and hadronic physics computations needed to
translate them into robust probes of underlying CPV sources, lays out the future of EDM research in probing BSM
Physics.
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2. Improvement of up to two orders of magnitude for the the neutron-EDM [21–26]

3. 2-3 orders of magnitude improvement for 129Xe[27, 28, 42]

4. New diamagnetic atom EDM measurements from the octupole enhanced systems 225Ra [29] and 221Rn/223Rn[30]

5. Possible new paramagnetic atom EDM measurement from Fr [14] and Cs [43]

6. Plans to develop storage-ring experiments to measure the EDMs of the proton and light nuclei 2H and 3He [44]

Some scenarios for improved experimental sensitivity and their impact are presented in Table VIII. In the first line
we summarize the current upper limits on the parameters at the 95% CL. The remainder of the table lists the impact
of one or more experiments with the improved sensitivity noted in the third column, assuming a central value of zero.
Note that we do not consider a possible future proton EDM search. While every experiment has the potential for
discovery in the sense that improving any current limit takes one into new territory, it is clear from Table VIII that
inclusions of new systems in a global analysis may have a much greater impact on constraining the parameters than
would improvement of experimental bounds in systems with current results.

For example, ThO provides such a tight correlation of de and CS , as shown in Fig. 1, that narrowing the experimental
upper and lower limits without improvements to the other experiments does not significantly improve the bounds on
de and CS . Adding a degree of freedom, such as a result in Fr, with ↵CS/↵de ⇡ 1.2 ⇥ 10�20 [12], could significantly
tighten the bounds. Similarly, a result in an octupole-deformed system, e.g. 225Ra or 221Rn/223Rn would add a

degree of freedom and over-constrain the the set of parameters CT , ḡ
(0)
⇡ , ḡ(1)⇡ and d̄n. Due to the nuclear structure

enhancement of the Schi↵ moments of such systems, their inclusion in a global analysis could have a substantial impact

on the ḡ(i)⇡ as well as on CT . In contrast , the projected 100-fold improvement in 129Xe (not octupole-deformed) would
have an impact primarily on CT . In the last line of Table VIII, we optimistically consider the long term prospects
with the neutron and 129Xe improvements and the octupole-deformed systems. The possibility of improvements to
TlF, for example with a cooled molecular beam [45] or another molecule will, of course, enhance the prospects.

From a theoretical perspective, it is interesting to consider the theoretical implications of the present and prospective
global analysis results. Perhaps, not surprisingly, the resulting constraints on various underlying CPV sources are

weaker than under the “single-source” assumption. For example, from the limit on ḡ
(0)
⇡ in Table I and the “reasonable

range” for the hadronic matrix element computations given in Ref. [1], we obtain |✓̄|  ✓̄max, with

2⇥ 10�7 <⇠ ✓̄max
<⇠ 1.6⇥ 10�6 (global) (IV.39)

a constraint considerably weaker than the order 10�10 upper bound obtained from the neutron or 199Hg EDM under

the “single-source” assumption. Similarly, for the dimensionless, isoscalar quark chromo-EDM, the ḡ(0)⇡ bounds imply

�̃
(+)
q

⇣
v

⇤

⌘2
<⇠ 0.01 . (IV.40)

where we have used the upper end of the hadronic matrix element range given in Ref. [1]. Since the quark chromo-
EDMs generally arise at one-loop order and may entail strongly interacting virtual particles, we may translate the

range in Eq. (IV.40) into a range on the BSM mass scale ⇤ by taking �̃
(+)
q ⇠ sin�CPV ⇥ (↵s/4⇡) where �CPV is a

CPV phase to obtain

⇤ >⇠ (2 TeV)⇥
p
sin�CPV Isoscalar quark chromo� EDM (global) . (IV.41)

We note, however that given the considerable uncertainty in the hadronic matrix element computation these bounds
may be considerably weaker7.

For the paramagnetic systems, the present mass reach may be substantially greater. For the electron EDM, we
again make the one-loop assumption for illustrative purposes, taking �e ⇠ sin�CPV ⇥ (↵/4⇡) so that

⇤ >⇠ (1.5 TeV)⇥
p
sin�CPV Electron EDM (global) (IV.42)

7 The uncertainty for the quark CEDM is substantially larger than for those pertaining to ✓̄ owing, in the latter case, to the constraints
from chiral symmetry as discussed in Ref. [1].
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de (e-cm) CS CT ḡ(0)⇡ ḡ(1)⇡ d̄n (e-cm)
Current Limits (95%) 5.4⇥ 10�27 4.5⇥ 10�7 2⇥ 10�6 8⇥ 10�9 1.2⇥ 10�9 12⇥ 10�23

System Current (e-cm) Projected Projected sensitivity
ThO 5⇥ 10�29 5⇥ 10�30 4.0⇥ 10�27 3.2⇥ 10�7

Fr de < 10�28 2.4⇥ 10�27 1.8⇥ 10�7

129Xe 3⇥ 10�27 3⇥ 10�29 3⇥ 10�7 3⇥ 10�9 1⇥ 10�9 5⇥ 10�23

Neutron/Xe 2⇥ 10�26 10�28/3⇥ 10�29 1⇥ 10�7 1⇥ 10�9 4⇥ 10�10 2⇥ 10�23

Ra 10�25 5⇥ 10�8 4⇥ 10�9 1⇥ 10�9 6⇥ 10�23

” 10�26 1⇥ 10�8 1⇥ 10�9 3⇥ 10�10 2⇥ 10�24

Neutron/Xe/Ra 10�28/3⇥ 10�29/10�27 6⇥ 10�9 9⇥ 10�10 3⇥ 10�10 1⇥ 10�24

TABLE VIII: Anticipated limits (95%) on P-odd/T-odd physics contributions for scenarios for improved experimental precision
compared to the current limits listed in the first line using best values for coe�cients in Table IV and V. We assume ↵g1⇡

for
199Hg is 1.6⇥ 10�17. For the octupole deformed systems (225Ra and 221Rn/223Rn) we specify the contribution of 225Ra. The
Schi↵ moment for Rn isotopes may be an order of magnitude smaller than for Ra, so for Rn one would require 10�26 and 10�27

for the fifth and sixth lines to achieve comparable sensitivity to that listed for Ra.

