標準模型の物理結果

清水 志真 (神戸大学)

Standard Model Physics at LHC

How much precision can we achieve at LHC?

i.e. How well can we describe "known" SM processes?

- Improvement of measurements of SM parameters.
 - Couplings (α_s , TGC), ...
 - Any deviation from SM?
- Improvement of QCD description.
 - LO, NLO and higher order corrections...
 - Non-perturbative effects
- Improvement of understanding of proton structure.
 - Parton distribution functions (PDFs)

Contents

- Diboson production
- Inclusive W and Z production
- W and Z production in association with jets
- Jet production
- Photon production

Will not cover soft QCD.

Diboson production

- Check of the gauge structure in the EW sector of the SM.
 - Production cross section
 - Triple gauge coupling

If any non-SM physics exists, these would be affected.

- SHERPA and normalised ALPGEN reproduce the data.
 - MC with Multi-leg LO Matrix Element.
- MCFM, NLO generator, deviates from data at higher E_T for inclusive cross section.
 - lack of additional multiple quark/gluon emission.

$WW \rightarrow |\nu| |\nu|$

- 2 isolated opposite sign leptons with p_{T} >25 GeV, p_{T} > 20 GeV.
- Z mass veto
- Jet Veto

WW→evev

Drell-Yan

top-quark

non-WW diboson

8

Jet Multiplicity

9

W+jets

6

- **missing E_T** > 45GeV (25 GeV for $e \mu$)
- p_T(II') > 30 GeV

Normalised differential fiducial cross section:

 Reasonable description by MC@NLO (+Herwig/Jimmy) prediction.

ZZ (\rightarrow 4I) and WZ (\rightarrow I ν II)

Cross section vs center-of-mass energy

Good agreement with SM.

Anomalous Triple Gauge Coupling limits

• No deviation from SM.

W and Z production

- Theoretically well understood.
- Clear experimental signature in the leptonic decay.

- Test of QCD at large scale.
- Feedback to understanding of proton PDFs.

W and Z production

CMS-PAS-SMP-12-011 8TeV: low intensity run muon >20GeV, el>25 GeV.

 Good agreement with theoretical expectations.

 $\sigma_{W^{^{+}}}^{\text{fid}} \, / \, \sigma_{W^{^{+}}}^{\text{fid}}$

Differential cross sections @ 7TeV

- They are sensitive to quark flavour separation and strangeness in the proton.
 - \rightarrow Useful in PDF determination.

J.Rojo @ PDF4LHC(2013)

- Agreement in shape with NNLO pQCD prediction with NLO EW correction.
 - Including photon-induced background.
 - Several PDFs.
- Data is systematically above.

Z forward-backward asymmetry

13

W and Z production in association with jets

- Test of perturbative QCD (pQCD)
 - Comparison of calculation and generators.
- Can probe the heavier parton distribution in the proton.
- Dominant background for other processes.

Z + jets

- Fixed-order NLO: BlackHat+SHERPA up to + 4 jets
- LO Multi-leg ME: ALPGEN, SHERPA up to + 5 partons
- MC@NLO+HERWIG/JIMMY: DY + 1 parton +PS

- opposite sign leptons with lepton p_τ >20 GeV
- jet p_T > 30 GeV, |y|<4.4
- ∆ R(l,j) > 0.5

- MC@NLO fails to describe the data.
- BlackHat+SHERPA gives reasonable description.
- ALPGEN gives harder Z bosons.

Z+jet

- Leading jet p_T is well described by BlackHat+SHERPA, though it fails to describe scalar sum of all final-state objects (H_T).
 - Need more jets

W + c-jet

 Sensitive to strange quark in the proton

- Compared with several PDFs.
 - NNPDF2.3coll uses HERA, Tevatron and LHC only.
- Similar shape of dependence on p_T^D, but some discrepancy seen.

W + b-jet

- Flavour Number Scheme (FNS)
 - 4FNS: no b-quark in the proton
 - POWHEG (NLO), ALPGEN(LO)
 - 5FNS: intrinsic b-quark in the prote
 - Included in MCFM prediction.

Deviation at high b-jet p_τ.

Jet production

- QCD process
 - Hard process
 - Scattering of quarks, gluons
 - Described by perturbative QCD (pQCD).
 - Underlying event, Hadronization
 - Non-perturbative effects
 - ➔ Test of QCD
- Reflects proton structure

→ Determination of PDFs in pQCD framework

Inclusive jet measurement

Covering large kinematic region.

