High energy hadron physics at zero-degree

Zero-degree of collisions

Arrival direction of UHECRs

UHECR observations

Composition measurement

 Improvement of hadronic interaction models is one of the keys for UHECR studies.

✓ LHC provide unique opportunities to verify the models at √s=14TeV (E_{CR}=10¹⁷eV)

Very forward energy spectrum

- If softer, shallow development
- If harder, deep penetrating

LINGI

Elasticity $k = \frac{E_{lead}}{E_{avail}}$

- If small k (π⁰s carry more energy): rapid development
- If large k (baryons carry more energy): deep penetrating

Cross section

If large σ_{ine} : rapid development If small σ_{ine} : deep penetrating

(n, p, π)

Forward angular emission Secondary particle multiplicity

LHC

6112

The LHCf collaboration

***Y.Itow, *Y.Makino, *K.Masuda, *Y.Matsubara, *E.Matsubayashi, ***H.Menjo, *Y.Muraki, ***T.Sako, *K.Sato, * M.Shinoda, *M.Ueno, *Q.D.Zhou

*Institute for Space-Earth Environmental Research, Nagoya University, Japan
 *Kobayashi-Maskawa Institute, Nagoya University, Japan
 *Graduate School of Science, Nagoya University, Japan
 K.Yoshida Shibaura Institute of Technology, Japan
 T.Iwata, K.Kasahara, T.Suzuki, S.Torii

Waseda University, JapanY.Shimizu, T.TamuraKanagawa University, JapanN.SakuraiTokushima University, JapanM.HaguenauerEcole Polytechnique, FranceW.C.TurnerLBNL, Berkeley, USAO.Adriani, E.Berti, L.Bonechi, M.Bongi, R.D'Alessandro, P.Papini,S.Ricciarini, A.Tiberio

INFN, Univ. di Firenze, Italy INFN, Univ. di Catania, Italy

A.Tricomi

Experimental Setup

LHC

The LHCf detectors

40mm

rm1

Sampling and Positioning Calorimeters

- W (44 r.l $\,$, $\,1.7\lambda_{I}$) and Scintillator x 16 Layers
- Four positioning sensitive layers XY-Scintillator bars (Arm1) and XY-Silicon strip(Arm2)
- Each detector has two calorimeter towers, which allow to reconstruct π^0 Expected Performance
 - Expected Performance Energy resolution (> 100GeV) < 5% for Photons 40% for Neutrons Position resolution < 200µm for Photons a few mm for Neutrons

Front Counter

- thin scintillators with 80x80mm²
- To monitor beam condition.
- For background rejection of beam-residual gas collisions by coincidence analysis

The LHCf detectors

LHCF

silicon strip detector

Detector in the LHC tunnel

The LHCf history

- May 2004 LOI
- Feb 2006 TDR
- June 2006 LHCC approved

Jul 2006 construction

Aug 2007 SPS beam test

Jan 2008 Installation Sep 1st LHC beam

Dec 2009 - Jul 2010 **0.9TeV & 7TeV p-p** (detector removal)

Dec 2012- Feb 2013

5TeV/n p-Pb, 2.76TeV p-p Arm2 only (detector removal and <u>upgrade</u>)

P May-June 2015

13 TeV dedicated p-p (detector removal)

Nov. 2016 **5TeV/n & 8TeV/n p+Pb** Arm2 only (detector removal)

LHCf operations and results

Run	Elab (eV)	Photon	Neutron	π0	
p-p √s=0.9TeV (2009/2010)	4.3x10 ¹⁴	PLB 715, 298 (2012)		-	
p-p √s=2.76TeV (2013)	4.1x10 ¹⁵			PRC 86, 065209 (2014)	PRD 94 032007
p-p √s=7TeV (2010)	2.6x10 ¹⁶	PLB 703, 128 (2011)	PLB 750 360 (2015)	PRD 86, 092001 (2012)	(2016)
p-p √s=13TeV (2015)	9.0x10 ¹⁶	PLB 780, 233 (2018)	JHEP, 2018, 73 (2018)	on-going	
p-Pb √s _{NN} =5TeV (2013,2016)	1.4x10 ¹⁶			PRC 86, 065209 (2014)	
р-Pb √s _{NN} =8TeV (2016)	3.6x10 ¹⁶	Preliminary			
RHICf p-p √s=510GeV (2017)	1.4x10 ¹⁴		on-going		

Photon Energy Flow

Lhef

Neutral Pions at 7TeV p-p

Neutron, p-p √s=13TeV Unfolded Spectra

- In η > 10.76, data shows a strong increasing of neutron production in the high energy region. This behavior is not predicted by all models.
- EPOS-LHC and SIBYLL 2.3 have the best agreement in 8.99 < η < 9.22, 8.81 < η < 8.99, respectively.

