#### KMI School, Dec 17th 2022

# Astronomical anomalies: dark matter or astrophysics?















### Dark matter: evidence

• Astronomical data on many scales point to the presence of dark matter



### What is dark matter?

There is no stable, non-relativistic, and neutral particle(s) in the Standard Model that could be dark matter → something new



Conrad & Reimer 2017

### The multi-messenger hunt



### Annihilation signal - photons

Annihilation of thermally produced DM (via hadronic decays) explains the spectrum

Spectral energy distribution per annihilation

$$\Phi(E,\psi) = \frac{\sigma_{\rm A}v}{8\pi m_{\chi}^2} \frac{dN_{\gamma}}{dE} \int d\ell \,\rho \left[r(\ell,\psi)\right]^2$$

Boost or "J-factor"



#### Dark matter distribution, eg, NFW





### Annihilation signal - photons

Annihilation of thermally produced DM (via hadronic decays) explains the spectrum

Spectral energy distribution per annihilation

$$(E,\psi) = \frac{\sigma_{\rm A}v}{8\pi m_{\chi}^2} \frac{dN_{\gamma}}{dE} \int d\ell \,\rho \left[r(\ell,\psi)\right]$$



 $\Phi($ 

#### Charged particle propagation

- Source (injection properties)
- Diffusion
- Energy losses (IC, syn, hadronic,...)
- Advection
- Reacceleration

$$\frac{\partial}{\partial t}\frac{dn_e}{dE_e}(E_e, r, t) = \vec{\nabla} \cdot \left[D(E_e)\vec{\nabla}\frac{dn_e}{dE_e}(E_e, r, t)\right]$$

$$+ \ \frac{\partial}{\partial E_e} \left[ \frac{dE_e}{dt}(r) \ \frac{dn_e}{dE_e}(E_e, r, t) \right] + \delta(r) Q(E_e, t)$$

### Many, many anomalies over the years



# Types of anomalies



#### Excesses

- Signal above known sources <u>and</u> known backgrounds
- Critically depends on
  - How confident we are at extrapolating source properties
  - How well we think we can model backgrounds

#### Lines

- Narrow excesses (consistent with energy resolution) in addition to known emission lines
- Critically depends on
  - Completeness of emission line databases
  - Calibration of detector

#### **Recurring theme: astrophysical** *systematics*

### Anomalies for today

### Story of continuum

- 1. GeV gamma-ray excess Story of lines
- 2. 511 keV line excess
- 3. 130 GeV line
- 4. 3.5 keV X-ray line
- **Story of anti-particles**
- 5. Anti-proton
- 6. Positron (if time)

### Main question:

New astrophysics?? Or first non-gravitational evidence for dark matter??

### For each:

- Brief background
- Anomaly relative to what?
- Dark matter vs astrophysics
- Current status

### GeV gamma-ray excess

**Excess:** unexplained excess found in Fermi-LAT data

- Since 2009
- Spectra peaks at ~GeV
- Seen out to  $\sim 10 \deg$  $\bullet$
- Significance  $\sim 20-60\sigma$
- Many systematics checks

Goodenough & Hooper (2009) Fermi Coll. (2016) Vitale & Morselli (2009) Hooper & Goodenough (2011) Horiuchi et al (2016) Hooper & Linden (2011) Boyarsky et al (2011) Abazajian & Kaplinghat (2012) Horiuchi et al (2016) Gordon & Macias (2013) Macias & Gordon (2014) Abazajian et al (2014<u>, 2015</u>) Calore et al (2014) Daylan et al (2014) Hooper & Slatyer (2013) Huang et al (2013) Zhou et al (2014) Daylan et al (2014) Calore et al (2014) Selig et al (2015) Huang et al (2015) Gaggero et al (2015) Carlson et al (2015, 2016) de Boer et al (2016) Yang & Aharonian (2016)

Shunsaku Horiuchi

Abazajian et al (2018, 2020) Linden et al (2016) Ackermann et al (2017) Linden et al (2016) Ackermann et al (2017) Macias et al (2019) Bartels et al (2018) Balaji et al (2018) Zhona et al (2019) Chang et al (2020) Buschmann et al (2020) Leane & Slatyer (2020) List et L (2020) Murgia (2020) Di Mauro (2020) Burns et al (2020) Di Mauro (2021) Calore et al (2021) Cholis et al (2022) McDermott et al (2022)