□ 20 GeV <p_T<1.5 TeV
□ |y|<4.4

Compared to predictior from NLO pQCD calculation with nonperturbative correction

Inclusive jet @ 2.76 TeV

- Good agreement between data and predictions of:
 - NLO pQCD prediction with non-perturbative correction.
 - MC prediction from NLO Matrix Element with matched parton shower (POWHEG+Pythia).
 - Following input from ATLAS, a new version of POWHEG was released.

Cross section ratio 2.76 TeV / 7TeV

Same jet calibration is used.

→ Can be cancelled in a ratio of the two measurement.

By considering correlation of the two measurement,

more sensitivity to PDFs is obtained.

Dijet measurement

- Invariant mass < 5TeV.
 - leading jet $p_T > 100 \text{GeV}$
 - subleading $p_T > 50 \text{ GeV}$
 - □ |y|<3.0
- Well described NLO pQCD prediction with NP correction.
- Compared with several PDFs.

3 jets to 2 jets ratio

- Cross section ratio of 3 jets to 2 jets reflects α_s .
- ATLAS uses the variable

$$N_{3/2}\left(p_T^{\text{all jets}}\right) = \sum_{i}^{N_{\text{jets}}} \frac{d\sigma_{N_{\text{jets}}\geq3}}{dp_{T,i}} \Big/ \sum_{i}^{N_{\text{jets}}} \frac{d\sigma_{N_{\text{jets}}\geq2}}{dp_{T,i}}$$

Smaller dependence on factrization and renormalization scales than ratio taken as a function of leading jet p_T .

α,

*α*_s running is well reproduced by Renormalization group equation upto 1 TeV.

Dijet flavour composition

Three mechanisms of heavy flavour production in a dijet system:

3. Gluon splitting

No heavy quark in hard interaction \rightarrow non-perturbative QCD

 Using kinematics of secondary vertex in a jet, dijet flavour composition is extracted.

Measured flavour composition

- Generally reproduced by NLO or LO predictions, except for BU fraction.
- Measured BU fraction is higher than predictions at p_T>100 GeV. 27

Photon measurements

- High-p_T prompt photons can be produced via two mechanism
 - Fragmentation process

Direct photon process

- Test of pQCD
- Constraint on the gluon PDF.
- Check contribution from photon fragmentation processes.

Inclusive isolated prompt photon

• Measured up to 1 TeV, η <2.4

- NLO prediction describes the measurement in the central region.
- Lower in the forward region.

photon + jet

 Fragmentation process and direct process has different cos θ^γ dependence due to spin of boson.

- NLO describe the measurement well.
- LO probably needs more fragmentation process.

Diphoton cross section

- Measured for m $\gamma \gamma$, p_T , $\Delta \phi$, $\cos \theta^*$.
- Compared to
 - LO+PS: Pythia, Sherpa
 - NLO: DIPHOX
 - NNLO: 2 *Y* NNLO, but no fragmentation process.

NNLO improves the description but not pefrect due to lack of fragmentation contribution.

Summary

- Many precise measurements are done and also ongoing.
 - Comparison with calculation and simulation to give feedback and improve them.
 - Especially in QCD.
 - Many input to PDF determination.

 \rightarrow Important in order to have best precision at LHC experiment.

- Not all the results are shown.
 - Please see

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Standard ModelPublicResults

http://cms.web.cern.ch/org/cms-papers-and-results

for more.

PDF whishlist at the LHC

Traditional Inclusive jets and dijets, central and forward: large-x quarks and gluons

Inclusive W and Z production and asymmetries: quark flavor separation, strangeness

New@LHC Isolated photons, photons+jets: medium-x gluons

W production with charm quarks: direct handle on strangeness

W and Z production at high p_T: medium and small-x gluon

Gif resonance Drell-Yan and W production at high mass: quarks at large-x

Low mass Drell-Yan production: small-x gluon

Top quark cross-sections and differential distributions: large-x gluon

Speculative Z+charm: intrinsic charm PDF

Single top production: gluon and bottom PDFs

Charmonium production: small-x gluon

Open heavy quark production: gluon and intrinsic heavy flavor

Juan Rojo

PDF4LHC workshop, CERN, 17/04/2013

W $\boldsymbol{\gamma}$ and Z $\boldsymbol{\gamma}$

- Wγ → Ivγ and Zγ → Ilγ
 - W/Z + isolated photon, E_T(γ) > 15 GeV
 - Δ R(I,γ) > 0.7 (suppress FSR)
 - Background: W/Z/γ+jets
- Ζγ → ννγ
 - Missing transverse energy + isolated photon
 - E_T(γ) > 100 GeV (ATLAS)
 - E_T(γ) > 145 GeV (CMS)
 - Background: W, Wy, y+jets

W charge asymmetry

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

 Good agreement between experiments.