Lepton-flavor-violating Higgs decay $h \to \mu \tau$ and muon g-2 in general two Higgs doublet model

Kazuhiro Tobe (Nagoya University and KMI)

WRU Symposium 2016, Nagoya, March 15

in collaboration with Yuji Omura and Eibun Senaha arXiv:1502.07824 (JHEP 1505, 028 [2015]) and arXiv:1511.08880 Introduction

muon g-2 anomaly

Mibe-San's talk (See also Saito-san's talk)

Difference between the experimental value and the SM prediction

$a_{\mu}^{\text{Exp}} [10^{-10}]$	$\delta a_{\mu} = a_{\mu}^{\text{Exp}} - a_{\mu}^{\text{SM}} [10^{-10}]$	
	$26.1 \pm 8.0 \ (3.3\sigma)$	HLMNT11
	$31.6 \pm 7.9 \ (4.0\sigma)$	THLMN10
11659208.9 ± 6.3	$33.5 \pm 8.2 \ (4.1\sigma)$	BDDJ12
	$28.3 \pm 8.7 \ (3.3\sigma)$	JS11
(~0,54 ppm)	$29.0 \pm 9.0 \ (3.2\sigma)$	JN09
· · · · /	$28.7 \pm 8.0 \ (3.6\sigma)$	DHMZ12

3-4 σ deviation possibly an evidence of new physics

If this anomaly is due to new physics,

The size of anomaly

 $\delta a_{\mu} = (26.1 \pm 8.0) \times 10^{-10}$

is comparable to the electroweak contribution

 $a_{\mu}^{\rm EW} = (15.4 \pm 0.1) \times 10^{-10}$

we expect new particles with EW scale mass

strong constraints from EW precision data good target at near future experiments

<u>We may be able to discover the new physics before new experiment or/</u> and new (improved) calculation for muon g-2 are done. <u>So, we should study it NOW!</u> S. Kanemitsu and K. Tobe PRD86, 095025 (2012)

Effective operator for the muon g-2

$$\mathcal{L} = \frac{y\langle H\rangle}{\Lambda^2} \underline{\bar{\mu}}_R \sigma^{\mu\nu} \underline{\mu}_L F_{\mu\nu} + \text{h.c.}$$

★ muon chirality has to be flipped

If there is a large chirality flipping, the muon g-2 can be enhanced and the new physics scale can be larger and hence the EW constraints are avoided. We find that the muon g-2 anomaly can be explained by the μ - τ flavor-violating Higgs couplings in general two Higgs doublet model

 $\begin{array}{c} h \rightarrow \mu \tau \\ \uparrow \\ \text{The } \mu - \tau \text{ flavor-violating coupling} \\ \text{can enhance the muon g-2} \end{array}$

General 2HDM can explain both anomalies.

Contents

Introduction

- General two Higgs doublet model (2HDM)
- + h $\rightarrow \mu \, \tau$ and muon g-2 in general 2HDM
- Predictions (constraints)

$$\tau \to \mu \gamma, \ \tau \to \mu \nu \overline{\nu}, \ \cdots$$

Summary

General two Higgs doublet model (2HDM)

(both Higgs doublets couple to all fermions)

Theoeges sector h more Schfet **M** fesearch folle ĨŚ, a Īsī Higge ethanging Higgs nions, a h 1mor h

$$+\frac{\Lambda_5}{2}(H_1^{\dagger}H_2)^2 + \Big\{\Lambda$$

relations among Higg

Now, $c_{etalpha} \ll 1$ -

$$m_{H^+}^2 = n$$

$$m_H^2 \simeq m_T^2$$

Note: correction to Pe

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{ or violating Yuka complingsn} \\ & & & & \\ & & & \\ \end{array} \\ \begin{array}{c} f_{i} \\ \text{the small } c_{\beta\alpha} \text{ su} \\ \hline \\ \text{SM limit} \\ h \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} f_{\beta\alpha} \\ \text{SM limit} \\ \hline \\ c_{\beta\alpha} \rightarrow 0 \\ \hline \\ \text{Here, we mainly conside } \\ \end{array} \\ \begin{array}{c} \begin{array}{c} f_{\beta\alpha} \\ \text{secondary } \end{array} \end{array} \end{array} \end{array}$

neutral Higgs mass spectrum from tree level potential

For $c_{\beta\alpha} \ll 1$ $m_{H^+}^2 = m_A^2 + \frac{\lambda_5 - \lambda_4}{2}v^2$ $m_H^2 \simeq m_A^2 + \lambda_5 v^2$ $\lambda_{4,5}$; Higgs quartic couplings

Note: correction to Peskin-Takeuchi T parameter When $m_A \simeq m_{H^+}$, the small $c_{\beta\alpha}$ suppresses the correction Here, we mainly consider a case with $\lambda_4 = \lambda_5 = 0.5$ General 2HDM predicts

Flavor-changing phenomena mediated by neutral Higgs bosons

Bjorken and Weinberg, PRL 38, 622 (1977)

This may be a problem if we do not observe any flavor-changing phenomena beyond the standard model.

