Anomalies in Flavor Physics

Teppei Kitahara (Nagoya U. KMI, KEK)

Nagoya University, December 17, 2022

The 4th KMI school

- Statistical Data Analysis and Anomalies
 - in Particle Physics and Astrophysics -

[Christenson, Cronin, Fitch, Turlay. '64, PRL]

A historic flavor anomaly

The relative efficiency for detection of the 30 three-body K_2^0 decays compared to that for decay to two pions is 0.23. We obtain 45 ± 9 events in the forward peak after subtraction of background out of a total corrected sample of 22 700 K_2^0 decays.

> 22700 events \rightarrow event selection \rightarrow 45 signal with ±9 uncertainty

 $45/9 = 5\sigma$ peak in the last several bins

Then, what?

[Christenson, Cronin, Fitch, Turlay. '64, PRL]

A historic flavor anomaly

- 30 "Discovery of $K_L^0 \to \pi^+\pi^-$ decay" corresponding to "discovery of CP violation"
- inconsistent with Weinberg-Salam theory

Kobayashi and Maskawa introduced the CKM matrix

prediction of c,b,t + CPV

... and this building was built

Thus, Anomaly had provided us great breakthroughs!

Kobayashi-Maskawa Institute

Statistical fluctuation

Let us consider **1,000,000** different experiments

2,700 experiments will provide 3σ deviation

1 experiment will provide 5σ deviation (assuming Gaussian distribution) Keep in mind:

Anomaly MUST exit in real data, when the number of experiments is huge

We say anomaly

Q. How to distinguish "new physics signal" from "fake anomaly"?

or

better strategies: 1, [exp-side] cross-checked by different collaborations or methods 2, [th-side] hidden theoretical correlation among several anomalies

What is flavor physics?

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

High-energy vs. High-precision

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

B physics in **B** factory

newcomer!

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

- Rich phenomenology; CKM matrix, flavor-changing neutral current (FCNC), CP violation,
- tau lepton, Lepton-flavor universality (LFU), Hadron spectroscopy, dark sector, etc.
 - BaBar experiment @ SLAC, physics run finished at 2008 $e^+e^- \rightarrow \Upsilon \rightarrow B\bar{B} \quad 10^8 B\bar{B}$ per year
 - Belle and Belle II experiments @ KEK, Belle II started at 2019
 - $e^+e^- \rightarrow \Upsilon \rightarrow B\bar{B}$ $10^{10}B\bar{B}$ per year
 - LHCb experiment @ CERN, Run 3 started at 2022
 - $pp \rightarrow b\bar{b} \rightarrow B\bar{B}$ $10^{12}b\bar{b}$ per year (large event but large bkg)

CMS experiment will become B factory at Run 3 (called B-parking), Run 2 data [10^{10} ($b \rightarrow \mu X$) \bar{b}] will be shown near future

CKM matrix

Cabibbo-Kobayashi-Maskawa (CKM) matrix arises the relative misalignment between the

Yukawa matrices and gauge interactions:

$$\begin{split} \mathcal{L} \supset -\frac{g}{\sqrt{2}} \bar{u}_{L}^{i} \gamma^{\mu} d_{L}^{i} W_{\mu}^{+} \xrightarrow{\text{mass-eigenbasis}} &-\frac{g}{\sqrt{2}} \bar{u}_{L}^{i} \gamma^{\mu} (U_{u}^{\dagger} U_{d})^{ij} d_{L}^{j} W_{\mu}^{+} \\ &= -\frac{g}{\sqrt{2}} \bar{u}_{L}^{i} \gamma^{\mu} V_{\text{CKM}}^{ij} d_{L}^{j} W_{\mu}^{+} \end{split}$$

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Unitarity of CKM matrix

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

CKM unitarity triangle

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

A triangle can be drawn on a complex plane

B triangle

Many data are available! Currently, they are consistent with the triangle

$b \rightarrow c \ [B \rightarrow X_c, D, D^*]$ semileptonic decays

Comparing measured BR to the theoretical formulae **determines** |V_{cb}| Inclusive decays: $B \to X_c \ell \nu$ first lattice study [Gambino, Hashimoto, '20] Exclusive decays: $B \to D\ell\nu, B \to D^*\ell\nu$ Many data and many lattice results are available

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$\ell = e, \mu + \tau$$

Inclusive hadron states $X_{c} = D^{**}, D^{*}, D, D\pi,$ **D**ππ...