### Excess relative to what?

╉

Data



#### **Cosmic-ray related emission**



#### **Known sources**



#### New sources, e.g., dark matter



# Is it dark matter?

#### All features consistent with WIMPs

(b)

- Spectrum suggests 10~100 GeV mass, approx. thermal cross sections
- Spatial morphology largely spherical,  $\bullet$ NFW-like, and centered on dynamical center



 $m_{\chi}$  [GeV]

 $10^{2}$ 

 $10^{-27}$ 

 $10^{1}$ 



### Galactic Center is rich & complex



#### Supermassive black hole



### → Multiple source classes injecting ~10<sup>38</sup> erg/s

#### Pulsars





### Millisecond pulsars

### A strongly motivated candidate

- Rapidly spinning old neutron stars
  - Likely created by binary effects
- Known sources (100s found) but not modeled in the galactic center

- ✓ Spectra are very similar to the GeV excess
- ✓ O(10<sup>4</sup>) needed in the Galactic Center (quite reasonable)



### Millisecond pulsar morphology

Bulge:  $\sim 1/3$  mass of the Galaxy and very old (> 8 Gyrs)



Shunsaku Horiuchi

Bland-Hawthorn & Gerhard (2017)

### The hypothesis



(Here: Freudenreich 1998)

#### nature astronomy

# Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess





Macias et al (2018)

► WITHOUT bulge (representative of previous studies)

← WITH bulge Including our new extended bulge, the <u>data no longer</u> <u>needs a dark</u> <u>matter component</u>

# SkyFACT : a hybrid approach

SkyFACT = Sky Factorization with Adaptive Constrained Templates Hybrid method to study diffuse gamma rays that combines adaptive spatialspectral template regression and image reconstruction to account for small-scale model inaccuracies.



We demonstrated that the stellar bulge model provides a significantly better fit (>  $10\sigma$ ) to the data than the DM-emission related Einasto or contracted NFW profiles. Hence the GCE appears to simply trace stellar mass in the bulge, not the dark matter density squared Fit in central 40x180 degrees, which facilitates the fitting of gas template rings (x3) and provides leverage to disentangle components.

Bartels et al (2018)

### Evidence for dark matter

| Base                       | Source        | $\log(\mathcal{L}_{\text{Base}})$ | $\log(\mathcal{L}_{\text{Base+Source}})$ | $\mathrm{TS}_{\mathrm{Source}}$ | σ    | Number of         |
|----------------------------|---------------|-----------------------------------|------------------------------------------|---------------------------------|------|-------------------|
|                            |               |                                   |                                          |                                 |      | source parameters |
| baseline                   | $\mathbf{FB}$ | -172461.4                         | -172422.3                                | 78                              | 6.9  | 19                |
| baseline Gas + IC          | NFW-s         | -172461.4                         | -172265.3                                | 392                             | 18.4 | 19                |
| baseline                   | Boxy bulge    | -172461.4                         | -172238.7                                | 445                             | 19.7 | 19                |
| baseline + sources         | X-bulge       | -172461.4                         | -172224.1                                | 475                             | 20.5 | 19                |
| baseline + Loop I          | NFW           | -172461.4                         | -172167.9                                | 587                             | 23.0 | 19                |
| baseline + Sun & Moon      | NB            | -172461.4                         | -171991.8                                | 939                             | 29.5 | 19                |
| baseline                   | NP            | -172461.4                         | -169804.1                                | 5315                            | 55.7 | 64 	imes 19       |
| baselineNP                 | FB            | -169804.1                         | -169773.6                                | 61                              | 5.8  | 19                |
| baseline-NP                | NB            | -169804.1                         | -169697.2                                | 214                             | 13.0 | 19                |
| baseline-NP                | Boxy bulge    | -169804.1                         | -169663.7                                | 281                             | 15.3 | 19                |
| baseline-NP                | NFW           | -169804.1                         | -169623.3                                | 362                             | 17.6 | 19                |
| baseline-NP                | X-bulge       | -169804.1                         | -169616.2                                | 376                             | 18.0 | 19                |
| baseline+NP+Boxy bulge     | NFW           | -169663.7                         | -169598.2                                | 131                             | 9.7  | 19                |
| baseline+NP+Boxy bulge     | NB            | -169663.7                         | -169566.0                                | 195                             | 12.4 | 19                |
| baseline+NP+Boxy bulge-NB  | NFW           | -169566.0                         | -169553.3                                | 25                              | 2.7  | 19                |
| baseline+NP+Boxy bulge-NFW | NB            | -169598.2                         | -169553.3                                | 90                              | 7.6  | 19                |
| baseline+NP+NFW            | Boxy bulge+NB | -169623.3                         | -169553.0                                | 140                             | 10.0 | 2 	imes 19        |
| baseline+NP+NFW            | X-bulge+NB    | -169623.3                         | -169531.0                                | 185                             | 10.8 | 2 	imes 19        |
| baseline+NP+NB             | X-bulge       | -169697.2                         | -169542.0                                | 310                             | 16.1 | 19                |
| baseline+NP+NB             | Boxy bulge    | -169697.2                         | -169566.0                                | 262                             | 14.6 | 19                |
| baseline+NP+NB             | NFW           | -169697.2                         | -169599.0                                | 197                             | 12.4 | 19                |
| baseline+NP+NB+NFW         | X-bulge       | -169598.9                         | -169531.0                                | 136                             | 9.9  | 19                |
| baseline+NP+X-bulge+NB     | NFW           | -169542.0                         | -169531.0                                | 22                              | 2.4  | 19                |