But, now....

CMS collaboration has reported an excess in $h \rightarrow \mu \tau$ CMS: arXiv: 1502.07400

ATLAS BR $(h \rightarrow \mu \tau) = (0.77 \pm 0.62)\%$ ATLAS: arXiv: 1508.03372 consistent with CMS

CMS best fit: $BR(h \rightarrow \mu \tau) = (0.84^{+0.39}_{-0.37})\%$ 2.4 σ excess

Hint for new physics!

ATLAS: arXiv: 1508.03372

$h \rightarrow \mu \tau$ and muon g-2 in general 2HDM

$$h
ightarrow \mu au$$

CMS result

Sierra and Vicente, 1409.7690, Crivellin et al., 1501.00993, Lima et al., 1501.06923, …
Before the CMS excess, see Pilaftsis, PLB 285, 68 (1992); Assamagan et al, PRD 67, 035001 (2003); Brignole and Rossi, PLB 566, 217 (2003); Kanemura et al, PLB 599, 83 (2004); Arganda et al, PRD 71, 035011 (2005); ……, Blankenburg, Ellis, Isidori, PLB712, 386 (2012),……

$$BR(h \to \mu\tau) = (0.84^{+0.39}_{-0.37})\%$$

2HDM prediction

$$BR(h \to \mu\tau) = \frac{c_{\beta\alpha}^2 (|\rho_e^{\mu\tau}|^2 + |\rho_e^{\tau\mu}|^2)m_h}{16\pi\Gamma_h},$$

result

$$\bar{\rho}^{\mu\tau} \equiv \sqrt{\frac{|\rho_e^{\mu\tau}|^2 + |\rho_e^{\tau\mu}|^2}{2}}$$
$$\simeq 0.26 \left(\frac{|0.01|}{c_{\beta\alpha}} \right) \sqrt{\frac{\mathrm{BR}(h \to \mu\tau)}{0.84 \times 10^{-2}}}.$$

General 2HDM can explain it easily

muon g-2

induced by the μ - τ flavor violating coupling

muon g-2

βα

Both anomalies in the muon g-2 and $h \to \mu \tau$ can be accommodated in the general 2HDM

 $BR(h \to \mu \tau) = 0.84\%$

 $|c_{\beta\alpha}|$ should be very small

Predictions (constraints)

Note: BABAR collaboration lepton universality measurement PRL 105, 051602 (2010)

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} = \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau})} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})},$$

$$\left(rac{g_{\mu}}{g_{e}}
ight) = 1.0036 \pm 0.0020 \; (BaBar$$
$$= 1 + rac{1}{2}\delta \quad (\text{our model})$$

The precise measurement may be important. Belle's result will be very interesting.

Summary

- ★ General 2HDM predicts the flavor-violating phenomena, mediated by neutral Higgs bosons
- ★ The CMS excess in $h \rightarrow \mu \tau$ decay can be explained by the general 2HDM. More data from LHC will be important.
- ★ We have found that the flavor-violating interactions relevant to the CMS excess enhance the neutral Higgs contributions to the muon g-2 and it can resolve the muon g-2 anomaly.
- $\bigstar \ \tau \to \mu \gamma \ \text{ and } \tau \to \mu \nu \bar{\nu} \text{ are interesting}$ in this scenario

	Process	cess typical value	
muon g-2 $\tau \to \mu \gamma$		$\delta a_{\mu} = (2.6 \pm 0.8) \times 10^{-9}$	(input)
		$BR \le 10^{-9}$	0
	$ au o e\gamma$	small	×
	$\tau ightarrow \mu l^+ l^- \ (l=e,\ \mu)$	depends on $\rho_e^{\mu\mu}$ and ρ_e^{ee}	(0)
	$\tau^- \to e^- l^+ l^-, \ e^- \mu^+ e^-, \ \mu^- e^+ \mu^-$	small	×
	$ au o \mu\eta$	depends on ρ_d^{ss}	(0)
	$ au o \mu u \overline{ u}$	$\delta \leq 10^{-3}$, lepton non-universality	
	$ au o e \nu \bar{\nu}$	small, lepton non-universality	
	$\mu ightarrow e \gamma$	depends on $\rho_e^{\tau e(e\tau)}$ and $\rho_e^{\mu e(e\mu)}$	(0)
	$\mu - e$ conversion	depends on $\rho_e^{\mu e(e\mu)}$ and $\rho_{d,u}^{ij}$	(0)
	$\mu ightarrow 3e$	$\mathrm{BR} \le 10^{-13}$	(0)
	muon EDM	$ \delta d_{\mu} \leq 10^{-22} e \cdot \mathrm{cm}$	(0)
	electron g-2	small	×