The heavy quark effective theory: $b \to c\ell\nu + \mathcal{O}(\alpha_s, \Lambda_{OCD}/m_b)$ with non-perturbative elements

Last data in 2010 (BaBar) & no lattice \rightarrow Belle II result coming soon [Belle II, 2205.06372], the

Hadronization is relevant; channel-dependent form factor, difficult SM prediction

 $B \rightarrow D\ell\nu$

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

[HFLAV 2021; Exclusive decays: $B \rightarrow D\ell\nu, B \rightarrow D^*\ell\nu$ based on CLN]

 $B \rightarrow D^* \ell \nu$

Average of the exclusive determinations

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Average of the inclusive determinations

CKM unitarity

Kaon physics prefers inclusive V_{cb}

3.3*σ* **tension** between inclusive vs exclusive determinations of V_{cb} and V_{ub} (exclusive violates the CKM unitarity condition)

But, NP interpretation is not easy

Test of Lepton Flavor Universality (LFU)

Gauge symmetry predicts lepton flavor universal (LFU) phenomena:

Only charged-lepton mass violates the LFU within the SM

 $m_e = 0.5 \,\mathrm{MeV}\,, \qquad m_\mu = 105 \,\mathrm{MeV}\,, \qquad m_\tau = 1776 \,\mathrm{MeV}$

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Lepton-flavor-universality observables R(D) and R(D*)

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

[HFLAV 2022+, [Iguro, **TK**, Watanabe, 2210.10751]]

	R_{D^*}	R_D	Correlation
	$0.332 \pm 0.024 \pm 0.018$	$0.440 \pm 0.058 \pm 0.042$	-0.27
	$0.293 \pm 0.038 \pm 0.015$	$0.375 \pm 0.064 \pm 0.026$	-0.49
	$0.270 \pm 0.035 ^{+0.028}_{-0.025}$		
	$0.283 \pm 0.018 \pm 0.014$	$0.307 \pm 0.037 \pm 0.016$	-0.51
	$0.280 \pm 0.018 \pm 0.029$	85 <u>2</u> 23	3 <u>9585</u>
	$0.281 \pm 0.018 \pm 0.024$	$0.441 \pm 0.060 \pm 0.066$	-0.43
ıge	$0.285 \pm 0.010 \pm 0.008$	$0.358 \pm 0.025 \pm 0.012$	-0.29

10 measurements with correlations and 2 parameter fit

P value= 0.32; means data are consistent

Lepton-flavor-universality observables R(D) and R(D*)

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

QED correction within the SM

Long-distance QED correction could violate the lepton flavor universality

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

- [de Boer, TK, Nisandzic, Phys.Rev.Lett. '18] + [Calí, Klaver, Rotondo, Sciascia, '19; Isidori, Nabeebaccus, Zwicky, '20]

Single new-particle interpretations

W' 1805.01869] and $Z' \rightarrow \tau \tau$ search [Faroughy, Greljo, Kamenik, 1609.07138] **Charged-Higgs with generic flavor structure** Iguro, 2201.06565] Leptoquark

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

- Severely constrained from ΔM_{s} , $W' \rightarrow \tau \nu$ search [Abdullah, Calle, Dutta, Flores, Restrepo,

Constrained from $B_c \to \tau \nu$ and $H^{\pm} \to \tau \nu$ search but still allowed [Iguro, Tobe, <u>1708.06176</u>;