The scalar (quark) ⇥ pseudscalar (electron) interaction leading to a non-vanishing CS may arise at tree-level, pos-
sibly generated by exchange of a scalar particle that does not contribute to the elementary fermion mass through

spontaneous symmetry-breaking. In this case, taking ImC
(�)
eq ⇠ 1 and using the bound in Table I gives

⇤ >⇠ (1300 TeV)⇥
p

sin�CPV CS (global) (IV.43)

Under the “single-source” assumption, these lower bounds become even more stringent.
Due to the quadratic dependence of the CPV sources on (v/⇤), an order of magnitude increase in sensitivity to

any of the hadronic parameters will extend the mass reach by roughly a factor of three. In this respect, achieving
the prospective sensitivities for new systems such as Fr and combinations of diamagnetic systems such including the
neutron, 129Xe and octupole-deformed systems as indicated in Table VIII would lead to significantly greater mass
reach. Achieving these gains, together with the refinements in nuclear and hadronic physics computations needed to
translate them into robust probes of underlying CPV sources, lays out the future of EDM research in probing BSM
Physics.
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IV. Outlook 

•  Searches for permanent EDMs of atoms, molecules, 
hadrons and nuclei provide powerful probes of BSM physics 
at a range of mass scales and constitute important tests of 
weak scale baryogenesis 

•  Studies on complementary systems is essential for first 
finding and then disentangling new CPV 

•  There exists a rich interplay between EDM searches and 
the quest to discover BSM physics at the Energy and 
Cosmic frontiers 

•  The next decade could yield exciting discoveries that 
provide a new window on some of the most compelling 
open questions in science ! Stay tuned ! 
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FIG. 1. Left panel: the three physical parameters |NE

⌧µ|,
ImNE

⌧⌧ and ReNE

⌧⌧ as a function of the phase �E

⌧µ where only
the light green band is theoretically allowed. Right panel:
Constraints the magnitude and phase of NE

⌧⌧ from ⌧ ! µ�
and h ! ⌧⌧ . Here the whole region is allowed by h ! ⌧µ
with the choice NE

⌧µ = 2GeV. The other parameters are fixed
to be � � ↵ � ⇡/2 = 0.05, mH = 400GeV, mA0 = 600GeV
and mH± = 500GeV.

Higgs signal strength measurements in the ⌧⌧ channel
µ
⌧⌧ . In our model, the width is

�⌧⌧ =

p
2GFmh

8⇡
|m⌧s��↵ + c��↵N

E

⌧⌧
|2. (10)

Experimentally, ATLAS gives µ
⌧⌧

ATLAS
= 1.43+0.43

�0.37
[30]

while CMS favors a smaller one µ
⌧⌧

CMS
= 0.78± 0.27 [31].

We combine these two measurements by centralizing the
errors of ATLAS, assuming both to be Gaussian dis-
tributed, neglecting their correlations and defining a �

2

to obtain the 95%C.L. limit. The constraint on the mag-
nitude and phase of NE

⌧⌧
is shown in Fig. 1. Parametriz-

ing the h⌧̄ ⌧ coupling as [33],

�mf

v
(Rey⌧ ⌧̄ ⌧ + Imy⌧ ⌧̄ i�5⌧)h, (11)

this constraint is transformed to circular regions in the
Rey⌧ and Imy⌧ plane between the green dot-dashed lines
in Fig. 2. The inner sky blue band is for a more SM-like
coupling with ⌧ = 1±0.1 if the coupling is parametrized
as [33]

mf

v
⌧ (cos�⌧ ⌧̄ ⌧ + sin�⌧ ⌧̄ i�5⌧)h. (12)

Note these two are the direct constraints on the h⌧̄ ⌧ cou-
pling parameters as usually done in the literature. If start
from the weak basis parameters and for r⌧µ = 1.05, the
⌧⌧ region is shrinked to the green region.
Constraints from measurement of Br(h ! ⌧µ).

The flavor o↵-diagonal NE

⌧µ
generates h ! ⌧µ with width

�⌧µ =

p
2c2

��↵
GFmh

8⇡
|NE

⌧µ
|2, (13)

This LFV process has been searched by both ATLAS and
CMS. ATLAS sets an upper limit on the branching ratio
Br(h ! ⌧µ) < 1.85% at 95C.L. [3], while CMS gives a

best fit Br(h ! ⌧µ) = 0.84+0.39

�0.37
% as well as an upper

limit Br(h ! ⌧µ) < 1.51% at 95C.L. [9]. For r⌧µ = 1.05,
this branching ratio is correlated with h ! ⌧⌧ and is
shown as the brown arc in the Rey⌧ � Imy⌧ plane in
Fig. 2 where the current CMS upper limit 1.51% as well
as two prospective future measurements of 1%, 0.5% are
labeled as dashed lines while the CMS central values are
shown as light red arc.
The rare decay ⌧ ! µ�. The flavor o↵-diagonal
ha⌧̄LµR coupling also contributes to the rare decay ⌧ !
µ� with current experimental limit Br(⌧ ! µ�) <

4.4⇥ 10�8 [25] and is given by

Br(⌧ ! µ�) =
⌧⌧↵G

2

F
m

5

⌧

32⇡4
(|C7L|2 + |C2

7R
|), (14)

where ⌧⌧ = (290.3± 0.5)⇥ 10�15
s [26] is the life time of

⌧ and C7L/R are the Wilson coe�cients of the two dipole
operators

Q
L/R

7
=

e

8⇡2
m⌧ µ̄�

µ⌫(1⌥ �
5)⌧Fµ⌫ , (15)

defined by the e↵ective Hamiltonian [27] �GF [C7LQ
L

7
+

C7RQ
R

7
]/
p
2. They receive contributions from one loop

neutral and charged Higgs mediated diagrams and two
loop Barr-Zee type diagrams [28]. For the two loop part,
mainly two groups of diagrams contribute depending on
the external legs of the inner loops. The group with an ef-
fective ha�� vertex is induced by t, W± or H± loops and
the second group with e↵ective H

±
W

⌥
� vertex is gen-

erated by W
±, H±, t/b or µ/⌫⌧ in the loops. These two

loop results are adapted from leptonic EDM and MDM
calculations in Ref. [29]. The end results of C7L is pro-
portional to N

E ⇤
⌧µ

while C7R / N
E

µ⌧
= 0.

Electric and magnetic dipole moments. The one
loop contributions to muon MDM and EDM come from
exchanges of neutral scalars ha and is proportional to
the invariant N

E

⌧µ
N

E

µ⌧
= 0. The two loop Barr-Zee

type diagrams have similar topology as that in ⌧ ! µ�.
Especially the CP-violating ha⌧̄ ⌧ generates an CP-odd
haF̃µ⌫F

µ⌫ operator in the inner loop. All these contribu-
tions vanishes since light lepton masses and the relevant
couplings are neglected in our setup.
Collider sensitivities of a CP-violating h⌧̄ ⌧ . The
CPV associated with the invariant JE represents a di↵er-
ent origin of CPV as compared with the case where the
CP-violating h⌧̄ ⌧ comes from mixing between CP-even
and CP-odd Higgs scalars originating from the CPV in
the potential which is highly constrained by EDM lim-
its [32]. Studies on collider sensitivies of a CP-violating
h⌧̄ ⌧ employing the ⇢ decay plane method and the im-
pact parameter method show that the phase �⌧ can be
determined with an uncertainty of 15

�
(9

�
) at the LHC

with an integrated luminosity of 150fb�1(500fb�1) while
⇡ 4

�
with 3ab�1 can be achieved [33]. At Higgs factories,

this phase can be measured with ⇡ 4.4
�
accuracy with a

250GeV run and 1ab�1 luminosity [34].