LFV Higgs decay mode	BR	
$h \to \mu \tau$	$BR = (0.84^{+0.39}_{-0.37})\%$	(input)
$h \to e\tau$	small	×
$h \to e\mu$	small	×

★ Flavor physics in quark sector should be interesting

 \star interplay between LHC and flavor physics is important

Backup slides

CMS collaboration has reported an excess in $h \rightarrow \mu \tau$ CMS: arXiv: 1502.07400

Table 6: Event yields in the signal region, $100 < M_{col} < 150 \text{ GeV}$ after fitting for signal and background. The expected contributions are normalized to an integrated luminosity of 19.7 fb^{-1} . The LFV Higgs boson signal is the expected yield for $B(H \rightarrow \mu \tau) = 0.84\%$ with the SM Higgs boson cross section.

Samplo	$H \rightarrow \mu \tau_h$		$H \rightarrow \mu \tau_e$			
Sample	0-Jet	1-Jet	2-Jets	0-Jet	1-Jet	2-Jets
misidentified leptons	1770 ± 530	377 ± 114	1.8 ± 1.0	42 ± 17	16 ± 7	1.1 ± 0.7
Z ightarrow au au	187 ± 10	59 ± 4	0.4 ± 0.2	65 ± 3	39 ± 2	1.3 ± 0.2
ZZ, WW	46 ± 8	15 ± 3	0.2 ± 0.2	41 ± 7	22 ± 4	0.7 ± 0.2
$\mathrm{W}\gamma$				2 ± 2	2 ± 2	
$Z \rightarrow ee \text{ or } \mu\mu$	110 ± 23	20 ± 7	0.1 ± 0.1	1.6 ± 0.7	1.8 ± 0.8	—
tī	2.2 ± 0.6	24 ± 3	0.9 ± 0.5	4.8 ± 0.7	30 ± 3	1.8 ± 0.4
tĪ	2.2 ± 1.1	13 ± 3	0.5 ± 0.5	1.9 ± 0.2	6.8 ± 0.8	0.2 ± 0.1
SM H background	7.1 ± 1.3	5.3 ± 0.8	1.6 ± 0.5	1.9 ± 0.3	1.6 ± 0.2	0.6 ± 0.1
sum of backgrounds	2125 ± 530	513 ± 114	5.4 ± 1.4	160 ± 19	118 ± 9	5.6 ± 0.9
LFV Higgs boson signal	66 ± 18	30 ± 8	2.9 ± 1.1	23 ± 6	13 ± 3	1.2 ± 0.3
data	2147	511	10	180	128	6

a best fit: BR $(h \to \mu \tau) = (0.84^{+0.39}_{-0.37})\%$

 2.4σ excess

neutral Higgs mass spectrum from tree level potential potential

$$V = M_{11}^2 H_1^{\dagger} H_1 + M_{22}^2 H_2^{\dagger} H_2 - \left(M_{12}^2 H_1^{\dagger} H_2 + \text{h.c.} \right) + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{\lambda_5}{2} (H_1^{\dagger} H_2)^2 + \left\{ \lambda_6 (H_1^{\dagger} H_1) + \lambda_7 (H_2^{\dagger} H_2) \right\} (H_1^{\dagger} H_2) + \text{h.c.}.$$

relations among Higgs masses

$$\begin{split} m_{H^+}^2 &= M_{22}^2 + \frac{v^2}{2}\lambda_3, \\ m_A^2 - m_{H^+}^2 &= -\frac{v^2}{2}(\lambda_5 - \lambda_4), \\ (m_H^2 - m_h^2)^2 &= \left\{m_A^2 + (\lambda_5 - \lambda_1)v^2\right\}^2 + 4\lambda_6^2 v^4, \\ \sin 2\theta_{\beta\alpha} &= -\frac{2\lambda_6 v^2}{m_H^2 - m_h^2}. \end{split}$$

Now,
$$c_{\beta\alpha} \ll 1 \longrightarrow \lambda_6 \ll 1$$

 $m_h^2 \simeq \lambda_1 v^2$,
 $m_H^2 \simeq m_A^2 + \lambda_5 v^2$,
 $m_{H^+}^2 = m_A^2 - \frac{\lambda_4 - \lambda_5}{2} v^2$,
 $m_A^2 = M_{22}^2 + \frac{\lambda_3 + \lambda_4 - \lambda_5}{2} v^2$.

