Photodetection with precision timing

Kodai Matsuoka (KEK, Nagoya)

Factors which dictate time resolution

Noise (fluctuation of the baseline)

Single photon time resolution

SiPM time resolution

Electronic noise is the dominant limiting factor.

• Larger cell \rightarrow higher capacitance \rightarrow slower signal

Conventional PMT time resolution

20" PMT(R3600-05)

TTS(FWHM): 5.5 ns \rightarrow 2.7 ns

20" PMT(R12860)

Box-Line dynode

Conventional PMT time resolution

Conventional product

Taken from Kamitani-san's (HPK) slides

R12845

TTS(FWHM): 270 ps → 170 ps

Micro-Channel-Plate (MCP) PMT

Oscilloscope (2.5 GHz bandwidth)

Excellent time resolution $(\sigma \sim 30 \text{ ps})$

Major drawback:

- Short lifetime of the photocathode
- Cost

MCP-PMT time resolution

MCP-PMTs for Belle II TOP detector

Developed at Nagoya Univ. in collaboration with Hamamatsu

Worked well for TOP since 2016.

Probably MCP-PMTs are the current best choice when one needs a large photocoverage with time resolution < 50 ps.

LAPPDTM (Large Area Picosecond Photo-Detector)

– Window + photocathode

203 x 203 mm² lead-free ALD glass capillary array MCPs

Glass spacers

Resistive anode with coupled patterned anode (Gen-II)

Expect much lower cost per unit area than the other MCP-PMTs.

Detector of the trinity?

PICOSEC-Micromegas detector

Gaseous Photomultiplier (GasPM)

- Excellent time resolution, large photocoverage, low cost
- > Fast avalanche multiplication process in the gas
- High electric field in the narrow gap without electric breakdown thanks to the resistive plate

Self-produced GasPM prototype

To have fast iteration, to reduce cost

- LaB₆ photocathode
 - Work function:
 - 2.3-3.3 eV (clean surface)
 - + <1.4 eV (oxidized)
 - ... Less deteriorated
 - Extremely low QE
- TEMPAX for resistive plate
 - Volume resistivity: 10¹⁵ Ωcm
 ... Hard to breakdown but
 no high-rate capability
- Commercially available cheap components only
- Assembled on a table

1st prototype for timing evaluation

Sensitive area: 30 mm

Evaluation with pico-second pulse laser

- Laser (λ = 375 nm) at 100 MHz repetition \rightarrow 0.02 Hz signal
- Read out by a digitizer (DRS4 evaluation board; 5 GSPS, 14-bit ADC)

GasPM time resolution

Intrinsic time resolution of GasPM: 25.0 ± 0.9 ps (better than expensive MCP-PMTs)

- Laser pulse width: 21.8 ± 0.5 ps
- Time resolution of the readout system: 14.0 ± 0.3 ps

arXiv:2302.12694

Superconducting nanowire single-photon detector (SNSPD)

SNSPD working principle

 $\hbar\omega\gg 2\Delta$ (superconducting energy gap = 10^{-2} - 10^{-3} of semiconductors)

e Hot spot heals itself due to energy loss of electrons by electron-phonon scattering

SNSPD time resolution

21

Free-running single-photon detectorwith the best time resolution:2.6 ps (FWHM) at 532 nm

Nature Photonics, 14 (2020) 250

Summary (personal comments)

- If you only need picosecond time resolution, you have several choices of photodetectors. Each detector has different pros and cons (time resolution, sensitive area x efficiency, cost). There are no perfect photodetectors best in all aspects.
- Gaseous photodetectors could potentially outperform the other "conventional" photodetectors.
 - \rightarrow Our R&D of GasPM
 - 25 ps single photon time resolution was demonstrated.
 - More R&D needed for application in HEP experiments.
- SNSPD could potentially become perfect in far future.
- To achieve sub-picosecond time resolution, "novel" working principle of photodetection like SNSPD will be required.