Collider bound comes from $gg \rightarrow LQ LQ^*$, and broad parameter regions are still allowed

Single new-particle interpretations

		\mathbf{Spin}	Charge	Operators	R_D	R_{D^*}	LHC	Flavor
	H^{\pm}	0	$({f 1},{f 2},{}^1\!/\!{}^2)$	O_{S_L}	~	~	b au u	$B_c \rightarrow \tau \nu, F_L^{D^*}, P_{\tau}^D, M_W$
LQ	\mathbf{S}_1	0	$(ar{3},1,1/\!$	O_{V_L},O_{S_L},O_T	\checkmark	\checkmark	au au	$\Delta M_s, P^D_\tau, B\to K^{(*)}\nu\nu$
LQ	$ m R_{2}^{(2/3)}$	0	$({f 3},{f 2},{7/\!6})$	$O_{S_L},O_T,(O_{V_R})$	\checkmark	\checkmark	$b \tau \nu, \tau \tau$	$R_{\Upsilon(nS)},P_{ au}^{D^*},M_W$
LQ	U_1	1	$({f 3},{f 1},{f 2}/{f 3})$	O_{V_L},O_{S_R}	~	\checkmark	$b \tau \nu, \tau \tau$	$R_{K^{(*)}}, R_{\Upsilon(nS)}, B_s \to \tau \tau$
LQ	${ m V}_2^{(1/3)}$	1	$(ar{3}, 2, {}^{5}\!/\!\!6)$	O_{S_R}	\checkmark	2σ	au au	$B_s \to \tau \tau, M_W$

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

[Iguro, **TK**, Watanabe, 2210.10751]

One can distinguish each model by these channels

New idea: LFU violation in Y (Upsilon) decay

Y(nS) [n=1,2,3] leptonic decays can provide new LFU observable ($b\bar{b} \rightarrow \tau \bar{\tau}$)

$$R_{\Upsilon(nS)} = \frac{\mathcal{B}(\Upsilon(nS) \to \tau^+ \tau^-)}{\mathcal{B}(\Upsilon(nS) \to \ell^+ \ell^-)},$$

Belle II will measure it [n=2] very precisely
 less than 1% accuracy is needed

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Sum rule between $R(\Lambda_c)$ and R(D), $R(D^*)$

Baryonic counterpart ($b \rightarrow c \tau \nu$): $\mathcal{R}(\Lambda)$

There is a model-independent sum rule for R(D), $R(D^*)$, and $R(\Lambda_c)$, through new physics form factor analysis (originated from heavy quark symmetry)

$$\frac{R(\Lambda_c)}{R(\Lambda_c)_{\rm SM}} \simeq 0.26 \frac{R(D)}{R(D)_{\rm SM}} + 0.74 \frac{R(D^*)}{R(D^*)_{\rm SM}}$$

It can crosscheck of $R(D^{(*)})$ anomaly by coherent amplification of $R(\Lambda_c)$

 $R(\Lambda_c) = 0.380 \pm 0.012_R$ $R(\Lambda_c)_{\rm SM} = 0.324 \pm 0.00$

 $R(\Lambda_c)_{\rm exp} = 0.242 \pm 0.075$ [LHCb: 2201.03497]

Anomalies in Flavor Physics

R(D^(*)) anomaly

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$\Lambda_c) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_\ell)}$$

[Fedele, Blanke, Crivellin, Iguro, **TK**, Nierste, Watanabe, 2211.14172]

$$R(D^{(*)}) \pm 0.005_{\rm FF}$$

A slight (~ 2σ) inconsistency appeared

LQ indirect collider search

[Endo, Iguro, TK, Takeuchi, Watanabe 2111.04748]

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

39

U₁ Leptoquark scenario: comparison See also Nobe-san's talk

[Endo, Iguro, **TK**, Takeuchi, Watanabe, 2111.04748]