Mass basis (T=0) 

2

Two Higgs Doublet Model. The 2HDM naturally
provides LFV interactions at tree level if both Higgs dou-
blets couple to the right handed leptons. Since our focus
is on CPV in the lepton sector, we assume the potential
to be CP-conserving and provides a strongly first order
EWPT [21]. The particle spectrum then consists of five
scalars with two CP-even h,H, one CP-odd A0, a pair
of charged scalars H± and the lighter h is defined as the
SM Higgs. The SU(2)L⌦U(1)Y invariant weak eigenba-
sis Yukawa interactions in the lepton sector is

L Lepton

Yukawa
= �E

i

L

⇥
(Y E

1
)ij�1 + (Y E

2
)ij�2

⇤
e
j

R
+ h.c.,(2)

where �1,2 are the two Higgs doublets with the same hy-
percharge, Ei

L
is the left-handed lepton doublet in fam-

ily “i” and e
j

R
is the right-handed lepton singlet in fam-

ily “j”. We focus now on the two ⌧ � µ families, ne-
glect the muon mass at first approximatioin and assume
the Yukawa structures are such that the relevant up and
down type quarks have similar couplings as those in SM.

The relevant Jarlskog-like CPV invariant that is the
origin of both BAU and h⌧̄ ⌧ is the imaginary part of the
following basis invariant [16],

JE =
1

v2µ
HB

12

2X

a,b,c=1

vav
⇤
b
µbc

X

ij=⌧,µ

(Y E

c
)ij(Y

E†
a

)ji, (3)

with here µab the coe�cient of �†
a
�b in the potential

and µ
HB

ij
the corresponding coe�cient in the Higgs ba-

sis [12, 16]. Here the basis transformation refers to the
U(2) Higgs basis transformation as well as lepton fam-
ily transformations. Fixing the Higgs basis definition of
the two Higgs doublets, µHB

ij
is an unique real quantity

indepenent of basis choices. Note this invariant takes
di↵erent forms in weak eigenbasis which is convenient for
BAU calculations as opposed to that in mass eigenbasis
which is better for phenomenological analysis.

In weak eigenbasis, the mass matrix is one linear com-
bination of the two Yukawa matrices,

M
E = (v1Y

E

1
+ v2Y

E

2
)/
p
2, (4)

and at zero temperature it is bidiagonalized to be the
mass matrix for leptons. The textures of this mass matrix
is highly constrained by the diagonalization procedure
and we choose the type where only the elements in the
second row Y

E

1/2,⌧µ
, Y

E

1/2,⌧⌧
are non-vanishing. In this

case, after all possible rephasings of the lepton and Higgs
fields, only one of the four Yukawa matrix elements can
be complex which we choose to be Y E

1,⌧µ
and the resulting

o↵-diagonal mass matrix element can be parametrized as

M
E

⌧µ
=

vs�p
2
Y

E

2,⌧µ
[1 + cot� sgn(Y E

2,⌧µ
)r⌧µe

i�
E
⌧µ ], (5)

with r⌧µ ⌘ |Y E

1,⌧µ
|/|Y E

2,⌧µ
|. We further assume the

diagonal elements of the two Yukawa matrices to be
equal and positive for simplicity giving then M

E

⌧⌧
=

vY
E

2,⌧⌧
(s� + c�)/

p
2. From the diagonalization condi-

tioin |ME

⌧µ
|2 + |ME

⌧⌧
|2 = m

2

⌧
, we can solve Y

E

2,⌧⌧
=q

2(m2
⌧
� |ME

⌧µ
|2)/|v(s�+c�)|, which leads to the natural

requirement |ME

⌧µ
|  m⌧ . Counting degrees of freedom

in weak basis, we have |Y E

2,⌧µ
|, �E

⌧µ
, r⌧µ and �. Our study

will be fixed at tan� = 1.
The other linear combination of the Yukawa matrices

(�v2Y
E

1
+v1Y

E

2
)/
p
2 generally can not be simultaneously

diagonalized and we denote its two non-vanishing matrix
elements in mass eigenbasis by N

E

⌧µ
, NE

⌧⌧
while N

E

µ⌧
=

N
E

µµ
= 0. Phenomenologically, NE

⌧⌧
controls the Higgs

coupling to ⌧̄ ⌧ ,

�1

v
⌧L⌧R[h(m⌧s��↵ +N

E

⌧⌧
c��↵)

+H(m⌧ c��↵ �N
E

⌧⌧
s��↵) + iA0N

E

⌧⌧
] + h.c., (6)

where ↵ is the mixing angle between the two CP-even
Higgs scalars and the real and imaginary part of NE

⌧⌧
is

related respectively to that of JE ,

Re(NE

⌧⌧
) =

v
2
µ
HB

12
ReJE � 2µHB

11
m

2

⌧

2µHB

12
m⌧

tan �=1

=
v
2|Y E

2,⌧µ
|2

4m⌧

(1� r
2

⌧µ
),

Im(NE

⌧⌧
) =

v
2ImJE

2m⌧

=
v
2(�Y

E

2,⌧µ
ImY

E

1,⌧µ
)

2m⌧

. (7)

The o↵-diagonal element NE

⌧µ
controls the strength of the

Higgs LFV couplings

�
N

E

⌧µ

v
⌧LµR(c��↵h� s��↵H + iA0) + h.c., (8)

and its expression in terms of weak basis parameters is

N
E

⌧µ
= e

i�

����N
E

⌧⌧

M
E

⌧⌧

ME
⌧µ

���� , (9)

where � is an aribitrary phase undetermined from the
diagonalization procedure and can be adjusted to give a
CP-conserving h⌧µ. In fact, the absence of CPV for h⌧µ
does not depend on the choice of this arbitrary phase
since the corresponding CPV observables only depend
on invariant quantities like N

E

⌧µ
N

E

µ⌧
which vanish here.