#### → NFW detected at low significance when bulge is included

Macias et al (2018)

Shunsaku Horiuchi (Virginia Tech)

### Evidence for dark matter

| Base                       | Source        | $\log(\mathcal{L}_{\text{Base}})$ | $\log(\mathcal{L}_{\text{Base+Source}})$ | $\mathrm{TS}_{\mathrm{Source}}$ | σ    | Number of         |
|----------------------------|---------------|-----------------------------------|------------------------------------------|---------------------------------|------|-------------------|
|                            |               |                                   |                                          |                                 |      | source parameters |
| baseline                   | FB            | -172461.4                         | -172422.3                                | 78                              | 6.9  | 19                |
| baseline Gas + IC          | NFW-s         | -172461.4                         | -172265.3                                | 392                             | 18.4 | 19                |
| baseline                   | Boxy bulge    | -172461.4                         | -172238.7                                | 445                             | 19.7 | 19                |
| baseline + sources         | X-bulge       | -172461.4                         | -172224.1                                | 475                             | 20.5 | 19                |
| baseline + Loop I          | NFW           | -172461.4                         | -172167.9                                | 587                             | 23.0 | 19                |
| baseline + Sun & Moon      | NB            | -172461.4                         | -171991.8                                | 939                             | 29.5 | 19                |
| baseline                   | NP            | -172461.4                         | -169804.1                                | 5315                            | 55.7 | 64 	imes 19       |
| baseline-NP                | FB            | -169804.1                         | -169773.6                                | 61                              | 5.8  | 19                |
| baselineNP                 | NB            | -169804.1                         | -169697.2                                | 214                             | 13.0 | 19                |
| baseline+NP                | Boxy bulge    | -169804.1                         | -169663.7                                | 281                             | 15.3 | 19                |
| baselineNP                 | NFW           | -169804.1                         | -169623.3                                | 362                             | 17.6 | 19                |
| baseline-NP                | X-bulge       | -169804.1                         | -169616.2                                | 376                             | 18.0 | 19                |
| baseline+NP+Boxy bulge     | NFW           | -169663.7                         | -169598.2                                | 131                             | 9.7  | 19                |
| baseline+NP+Boxy bulge     | NB            | -169663.7                         | -169566.0                                | 195                             | 12.4 | 19                |
| baseline+NP+Boxy bulge+NB  | NFW           | -169566.0                         | -169553.3                                | 25                              | 2.7  | 19                |
| baseline+NP+Boxy bulge+NFW | NB            | -169598.2                         | -169553.3                                | 90                              | 7.6  | 19                |
| baseline+NP+NFW            | Boxy bulge+NB | -169623.3                         | -169553.0                                | 140                             | 10.0 | $2 \times 19$     |
| baseline+NP+NFW            | X-bulge+NB    | -169623.3                         | -169531.0                                | 185                             | 10.8 | 2 	imes 19        |
| baseline+NP+NB             | X-bulge       | -169697.2                         | -169542.0                                | 310                             | 16.1 | 19                |
| baseline+NP+NB             | Boxy bulge    | -169697.2                         | -169566.0                                | 262                             | 14.6 | 19                |
| baseline+NP+NB             | NFW           | -169697.2                         | -169599.0                                | 197                             | 12.4 | 19                |
| baseline+NP+NB+NFW         | X-bulge       | -169598.9                         | -169531.0                                | 136                             | 9.9  | 19                |
| baseline+NP+X-bulge+NB     | NFW           | -169542.0                         | -169531.0                                | 22                              | 2.4  | 19                |