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

[CMS, CMS PAS HIG-21-001]

New LQ anomaly from CMS @ICHEP2022

3.4 σ level excess at $M_{\rm LQ} \sim 2$ TeV was reported from CMS [CMS, CMS-PAS-EXO-19-016]

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Other LFU observables: R(K) and R(K*)

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Global significance of $b \rightarrow s \mu \mu$ anomaly is 4.3 σ level taking into account the look-elsewhere

effect (evaluated via pseudo-experiment) [Isidori, Lancierini, Owen, Serra 2104.05631]

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

[Altmannshofer, Stangl, 2103.13370;

New physics operator

[Kriewald, et al, 2104.00015]

SM prediction

0.2

 $C_{bs\mu\mu} \approx (39 \,\mathrm{TeV})^{-2}$

Assuming all dimensionless interactions = 1

New result will be presented next Tuesday! You cannot miss it.

LHC Seminar

Measurements of R(K) and $R(K^*)$ with the full LHCb Run 1 and 2 data

by Renato Quagliani (EPFL - Ecole Polytechnique Federale Lausanne (CH))

Tuesday Dec 20, 2022, 11:00 AM → 12:00 PM Europe/Zurich

♀ 500/1-001 - Main Auditorium (CERN)

In this seminar we present the first simultaneous test of muon-electron universality in $B^+ \to K^+ \ell^+ \ell^-$ and $B^0 \to K^{*0} \ell^+ \ell^-$ decays, known as Description R(K) and $R(K^*)$, in two regions of di-lepton invariant mass squared. The analysis operates at a higher signal purity compared with previous analyses and implements a data-driven treatment of residual hadronic backgrounds. The analysis uses the full LHCb Run 1 and 2 data recorded in 2011-2012 and 2015-2018, corresponding to an integrated luminosity of 9 fb $^{-1}$. This analysis is the most sensitive lepton universality test in rare b-decays and the results obtained supersede the previous LHCb measurements of R(K) and $R(K^{*0})$.

Organized by Michelangelo Mangano, Jan Fiete Grosse-Oetringhaus and Pedro Silva.....Refreshments will be served at 10h30

Videoconference

LHC seminar - 20 December - LHCb

Webcast

There is a live webcast for this event

[CDF Collaboration, Science 376 (2022)].

W boson mass anomaly Review [Endo, TK, Yagyu, High Energy News, 2022, Link] LEP 80376 ± 33 LHC ATLAS 80370 ± 19 LHC LHCb 80354 ± 32 Tevatron D0 I 80478 ± 83 Tevatron D0 II 80376 ± 23 Tevatron CDF I 80432 ± 79 **Tevatron CDF II** 80433.5 ± 9.4 80427.4 ± 8.9 Tevatron average 80413.3 ± 15.0 World average \mathbf{SM} 80350.5 ± 7.7 80400

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

B anomaly $(b \rightarrow s \mu \mu)$ vs W boson mass

- part of) B anomaly $(b \rightarrow s \mu \mu)$ and recent measured W mass anomaly
- can be probed by future 100 TeV collider

T parameter

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

[Crivellin, Kirk, TK, Mescia, 2204.05962]

Leptoquark catalogue

[cf. Angelescu, Bečirević, Faroughy, Jaffredo, Sumensari, 2103.12504; Athron, Balazs, Jacob, Kotlarski, Stockinger, Stockinger-Kim, 2104.03691]

[LQ* requires additional symmetry that forbids the proton decay, see 1603.04993]

Label	Spin	Charge	R(D (*))	R(K ^(*))	muon g-2	Mw
S ₁ LQ (*)	0	(3, 1, 1/3)		Loop		With S ₃
U ₁ LQ	1	(3, 1, 2/3)			X	X
R ₂ LQ	0	(3, 2, 7/6 [1/6])		Loop		
V ₂ LQ (*)	1	(3, 2, 5/6)	Small		Small	
S ₃ LQ (*)	0	(3, 3, 1/3)	×		×	With S ₁
U ₃ LQ	1	(3, 3, 2/3)	×		×	?