Finally the charged Higgs interactions is governed by
�
p
2/vH+

⌫
i

L
N

E

ij
e
j

R
+ h.c.. The three physical param-

eters ReNE
⌧⌧ , ImN

E
⌧⌧ and N

E

⌧µ
depend on three weak

basis parameters |Y E

2,⌧µ
|, �E

⌧µ
and r⌧µ. For a restricted

weak basis prameter space like for a fixed r⌧µ, the phys-
ical parameters become dependent(Note r⌧µ is required
by the condition |ME

⌧µ
|  m⌧ to be close to 1). Inverting

Eq. 7, we solve |Y E

2,⌧µ
| and sin�E

⌧µ
as a function of ReNE

⌧⌧

and ImN
E

⌧⌧
. Eq. 9 then implies that h ! ⌧µ and ⌧ ! µ�

depend on h ! ⌧⌧ .

Higgs signal strength measurement. The diagonal
N

E

⌧⌧
enters the decay h ! ⌧⌧ and thus is constrained by
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FIG. 1. Left panel: the three physical parameters |NE

⌧µ|,
ImNE

⌧⌧ and ReNE

⌧⌧ as a function of the phase �E

⌧µ where only
the light green band is theoretically allowed. Right panel:
Constraints the magnitude and phase of NE

⌧⌧ from ⌧ ! µ�
and h ! ⌧⌧ . Here the whole region is allowed by h ! ⌧µ
with the choice NE

⌧µ = 2GeV. The other parameters are fixed
to be � � ↵ � ⇡/2 = 0.05, mH = 400GeV, mA0 = 600GeV
and mH± = 500GeV.

Higgs signal strength measurements in the ⌧⌧ channel
µ
⌧⌧ . In our model, the width is

�⌧⌧ =

p
2GFmh

8⇡
|m⌧s��↵ + c��↵N

E

⌧⌧
|2. (10)

Experimentally, ATLAS gives µ
⌧⌧

ATLAS
= 1.43+0.43

�0.37
[30]

while CMS favors a smaller one µ
⌧⌧

CMS
= 0.78± 0.27 [31].

We combine these two measurements by centralizing the
errors of ATLAS, assuming both to be Gaussian dis-
tributed, neglecting their correlations and defining a �

2

to obtain the 95%C.L. limit. The constraint on the mag-
nitude and phase of NE

⌧⌧
is shown in Fig. 1. Parametriz-

ing the h⌧̄ ⌧ coupling as [33],

�mf

v
(Rey⌧ ⌧̄ ⌧ + Imy⌧ ⌧̄ i�5⌧)h, (11)

this constraint is transformed to circular regions in the
Rey⌧ and Imy⌧ plane between the green dot-dashed lines
in Fig. 2. The inner sky blue band is for a more SM-like
coupling with ⌧ = 1±0.1 if the coupling is parametrized
as [33]

mf

v
⌧ (cos�⌧ ⌧̄ ⌧ + sin�⌧ ⌧̄ i�5⌧)h. (12)

Note these two are the direct constraints on the h⌧̄ ⌧ cou-
pling parameters as usually done in the literature. If start
from the weak basis parameters and for r⌧µ = 1.05, the
⌧⌧ region is shrinked to the green region.
Constraints from measurement of Br(h ! ⌧µ).

The flavor o↵-diagonal NE

⌧µ
generates h ! ⌧µ with width

�⌧µ =

p
2c2

��↵
GFmh

8⇡
|NE

⌧µ
|2, (13)

This LFV process has been searched by both ATLAS and
CMS. ATLAS sets an upper limit on the branching ratio
Br(h ! ⌧µ) < 1.85% at 95C.L. [3], while CMS gives a

best fit Br(h ! ⌧µ) = 0.84+0.39

�0.37
% as well as an upper

limit Br(h ! ⌧µ) < 1.51% at 95C.L. [9]. For r⌧µ = 1.05,
this branching ratio is correlated with h ! ⌧⌧ and is
shown as the brown arc in the Rey⌧ � Imy⌧ plane in
Fig. 2 where the current CMS upper limit 1.51% as well
as two prospective future measurements of 1%, 0.5% are
labeled as dashed lines while the CMS central values are
shown as light red arc.
The rare decay ⌧ ! µ�. The flavor o↵-diagonal
ha⌧̄LµR coupling also contributes to the rare decay ⌧ !
µ� with current experimental limit Br(⌧ ! µ�) <

4.4⇥ 10�8 [25] and is given by

Br(⌧ ! µ�) =
⌧⌧↵G

2

F
m

5

⌧

32⇡4
(|C7L|2 + |C2

7R
|), (14)

where ⌧⌧ = (290.3± 0.5)⇥ 10�15
s [26] is the life time of

⌧ and C7L/R are the Wilson coe�cients of the two dipole
operators

Q
L/R

7
=

e

8⇡2
m⌧ µ̄�

µ⌫(1⌥ �
5)⌧Fµ⌫ , (15)

defined by the e↵ective Hamiltonian [27] �GF [C7LQ
L

7
+

C7RQ
R

7
]/
p
2. They receive contributions from one loop

neutral and charged Higgs mediated diagrams and two
loop Barr-Zee type diagrams [28]. For the two loop part,
mainly two groups of diagrams contribute depending on
the external legs of the inner loops. The group with an ef-
fective ha�� vertex is induced by t, W± or H± loops and
the second group with e↵ective H

±
W

⌥
� vertex is gen-

erated by W
±, H±, t/b or µ/⌫⌧ in the loops. These two

loop results are adapted from leptonic EDM and MDM
calculations in Ref. [29]. The end results of C7L is pro-
portional to N

E ⇤
⌧µ

while C7R / N
E

µ⌧
= 0.

Electric and magnetic dipole moments. The one
loop contributions to muon MDM and EDM come from
exchanges of neutral scalars ha and is proportional to
the invariant N

E

⌧µ
N

E

µ⌧
= 0. The two loop Barr-Zee

type diagrams have similar topology as that in ⌧ ! µ�.
Especially the CP-violating ha⌧̄ ⌧ generates an CP-odd
haF̃µ⌫F

µ⌫ operator in the inner loop. All these contribu-
tions vanishes since light lepton masses and the relevant
couplings are neglected in our setup.
Collider sensitivities of a CP-violating h⌧̄ ⌧ . The
CPV associated with the invariant JE represents a di↵er-
ent origin of CPV as compared with the case where the
CP-violating h⌧̄ ⌧ comes from mixing between CP-even
and CP-odd Higgs scalars originating from the CPV in
the potential which is highly constrained by EDM lim-
its [32]. Studies on collider sensitivies of a CP-violating
h⌧̄ ⌧ employing the ⇢ decay plane method and the im-
pact parameter method show that the phase �⌧ can be
determined with an uncertainty of 15

�
(9

�
) at the LHC

with an integrated luminosity of 150fb�1(500fb�1) while
⇡ 4

�
with 3ab�1 can be achieved [33]. At Higgs factories,

this phase can be measured with ⇡ 4.4
�
accuracy with a

250GeV run and 1ab�1 luminosity [34].