Note: correction to Peskin-Takeuchi T parameter

When $m_A \simeq m_{H^+}$,

the small $c_{\beta\alpha}$ suppresses the correction

Here, we mainly consider a case with $\lambda_4 = \lambda_5 = 0.5$

Note:

$$\begin{split} \delta a_{\mu} \simeq \frac{m_{\mu} m_{\tau} \rho_{e}^{\mu \tau} \rho_{e}^{\tau \mu}}{16 \pi^{2}} \left[\frac{c_{\beta \alpha}^{2} (\log \frac{m_{h}^{2}}{m_{\tau}^{2}} - \frac{3}{2})}{m_{h}^{2}} \right. \\ \left. + \frac{s_{\beta \alpha}^{2} (\log \frac{m_{H}^{2}}{m_{\tau}^{2}} - \frac{3}{2})}{m_{H}^{2}} - \frac{\log \frac{m_{A}^{2}}{m_{\tau}^{2}} - \frac{3}{2}}{m_{A}^{2}} \right], \end{split}$$

If all neutral Higgs bosons are degenerate, the new contributions are suppressed

Even if other ρ_f (other than $\rho_e^{\mu\tau(\tau\mu)}$) are negligible, non-zero rate of $\tau \to 3\mu$ is predicted $BR(\tau \to 3\mu)_{exp.} < 2.1 \times 10^{-8}$

but it is very small $O(10^{-13} - 10^{-12})$ (since muon Yukawa is very small) $y_{\mu} = \frac{\sqrt{2}m_{\mu}}{v} \sim 6 \times 10^{-4}$

 $\tau \to \mu \eta$

$$BR(\tau \to \mu \eta)_{exp.} < 6.5 \times 10^{-8}$$

$$|\rho_d^{ss}| < 0.007 \left(\frac{0.3}{\bar{\rho}^{\mu\tau}}\right) \left(\frac{m_A}{350 \text{ GeV}}\right)^2$$

Note: $y_s = \frac{\sqrt{sm_s}}{v} \simeq 5 \times 10^{-4}$

Other lepton flavor violating Yukawa couplings (e- τ , e- μ couplings) are strongly constrained from $\mu \rightarrow e \gamma$ process

strongly constrained

e-µ flavor violation

similar to $\tau \rightarrow \mu \gamma$, 2-loop contributions are important

Muon electric dipole moment (muon EDM)

 $\rho_{e}^{\mu\tau}\rho_{e}^{\tau\mu} = |\rho_{e}^{\mu\tau}\rho_{e}^{\tau\mu}|e^{i\phi}$

imaginary parts of the Yukawas induce the muon EDM

$$\mathcal{L} = \bar{\mu}\sigma^{\mu\nu} \left(\frac{e}{4m_{\mu}}\delta a_{\mu} - \frac{i}{2}\delta d_{\mu}\gamma_5\right)\mu F_{\mu\nu}.$$

A relation between δa_{μ} and δd_{μ}

$$\frac{\delta d_{\mu}}{\delta a_{\mu}} = -\frac{e \tan \phi}{2m_{\mu}}$$

٠

Prediction

$$\delta d_{\mu} = -3 \times 10^{-22} \ e \cdot \text{cm} \ \times \left(\frac{\tan \phi}{1.0}\right) \left(\frac{\delta a_{\mu}}{3 \times 10^{-9}}\right)$$

Current limit

$$|d_{\mu}| < 1.9 \times 10^{-19} \ e \cdot \text{cm} \ (95\% \text{ C.L.})$$

Future (J-PARC)

$$d_{\mu} \sim 10^{-24} \ e \cdot \mathrm{cm}$$

future J-PARC experiment may have a sensitivity

FIG. 12: BR($\mu \to 3e$) as a function of ρ_e^{ee} and $\rho_e^{\mu e}$. Here we have assumed that $\rho_e^{\mu e} = \rho_e^{e\mu}$, $c_{\beta\alpha} = -0.007$ and $m_A = 350$ GeV with $\lambda_4 = \lambda_5 = 0.5$.

Future Mu3e experiment (${\rm BR} \sim 10^{-16}$) may have a sensitivity

Productions via gauge interaction are more predictive

 $q\bar{q}' \to W^{\pm *} \to AH^{\pm *}$

Q.-H. Cao, S. Kanemura, C.-P. Yuan, PRD 69, 075008 (2004)

FIG. 1: The LO (dotted lines) and NLO QCD (solid lines) cross sections of the AH^+ and $AH^$ pairs as a function of M_A at the Tevatron (a 1.96 TeV $p\bar{p}$ collider), and the LHC (a 14 TeV ppcollider). The cross sections for AH^+ and AH^- pair productions coincide at the Tevatron for being a $p\bar{p}$ collider.

 $\delta a_{\mu} = (26.1 \pm 8.0) \times 10^{-10}$

- $s_{etalpha}$ should be close to 1 ($c_{etalpha}$ is very small)

 non-degeneracy among neutral Higgs bosons increases the muon g-2