#### → NFW detected at low significance when bulge is included

Macias et al (2018)

Shunsaku Horiuchi (Virginia Tech)

### Background systematics

IC

gas

#### Many astrophysical systematics

- 1. Bulge model
- 2. Fermi bubble model
- 3. Background (IC models)
- 4. Background (gas maps)
- 5. Point source catalogs









#### Fermi bubble





### Some systematics

#### For example:

- 1. IC: photon distributions,  $e^{+/-}$  distributions
- 2. Dark matter: slope, cores, asymmetry
- 3. Gas: distributions, dark gas models
- 4. Bulge: different tracers

#### Dark matter model not detected





Macias, Horiuchi et al (2018, 2019)

Shunsaku Horiuchi

Abazajian, Horiuchi, et al (2020)

### Hypotheses

VS

VS

#### Dark matter annihilation





#### **Astrophysics (pulsar)**





week ending 5 FEBRUARY 2016

#### G

Evidence for Unresolved  $\gamma$ -Ray Point Sources in the Inner Galaxy

Model as smooth (DM motivated) & grainy (pulsar motivated) templates

**Results:** 

- Smooth: ~0%
- Grainy: ~8.7%

If grainy model is not added, smooth becomes ~8%

 Preference for grainy over smooth source
Grainy motivates faint pulsars

Lee et al (2016) See also Bartels et al (2016)



### Dark matter implications

Perhaps we found a physically-motivated, <u>better astrophysical model</u> which provides a better explanation of the data than DM annihilation

#### Constrains thermal dark matter up to ~500 GeV

Abazajian et al (2020)



- Impacts of NFW slope [0.5,1.5] & sphericity
- Impacts of background modeling

- Impacts of core (1 kpc) & sphericity
- Impacts of background modeling

### However...

#### PRL 123 (2019) 241101

#### Dark Matter Strikes Back at the Galactic Center

Rebecca K. Leane<sup>1,\*</sup> and Tracy R. Slatyer<sup>1,2,†</sup>

<sup>1</sup>Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA <sup>2</sup>School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA



A Phantom Menace: On the Morphology of the Galactic Center Excess

Samuel D. McDermott,<sup>1</sup> Yi-Ming Zhong,<sup>2</sup> and Ilias Cholis<sup>3</sup>

<sup>1</sup>Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA <sup>2</sup>Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA <sup>3</sup>Department of Physics, Oakland University, Rochester, Michigan, 48309, USA

arXiv:2209.00006

### Ongoing developments

#### Smooth vs grainy

Faint end is experimentally indistinguishable from a smooth source.

Leane & Slatyer (2019, 2020), Chang et al (2019), Zhong et al (2019), Buschmann et al (2020), Calore et al (2021)



#### Morphology

Many new strategies, some find preference for the bulge, others do not. Systematic comparison warranted. *Macias et al (2019), Abazajian et al (2020), di Mauro (2021), Calore et al (2021), Pohl et al (2022), McDermott et al (2022)* 