Mass basis (T=0) 

2

Two Higgs Doublet Model. The 2HDM naturally
provides LFV interactions at tree level if both Higgs dou-
blets couple to the right handed leptons. Since our focus
is on CPV in the lepton sector, we assume the potential
to be CP-conserving and provides a strongly first order
EWPT [21]. The particle spectrum then consists of five
scalars with two CP-even h,H, one CP-odd A0, a pair
of charged scalars H± and the lighter h is defined as the
SM Higgs. The SU(2)L⌦U(1)Y invariant weak eigenba-
sis Yukawa interactions in the lepton sector is

L Lepton

Yukawa
= �E

i

L

⇥
(Y E

1
)ij�1 + (Y E

2
)ij�2

⇤
e
j

R
+ h.c.,(2)

where �1,2 are the two Higgs doublets with the same hy-
percharge, Ei

L
is the left-handed lepton doublet in fam-

ily “i” and e
j

R
is the right-handed lepton singlet in fam-

ily “j”. We focus now on the two ⌧ � µ families, ne-
glect the muon mass at first approximatioin and assume
the Yukawa structures are such that the relevant up and
down type quarks have similar couplings as those in SM.

The relevant Jarlskog-like CPV invariant that is the
origin of both BAU and h⌧̄ ⌧ is the imaginary part of the
following basis invariant [16],

JE =
1

v2µ
HB

12

2X

a,b,c=1

vav
⇤
b
µbc

X

ij=⌧,µ

(Y E

c
)ij(Y

E†
a

)ji, (3)

with here µab the coe�cient of �†
a
�b in the potential

and µ
HB

ij
the corresponding coe�cient in the Higgs ba-

sis [12, 16]. Here the basis transformation refers to the
U(2) Higgs basis transformation as well as lepton fam-
ily transformations. Fixing the Higgs basis definition of
the two Higgs doublets, µHB

ij
is an unique real quantity

indepenent of basis choices. Note this invariant takes
di↵erent forms in weak eigenbasis which is convenient for
BAU calculations as opposed to that in mass eigenbasis
which is better for phenomenological analysis.

In weak eigenbasis, the mass matrix is one linear com-
bination of the two Yukawa matrices,

M
E = (v1Y

E

1
+ v2Y

E

2
)/
p
2, (4)

and at zero temperature it is bidiagonalized to be the
mass matrix for leptons. The textures of this mass matrix
is highly constrained by the diagonalization procedure
and we choose the type where only the elements in the
second row Y

E

1/2,⌧µ
, Y

E

1/2,⌧⌧
are non-vanishing. In this

case, after all possible rephasings of the lepton and Higgs
fields, only one of the four Yukawa matrix elements can
be complex which we choose to be Y E

1,⌧µ
and the resulting

o↵-diagonal mass matrix element can be parametrized as

M
E

⌧µ
=

vs�p
2
Y

E

2,⌧µ
[1 + cot� sgn(Y E

2,⌧µ
)r⌧µe

i�
E
⌧µ ], (5)

with r⌧µ ⌘ |Y E

1,⌧µ
|/|Y E

2,⌧µ
|. We further assume the

diagonal elements of the two Yukawa matrices to be
equal and positive for simplicity giving then M

E

⌧⌧
=

vY
E

2,⌧⌧
(s� + c�)/

p
2. From the diagonalization condi-

tioin |ME

⌧µ
|2 + |ME

⌧⌧
|2 = m

2

⌧
, we can solve Y

E

2,⌧⌧
=q

2(m2
⌧
� |ME

⌧µ
|2)/|v(s�+c�)|, which leads to the natural

requirement |ME

⌧µ
|  m⌧ . Counting degrees of freedom

in weak basis, we have |Y E

2,⌧µ
|, �E

⌧µ
, r⌧µ and �. Our study

will be fixed at tan� = 1.
The other linear combination of the Yukawa matrices

(�v2Y
E

1
+v1Y

E

2
)/
p
2 generally can not be simultaneously

diagonalized and we denote its two non-vanishing matrix
elements in mass eigenbasis by N

E

⌧µ
, NE

⌧⌧
while N

E

µ⌧
=

N
E

µµ
= 0. Phenomenologically, NE

⌧⌧
controls the Higgs

coupling to ⌧̄ ⌧ ,

�1

v
⌧L⌧R[h(m⌧s��↵ +N

E

⌧⌧
c��↵)

+H(m⌧ c��↵ �N
E

⌧⌧
s��↵) + iA0N

E

⌧⌧
] + h.c., (6)

where ↵ is the mixing angle between the two CP-even
Higgs scalars and the real and imaginary part of NE

⌧⌧
is

related respectively to that of JE ,

Re(NE

⌧⌧
) =

v
2
µ
HB

12
ReJE � 2µHB

11
m

2

⌧

2µHB

12
m⌧

tan �=1

=
v
2|Y E

2,⌧µ
|2

4m⌧

(1� r
2

⌧µ
),

Im(NE

⌧⌧
) =

v
2ImJE

2m⌧

=
v
2(�Y

E

2,⌧µ
ImY

E

1,⌧µ
)

2m⌧

. (7)

The o↵-diagonal element NE

⌧µ
controls the strength of the

Higgs LFV couplings

�
N

E

⌧µ

v
⌧LµR(c��↵h� s��↵H + iA0) + h.c., (8)

and its expression in terms of weak basis parameters is

N
E

⌧µ
= e

i�

����N
E

⌧⌧

M
E

⌧⌧

ME
⌧µ

���� , (9)

where � is an aribitrary phase undetermined from the
diagonalization procedure and can be adjusted to give a
CP-conserving h⌧µ. In fact, the absence of CPV for h⌧µ
does not depend on the choice of this arbitrary phase
since the corresponding CPV observables only depend
on invariant quantities like N

E

⌧µ
N

E

µ⌧
which vanish here.

Finally the charged Higgs interactions is governed by
�
p
2/vH+

⌫
i

L
N

E

ij
e
j

R
+ h.c.. The three physical param-

eters ReNE
⌧⌧ , ImN

E
⌧⌧ and N

E

⌧µ
depend on three weak

basis parameters |Y E

2,⌧µ
|, �E

⌧µ
and r⌧µ. For a restricted

weak basis prameter space like for a fixed r⌧µ, the phys-
ical parameters become dependent(Note r⌧µ is required
by the condition |ME

⌧µ
|  m⌧ to be close to 1). Inverting

Eq. 7, we solve |Y E

2,⌧µ
| and sin�E

⌧µ
as a function of ReNE

⌧⌧

and ImN
E

⌧⌧
. Eq. 9 then implies that h ! ⌧µ and ⌧ ! µ�

depend on h ! ⌧⌧ .