Neutron, p-p √s=13TeV Unfolded Spectra

Photon, p-Pb √s_{NN}=8TeV

Motivation

- Measurement of the nuclear effect CR interaction (p-N,O) ≠ p-p
- Large suppression of forward π^0 production was measured at p-Pb, $\sqrt{s_{NN}}=5$ TeV

<u>Data</u>

- 2 hour operation in November 2016
- Low pile-up, μ~0.01

Analysis

- Use the well-developed method for photon analysis at p-p,13TeV
- Contribution of UPC collisions
 20 50 % of total photon events
 Estimated by the STARLIGHT simulator

Photon, p-Pb √s_{NN}=8TeV

LHC

What's next?

- Complete the analysis for inclusive γ, π^0, n .
- Additionally,
 - Process-based measurement
 For understanding the sources of discrepancy between data and models
 ⇒ LHCf+ATLAS joint analysis

<u>First target:</u>

Measurement of contribution of diffractive processes to the forward particle production

- Collision-energy dependence (Feynman Scaling) For improving the predictive power in > ELHC
 - \Rightarrow RHIC forward (RHICf) at pp, $\sqrt{s}=0.5$ TeV

Diffractive processes

.HC

N_{track}

Measurement of contributions of diffractive processes to forward photon spectra in *pp* collisions at $\sqrt{s} = 13$ TeV

Preliminary result of the measurement for forward photons is published in a conference-note; ATLAS-CONF-2017-075

LHCT ATLAS

Measurement of contributions of diffractive processes to forward photon spectra in *pp* collisions at $\sqrt{s} = 13$ TeV

ATLAS-CONF-2017-075

Ratio (N_{ch=0}/Inclusive)

- At η >10.94, the ratio of data increased from 0.15 to 0.4. with increasing of the photon energy up to 4TeV.
- PYTHIA8212DL predicts higher fraction at higher energies.
- SIBYLL2.3 show small fraction compare with data at η >10.94.
- At 8.81 < η < 8.99, the ratio of data keep almost constant as 0.17.
- EPOS-LHC and PYTHIA8212DL show good agreement with data at 8.81 < η < 8.99.

Update plan of the joint analysis

HC

RHICf experiment

RHIC at BNL

• p+p √s = 510 GeV

(polarized beam)

- Test of energy scaling with the wide p_T range. (The X_F-pT coverage is almost same as LHCf @ p+p √s=7TeV)
- The operation was successfully completed in June 2017
- Common operation with STAR

Armil detector in RHIC tunnel

- LHCf measures the energy spectra of neutral particles, γ,π⁰,n in the very forward regions of collisions (η > 8.4), which is important for understanding air-shower developments.
- Operations have successfully completed for p-p: √s = 0.9, 2.76, 7, 13 TeV and p-Pb: √s_{NN} = 5, 8 TeV.
- Combine analysis with ATLAS and the measurement at RHIC are also proceeded to understand the hadronic interaction better.
- Future plan
 - Operation with p-O collisions at LHC

Backup

Photon Energy Flow

Lhef

Joint Analysis with ATLAS - Selection of Diffractive interactions -

LHC

LHCf results: single γ energy - p+p @ 7 TeV

- No model can reproduce the **LHCf data** perfectly.
- **DPMJET** and **PYTHIA** are in good agreement at high- η for E_v<1.5TeV, but harder in E>1.5TeV.
- QGSJET and SIBYLL shows reasonable agreement of shapes in high- η but not in low- η
- EPOS has less η dependency against the LHCf data.

π⁰ p_T spectra at p+p,7TeV

O. ADRIANI et al.

PHYSICAL REVIEW D 94, 032007 (2016)

π^{0} p_z (~E) spectra at p+p,7TeV

PRD 94 (2016) 032007

LHC

DPMJET and **Pythia** overestimate over all E-p_T range