### **STORY OF THREE LINES**

### 511 keV excess

**Excess:** Strong signal of positronium decays seen by INTEGRAL (requires  $\sim 2x10^{43}$  e+ /s)

Relative to: various astrophysical sources in the Milky Way

Supernovae γ-ray burst Microquasars X-ray binaries NS mergers



Knodlseder et al 2005, Weidenspointer et al 2008, Siegert et al 2016

### 511 keV excess

**Excess:** Strong signal of positronium decays seen by INTEGRAL (requires  $\sim 2x10^{43}$  e+ /s)

Relative to: various astrophysical sources in the Milky Way

Supernovae γ-ray burst Microquasars X-ray binaries NS mergers

The signal is <u>much too</u> <u>luminous</u> in the Galactic Center :

- Bulge / disk  $\sim$  1
- But predicted < 0.5



Knodlseder et al 2005, Weidenspointer et al 2008, Siegert et al 2016

Maybe a dark matter related phenomenon e.g., Boehm et al (2004), Finkbeiner & Weiner (2007)

### Detailed morphology study



Siegert et al (2021)



-10



# Detailed morphology study

Which model combinations best describe the data?



Add sources sequentially:



Siegert et al (2021)

#### Parallels with GeV excess:

- When mutually exclusive, dark matter and bulge are <u>both</u> detected
- When simultaneously added, the dark matter significance become <u>negligible</u>

Better astrophysical model

provides a good description of the data and excludes a symmetric DM model

# Gamma-ray line

**Line:** at  $\sim$ 130 GeV from the Galactic Center region. Relative to: power-law diffuse emission



Significance:  $3.2\sigma$ (after trials factor)



Subsequently observed in galaxy clusters and unassociated LAT sources too.

Hektor et al (2013), Su & Finkbeiner (2013)

60 30 15  $b \, [deg]$ 0 -15 -30 -60 60 NFW 30 15  $b \, [deg]$ 0 -15 -30 -60 60 Reg3 Einasto 30 15 b [deg]0 -15 -30 -60 60 Reg4 Contr.  $\alpha = 1.15$ 30 15  $b \, [deg]$ -15 -30 -60 60 Reg5 Contr.  $\alpha = 1.3$ 30 15  $b \, [deg]$ 0 -15 -30 -60 -60 -40 60 -80 -20 0 20 40 80

 $\ell \,[\mathrm{deg}]$ 

### Origin of the 130 GeV line

If interpreted as dark matter  $\rightarrow$ 

Weniger (2012)

However, ultimately the line disappeared: <u>updated understanding of</u> <u>detector calibration</u>



Fermi collab. (2014)

### X-ray lines

Line: X-ray regime contains many atomic transition lines, but unexpected lines are sometimes found  $E_{\gamma} = 3.5 \text{ keV}$ 

- 73 galaxy clusters 4 to  $5\sigma$  with XMM
- Range z = 0.01 to 0.35
- Perseus 2.2σ with Chandra

- Perseus 2.3 $\sigma$  with XMM
- M31  $3\sigma$  with XMM
- Combined  ${\sim}4\sigma$



Bulbul et al (2014)

Boyarsky et al (2014)

### Metal line origin?

**Relative to:** modeling the complex atomic line emissions of the plasma. The line is difficult to explain with current models.



Bulbul et al (2014)

Fluxes of known lines in the 3.5 keV energy range are too small for typical plasma temperatures

Many nuclei have accompanying lines that produce a problem, e.g., Ar XVII

### Is it dark matter?

CDM

**keV sterile neutrino dark matter:** can radiatively decay to active neutrinos + X-ray

 $E_{\gamma} = m_s/2$ 



It can be produced via oscillations and has attractive features beyond CDM Abazajian (2014)

#### Sterile neutrino dark matter

Suppression of small-scale power

### Is it dark matter?

**keV sterile neutrino dark matter:** can radiatively decay to active neutrinos + X-ray

$$E_{\gamma} = m_s/2$$



It can be produced via oscillations and has attractive features beyond CDM



### Many constraints



### **STORY OF ANTI-PARTICLES**

### Anti-proton excess

Anti-protons are useful probes of new physics

#### Excess, relative to what?

Secondaries produced by pp collisions of astrophysical cosmic rays.