Higgs signal strength measurement. The diagonal
N

E

⌧⌧
enters the decay h ! ⌧⌧ and thus is constrained by
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m2 ⇡ MN (37)

�(N ! `H) 6= �(N ! ¯̀H⇤) (38)

Lmass = yL̄H̃NR + h.c. + mNN̄RN
C

R
(39)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (40)

�(NR ! `H) 6= �(NR !
¯̀H⇤) (41)

m⌫ =
m

2
D

MR

(42)

hp
0
| J

EM
µ

|pi = Ū(p0)


F1�µ +

iF2

2M
�µ⌫q

⌫ +
iF3

2M
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FA
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EM
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|pi
PV
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FA
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⇤
U(p) (44)

Qquqd = ✏jkQ̄
j
uRQ̄

k
dR (45)

YB =
nB

s
= (8.82± 0.23)⇥ 10�11 (46)

mt̃R
⇠ 160 GeV (47)

⌧ cos �⌧ ⌧ sin �⌧ (48)
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work, only the scalar loop could contribute to C12 and eventually to EDMs. A representative diagram is shown in
the right panel of Fig. 12. It is proportional to

Im(�5m
2⇤
12
v
⇤
1
v2) = �

���5m
2

12
v1v2

�� sin �2 . (A10)

Using the relation in Eq. (13), the above quantity is indeed related to the unique CPV source in the model.
The fermionic loops do not contribute because the physical charge Higgs and quark couplings have the structure

proportional to the corresponding CKM element. As a result, the coe�cients Cij are purely real and C̃ij are purely
imaginary. They contribute to magnetic dipole moments instead of EDMs.

f f
�

f

�

H0/H+

W ± H⌥

H+
2 H+

2

W+ H+
1

H0
2 H0

1

H0
2

�

FIG. 12: Left: quark or lepton EDM from W
±

H
⌥ exchange and CPV Higgs interactions. Right: a scalar loop contribution

to �
†
1

�
a

2 W
a

µ⌫�2B
µ⌫ e↵ective operator, which then contributes to EDM as the upper loop of the left panel.

The gauge invariant contributions to EDM from this class of diagrams have been calculated recently in [42],

(�f )
HW�

H
=

1

512⇡4
sf

X

i


e
2

2 sin2 ✓W
I4(m2

hi
,m

2

H+)aic̃f,i � I5(m2

hi
,m

2

H+)�̄ic̃f,i

�
, (A11)

where the functions I4,5(m2

1
,m

2

2
) are given in the Appendix B. The coe�cient sf = �1 for up-type quarks, and

sf = +1 for down-type quarks and charged leptons.

To summarize, the total contribution to fermion EDM is the sum of Eqs (A3,A4,A5,A6,A7,A8,A11),

�f (⇤) ⌘ (�f )
h��

t
+ (�f )

hZ�

t
+ (�f )

h��

W
+ (�f )

hZ�

W
+ (�f )

h��

H+ + (�f )
hZ�

H+ + (�f )
HW�

H
. (A12)

3

II. 2HDM FRAMEWORK

A. Scalar potential

In this work, we consider the flavor-conserving 2HDM in order to avoid problematic flavor-changing neutral currents
(FCNCs). As observed by Glashow and Weinberg (GW) [12], one may avoid tree-level FCNCs if diagonalization of the
fermion mass matrices leads to flavor diagonal Yukawa interactions. One approach2 to realizing this requirement is to
impose a Z2 symmetry on the scalar potential together with an appropriate extension to the Yukawa interactions (see
below). In this scenario, however, one obtains no sources of CPV beyond the SM CKM complex phase. Consequently,
we introduce a soft Z2-breaking term that yields non-vanishing CPV terms in the scalar sector [16].

To that end, we choose a scalar field basis in which the two Higgs doublets �1,2 are oppositely charged under the
the Z2 symmetry:

�1 ! ��1 and �2 ! �2 , (1)

though this symmetry will in general have a di↵erent expression in another basis obtained by the transformation
�j = Ujk�

0
k
. For example, taking

U =
1p
2

✓
�1 1
1 1

◆
, (2)

the transformation (1) corresponds to

�
0
1
$ �

0
2

. (3)

We then take the Higgs potential to have the form

V =
�1

2
(�†

1
�1)

2 +
�2

2
(�†

2
�2)

2 + �3(�
†
1
�1)(�

†
2
�2) + �4(�

†
1
�2)(�

†
2
�1) +

1

2

h
�5(�

†
1
�2)

2 + h.c.
i

�1

2

n
m

2

11
(�†

1
�1) +

h
m

2

12
(�†

1
�2) + h.c.

i
+m

2

22
(�†

2
�2)

o
. (4)

The complex coe�cients in the potential are m
2

12
and �5. In general, the presence of the �

†
1
�2 term, in conjunction

with the Z2-conserving quartic interactions, will induce other Z2-breaking quartic operators at one-loop order. Simple
power counting implies that the responding coe�cients are finite with magnitude proportional tom2

12
�k/(16⇡2). Given

the 1/16⇡2 suppression, we will restrict our attention to the tree-level Z2-breaking bilinear term.
It is instructive to identify the CPV complex phases that are invariant under a rephasing of the scalar fields. To
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2 Another approach is to have 2HDM at the electroweak scale without the Z2 symmetry is to assume minimal flavor violation, flavor
alignment or other variants. We do not discuss this possibility, but refer to [13–15] for recent phenomenological studies.
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For future purposes, we emphasize that the value of ⇠ is not invariant.
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so that there exists only one independent CPV phase in the theory after EWSB.
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When the right-hand side is less than 1, �2 has solutions two solutions of equal magnitude and opposite sign, corre-
sponding to the presence of spontaneous CPV (SCPV) [17, 18]:
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To the extent that the vacua associated with the two opposite sign solutions are degenerate, one would expect the
existence of cosmological domains [19] associated with these two vacua. Persistence of the corresponding domain walls
to late cosmic times is inconsistent with the observed homogeneity of structure and isotropy of the cosmic microwave
background. Consequently, parameter choices leading to �1 = 0 but �2 6= 0 should be avoided. In practice, we will
scan over model parameters when analyzing the EDM and LHC constraints. As a check, we have performed a scan
with 106 points and find less than ten that give �1 = 0. We are, thus, confident that the general features of our
phenomenological analysis are consistent with the absence of problematic SCPV domains.

Henceforth, for simplicity, we utilize the rephasing invariance of the �k and work in a basis where ⇠ = 0. In this
basis, the phases of m2

12
and �5 are redefined and related by Eq. (11). As we discuss below, we will trade the resulting

dependence of observables on �1 [and �2 via �1 in Eq. (13)] for one independent angle in the transformation that
diagonalizes the neutral scalar mass matrix.

B. Scalar spectrum

After EWSB, the diagonalization of the 2 ⇥ 2 charged Higgs mass matrix yields the physical charged scalar and
Goldstone modes,
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work, only the scalar loop could contribute to C12 and eventually to EDMs. A representative diagram is shown in
the right panel of Fig. 12. It is proportional to
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Using the relation in Eq. (13), the above quantity is indeed related to the unique CPV source in the model.
The fermionic loops do not contribute because the physical charge Higgs and quark couplings have the structure

proportional to the corresponding CKM element. As a result, the coe�cients Cij are purely real and C̃ij are purely
imaginary. They contribute to magnetic dipole moments instead of EDMs.
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FIG. 12: Left: quark or lepton EDM from W
±

H
⌥ exchange and CPV Higgs interactions. Right: a scalar loop contribution

to �
†
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�
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2 W
a

µ⌫�2B
µ⌫ e↵ective operator, which then contributes to EDM as the upper loop of the left panel.

The gauge invariant contributions to EDM from this class of diagrams have been calculated recently in [42],
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where the functions I4,5(m2

1
,m

2

2
) are given in the Appendix B. The coe�cient sf = �1 for up-type quarks, and

sf = +1 for down-type quarks and charged leptons.

To summarize, the total contribution to fermion EDM is the sum of Eqs (A3,A4,A5,A6,A7,A8,A11),
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II. 2HDM FRAMEWORK

A. Scalar potential

In this work, we consider the flavor-conserving 2HDM in order to avoid problematic flavor-changing neutral currents
(FCNCs). As observed by Glashow and Weinberg (GW) [12], one may avoid tree-level FCNCs if diagonalization of the
fermion mass matrices leads to flavor diagonal Yukawa interactions. One approach2 to realizing this requirement is to
impose a Z2 symmetry on the scalar potential together with an appropriate extension to the Yukawa interactions (see
below). In this scenario, however, one obtains no sources of CPV beyond the SM CKM complex phase. Consequently,
we introduce a soft Z2-breaking term that yields non-vanishing CPV terms in the scalar sector [16].

To that end, we choose a scalar field basis in which the two Higgs doublets �1,2 are oppositely charged under the
the Z2 symmetry:

�1 ! ��1 and �2 ! �2 , (1)

though this symmetry will in general have a di↵erent expression in another basis obtained by the transformation
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. For example, taking
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The complex coe�cients in the potential are m
2

12
and �5. In general, the presence of the �

†
1
�2 term, in conjunction

with the Z2-conserving quartic interactions, will induce other Z2-breaking quartic operators at one-loop order. Simple
power counting implies that the responding coe�cients are finite with magnitude proportional tom2

12
�k/(16⇡2). Given

the 1/16⇡2 suppression, we will restrict our attention to the tree-level Z2-breaking bilinear term.
It is instructive to identify the CPV complex phases that are invariant under a rephasing of the scalar fields. To

that end, we perform an SU(2)L⇥U(1)Y transformation to a basis where the vacuum expectation value (vev) of the
neutral component of �1 is real while that associated with the neutral component of �2 is in general complex:
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where v =
p
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and v2 = |v2|ei⇠. It is apparent that in general ⇠ denotes the relative
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so that the form of the potential is unchanged. It is then straightforward to observe that there exist two rephasing
invariant complex phases:
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2 Another approach is to have 2HDM at the electroweak scale without the Z2 symmetry is to assume minimal flavor violation, flavor
alignment or other variants. We do not discuss this possibility, but refer to [13–15] for recent phenomenological studies.
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For future purposes, we emphasize that the value of ⇠ is not invariant.
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From the last equation, it is clear that the phase ⇠ can be solved for given the complex parameters m2
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useful, however, to express this condition in terms of the �k:
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so that there exists only one independent CPV phase in the theory after EWSB.
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When the right-hand side is less than 1, �2 has solutions two solutions of equal magnitude and opposite sign, corre-
sponding to the presence of spontaneous CPV (SCPV) [17, 18]:
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To the extent that the vacua associated with the two opposite sign solutions are degenerate, one would expect the
existence of cosmological domains [19] associated with these two vacua. Persistence of the corresponding domain walls
to late cosmic times is inconsistent with the observed homogeneity of structure and isotropy of the cosmic microwave
background. Consequently, parameter choices leading to �1 = 0 but �2 6= 0 should be avoided. In practice, we will
scan over model parameters when analyzing the EDM and LHC constraints. As a check, we have performed a scan
with 106 points and find less than ten that give �1 = 0. We are, thus, confident that the general features of our
phenomenological analysis are consistent with the absence of problematic SCPV domains.

Henceforth, for simplicity, we utilize the rephasing invariance of the �k and work in a basis where ⇠ = 0. In this
basis, the phases of m2

12
and �5 are redefined and related by Eq. (11). As we discuss below, we will trade the resulting

dependence of observables on �1 [and �2 via �1 in Eq. (13)] for one independent angle in the transformation that
diagonalizes the neutral scalar mass matrix.

B. Scalar spectrum

After EWSB, the diagonalization of the 2 ⇥ 2 charged Higgs mass matrix yields the physical charged scalar and
Goldstone modes,
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FIG. 10: Current and prospective future constraints from electron EDM (blue), neutron EDM (green), Mercury EDM (red) and
Radium (yellow) in flavor conserving 2HDMs. First row: type-I model; Second row: type-II model. The model parameters
used are the same as Fig. 6. Central values of the hadronic and nuclear matrix elements are used. Left: Combined current
limits. Middle: combined future limits if the Mercury and neutron EDMs are both improved by one order of magnitude. Also
shown are the future constraints if electron EDM is improved by another order of magnitude (in blue dashed curves). Right:
combined future limits if the Mercury and neutron EDMs are improved by one and two orders of magnitude, respectively.

matrix elements, there is guidance from näıve dimensional analysis, which takes into account the chiral structures of
the operators in question. However, the precise value of matrix elements involving quark CEDMs and the Weinberg
three-gluon operator are only known to about an order of magnitude, and dimensional analysis does not tell us the
signs of the matrix elements. We highlight two places where these uncertainties can change our results.

• In Figs. 7 and 8, we see that the Weinberg three-gluon operator is always subdominant as a contribution to the
neutron and mercury EDMs. It is possible, though, that the actual matrix element may be an order of magnitude
larger than the current best value. Then, the Weinberg operator would make the largest contribution to the
neutron and mercury EDMs at large tan� in the type-II model.