Excesses in PAMELA & AMS-02 (usually at  $\sim$ 3–6 $\sigma$ )

Is it dark matter? Intriguing connection to GeV excess





### **Systematics**

But systematics are a major concern

- Cross sections
- Solar modulation
- Injection & propagation
- Correlating errors

### Removes need for DM Actually constraints GeV excess





### Positron excess

Positrons are ~1/10 electrons, but sensitive to local sources

**Excess**: seen in positrons relative to electrons by many experiments, but became prominent with the PAMELA satellite measurements

PAMELA collaboration (2008)

Later confirmed by Fermi-LAT and AMS-02

Fermi collaboration (2012) AMS-02 collaboration (2014)

**Relative to**: secondary positrons from CR-induced charged meson decays.

Background model do not predict a rising fraction

 $\rightarrow$  suggests some new source



### Is it dark matter?

**Some tweaks:** dark matter are a source of local positrons, but

- Quite massive & large cross sections
- Constraints limit channels to e and  $\mu$
- New data cannot be matched with annihilation into 2-body final states





### Astrophysical possibilities

**Pulsars:** common, suitable leptonic systems. Readily explains e<sup>+</sup> fraction. Main uncertainties are:

- Injection e+e- properties
- Propagation physics (global vs local)



Cholis & Hooper (2014)

### Importance of propagation

TeV halos: HAWC discovered very small halos, showing strong local enhancement of diffusive transport
→ argued to rule out large pulsar contributions to e<sup>+</sup> excess



### Concluding remarks

- Astronomical observations have revolutionized our understanding of highenergy phenomena in the Milky Way. At the same time, this has created opportunities to further searches of dark matter physics
- There have been many, many searches & anomalies. This is natural as we push the frontier of sensitivity. It is expected and should not be discouraged.
  - Dark matter is usually capable of explaining these anomalies, given dark matter's rich phenomenology
  - Meanwhile, most anomalies have been explained by non-DM effects: a combination of backgrounds and astrophysical sources. *We should not be discouraged. This leads to improved sensitivity to dark matter.*
  - Some anomalies still remain debated, including the GeV excess
- ➢ In the future we can expect some resolutions to current anomalies, but at the same time, also new anomalies & surprises → stay tuned!

Thank you!

### BACKUP

### Background systematics

#### Many astrophysical systematics

1. Bulge model

Shu

- 2. Fermi bubble model
- 3. Background (IC models)
- 4. Background (gas maps)
- 5. Point source catalogs



#### Significance of NFW<sup>2</sup> for bulge and IC model combinations

Macias et al (2018, 2019)



### More systematics

Kuhlen et al (2012)



| Baselin | ne mod  | lel A | dd. source | $\Delta AIC_{511}$ | $\Delta AIC_{oPs}$ | $\Delta AIC_{\pm}$ |
|---------|---------|-------|------------|--------------------|--------------------|--------------------|
| IC      |         | HI    | 10.9       | 4.7                | 15.6               |                    |
| IC      |         |       | FB         | 25.2               | 9.9                | 35.1               |
| IC      |         | BB    | 89.1       | 192.4              | 281.5              |                    |
| IC      |         | CO    | 64.6       | 239.0              | 303.6              |                    |
| IC      |         | HI+CO | 104.5      | 278.1              | 382.6              |                    |
| IC      |         | NB    | 123.8      | 383.8              | 507.6              |                    |
| IC      |         | DM2   | 134.8      | 375.8              | 510.6              |                    |
| IC      |         |       | DMO        | 164.3              | 433.3              | 597.6              |
| IC      |         |       | BB+NB      | 162.0              | 456.2              | 618.2              |
| IC-BB-  | -NB     |       | CO         | -2.0               | -1.7               | -3.7               |
| IC-BB+  | -NB     |       | DM2        | -0.5               | -0.8               | -1.3               |
| IC-BB+  | -NB     |       | DMO        | 3.6                | -1.1               | 2.5                |
| IC-BB+  | -NB     |       | CO+HI      | -1.4               | 16.8               | 15.4               |
| IC-BB+  | -NB     |       | HI         | -0.3               | 16.3               | 16.0               |
| IC+BB+  | -NE +HI |       | DMO        | 4.8                | 0.8                | 5.6                |
| IC+BB+  | -NE +HI | +CO   | DMO        | 4.6                | 1.3                | 5.9                |