• In the left panel of Fig. 7, the quark EDM and CEDM contributions to nEDM in the type-I model are shown to
be nearly equal, but with opposite signs, suppressing the total neutron EDM in the type-I model. If overall sign
of the CEDM matrix element is opposite to that used here, the two e↵ects would add constructively, making
the neutron EDM limit much stronger.

In the absence of hadronic and nuclear matrix element uncertainties, improvements in neutron and diamagnetic
atom searches will make them competitive with present ThO result when in constraining CPV in 2HDM. At present,
however, theoretical uncertainties are significant, making it di�cult to draw firm quantitative conclusions regarding
the impact of the present and prospective neutron and diamagnetic EDM results.
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FIG. 10: Current and prospective future constraints from electron EDM (blue), neutron EDM (green), Mercury EDM (red) and
Radium (yellow) in flavor conserving 2HDMs. First row: type-I model; Second row: type-II model. The model parameters
used are the same as Fig. 6. Central values of the hadronic and nuclear matrix elements are used. Left: Combined current
limits. Middle: combined future limits if the Mercury and neutron EDMs are both improved by one order of magnitude. Also
shown are the future constraints if electron EDM is improved by another order of magnitude (in blue dashed curves). Right:
combined future limits if the Mercury and neutron EDMs are improved by one and two orders of magnitude, respectively.

matrix elements, there is guidance from näıve dimensional analysis, which takes into account the chiral structures of
the operators in question. However, the precise value of matrix elements involving quark CEDMs and the Weinberg
three-gluon operator are only known to about an order of magnitude, and dimensional analysis does not tell us the
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• In Figs. 7 and 8, we see that the Weinberg three-gluon operator is always subdominant as a contribution to the
neutron and mercury EDMs. It is possible, though, that the actual matrix element may be an order of magnitude
larger than the current best value. Then, the Weinberg operator would make the largest contribution to the
neutron and mercury EDMs at large tan� in the type-II model.

• In the left panel of Fig. 7, the quark EDM and CEDM contributions to nEDM in the type-I model are shown to
be nearly equal, but with opposite signs, suppressing the total neutron EDM in the type-I model. If overall sign
of the CEDM matrix element is opposite to that used here, the two e↵ects would add constructively, making
the neutron EDM limit much stronger.

In the absence of hadronic and nuclear matrix element uncertainties, improvements in neutron and diamagnetic
atom searches will make them competitive with present ThO result when in constraining CPV in 2HDM. At present,
however, theoretical uncertainties are significant, making it di�cult to draw firm quantitative conclusions regarding
the impact of the present and prospective neutron and diamagnetic EDM results.
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FIG. 6: Current constraints from the electron EDM (left), neutron EDM (middle) and 199Hg EDM (right).First row: type-I
model; Second row: type-II model. In all the plots, we have imposed the condition that ↵ = � � ⇡/2. The other parameters
are chosen to be mH+ = 320 GeV, mh2 = 300 GeV, mh3 = 350 GeV and ⌫ = 1.0. Again, ↵c is a dependent parameter
solved using Eq. (43). The purple region is theoretically not accessible because Eq. (43) does not have a real solution. For
the neutron and Mercury EDMs, theoretical uncertainties from hadronic and nuclear matrix elements are reflected by di↵erent
curves. For the neutron EDM, we vary one of the most important hadronic matrix elements: ⇣̃

d

n = 1.63 ⇥ 10�8 (solid, central
value), 0.4 ⇥ 10�8 (dot-dashed) and 4.0 ⇥ 10�8 (dashed). For the Mercury EDM, we take di↵erent sets of nuclear matrix
element values: a0 = 0.01, a1 = 0.02 (solid, central value). a0 = 0.01, a1 = 0.09 (long-dashed), a0 = 0.01, a1 = �0.03 (dashed),
a0 = 0.005, a1 = 0.02 (dotted) and a0 = 0.05, a1 = 0.02 (dot-dashed).

B. Ine↵ectiveness of a Light-Higgs-Only Theory

From the discussion of electron EDM, we have learned that the heavy Higgs contributions via H�� and H
±
W

⌥
�

diagrams make non-negligible contributions to the total EDM. They can even be dominant at large tan� & 20. This
example illustrates the ine↵ectiveness of the “light Higgs e↵ective theory”, often performed as model independent
analyses, which include the CPV e↵ects only from the lightest Higgs (mass 125 GeV). The key point is that a CP
violating Higgs sector usually contains more than one scalar at the electroweak scale, and all of them have CPV
interactions in general. The total contribution therefore includes CPV e↵ects from not only CP even-odd neutral
scalar mixings, but also the CPV neutral-charged scalar interactions from the Higgs potential. This is necessarily
model dependent. In this work, we have included the complete contributions to EDMs in the flavor-conserving (type-I
and type-II) 2HDMs .

C. Neutron EDM Constraint

Next, we consider the neutron EDM, whose current bound is |dn| < 2.9⇥10�26
e cm. In Fig. 7, we plot the anatomy

of neutron EDM, this time in terms of the various dimension-six operator contributions. The parameters are fixed
as in Fig. 5, and the contributions to neutron EDM from light quark EDMs, CEDMs, and the Weinberg three-gluon
operator are shown as functions of tan�. The plot shows that in the type-II model, the quark CEDM contributions
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solved using Eq. (43). The purple region is theoretically not accessible because Eq. (43) does not have a real solution. For
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a0 = 0.005, a1 = 0.02 (dotted) and a0 = 0.05, a1 = 0.02 (dot-dashed).
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example illustrates the ine↵ectiveness of the “light Higgs e↵ective theory”, often performed as model independent
analyses, which include the CPV e↵ects only from the lightest Higgs (mass 125 GeV). The key point is that a CP
violating Higgs sector usually contains more than one scalar at the electroweak scale, and all of them have CPV
interactions in general. The total contribution therefore includes CPV e↵ects from not only CP even-odd neutral
scalar mixings, but also the CPV neutral-charged scalar interactions from the Higgs potential. This is necessarily
model dependent. In this work, we have included the complete contributions to EDMs in the flavor-conserving (type-I
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 d= 6 Effective Operators: “CPV Sources” 
 fermion EDM, quark chromo EDM, 3 gluon, 4 fermion 
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Wilson Coefficients: Summary 

δf   fermion EDM  (3)

δq  quark CEDM  (2) 

CG   3 gluon   (1) 

Cquqd   non-leptonic   (2) 

Clequ, ledq  semi-leptonic  (3) 

Cϕud   induced 4f   (1) 

 

~ 

~ 

12 total + θ   light flavors only (e,u,d) 

Complementary searches needed 
80 