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Leptoquarks that do not lead to proton decay and can contribute precision measurements

Test of unitarity in CKM matrix

Why these components?

Leading uncertainties from kaon form factors have been improved significantly [FLAG2021, 2111.09849]

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Unitarity condition 1st row unitarity condition

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Sum of the absolute values must become 1

Vud and Vus determinations See also Young-san's talk

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Cabibbo-angle anomaly (CAA) [Crivellin, Kirk, TK, Mescia, 2212.06862]

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$K_{\mu 2}/\pi_{\mu 2}$$

 $K^- \rightarrow \mu \bar{\nu}$
 $\pi^- \rightarrow \mu \bar{\nu}$
Frror budgets

ets: LO: FFs

NLO: data, radiative correction

Uncertainty from $|V_{\mu b}|$ is negligible

Significance of CAA

Global fit (including with some correlations of uncertainties) [Crivellin, Kirk, TK, Mescia, 2212.06862] $\begin{aligned} |V_{ud}|_{\text{global}} &= 0.973\,79(25)\,, \\ |V_{us}|_{\text{global}} &= 0.224\,05(35)\,, \end{aligned} \rho(V_u) \end{aligned}$ $\Delta_{\rm CKM}^{\rm global} \equiv |V_{ud}|_{\rm global}^2 + |V_{us}|_{\rm global}^2$

2.8\sigma level deviation from the unitarity condition

Another precise combination (1st column unitarity)

$$\Delta_{\rm CKM}^{1^{\rm st} \rm column} \equiv |V_{ud}|_{\rm global}^2 + |V_{ud}|_{\rm global}^2$$

Uncertainty is predominated by data of $D \rightarrow \mu \nu$, being probed precisely by Belle II and BES III

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$V_{ud}, V_{us}) = 0.09$$

$$|_{\text{global}}^2 + |V_{ub}|^2 - 1 = -0.00151(53),$$

 $|V_{cd}|^2 + |V_{td}|^2 - 1 = -0.0028(18),$

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

EFT fitting [Crivellin, Kirk, **TK**, Mescia, 2212.06862]

EFT global fitting implies that right-handed W-u-d and W-u-s new physics is preferred

	Best fit point	$-\Delta\chi^2$	Pull	
	-0.49	3.3	1.8σ	
	-0.26	1.1	1.1σ	
	-0.53	3.6	1.9σ	
	-1.1	3.3	1.8σ	
	-2.5	8.2	2.9σ	nico null
	(-1.6, -3.1)	15	3.5σ	nice pui
	(-0.59, -2.7)	12	3.1σ	
	(0.25, -2.1, -3.2)	16	3.2σ	
$[ud]_{12}$	(0.59, 0.78, -2.8, -3.3)	18	3.3σ	
$\left[ud \right]_{12} $	(0.27, 0.11, -2.1, -3.2)	16	2.9σ	

Conclusions

- Flavor physics is an essential approach to investigate new physics beyond the SM
- Currently, several flavor anomalies are found. There, the statistical data analysis plays an important role
- Beyond the statistical data analysis, it is important to investigate hidden theoretical correlation among several observables

Anomalies in Flavor Physics

Backup slides

(c) KMI/Nagoya-U

Operators for CAA

$$\begin{aligned} Q_{Hq}^{(1)ij} &= (H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{q}_{i} \gamma^{\mu} P_{L} q_{j}), \qquad Q_{H}^{(3)} \\ Q_{Hu}^{ij} &= (H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{u}_{i} \gamma^{\mu} P_{R} u_{j}), \qquad Q_{Hud}^{(3)} \\ Q_{Hud}^{ij} &= i (\tilde{H}^{\dagger} D_{\mu} H)(\bar{u}_{i} \gamma^{\mu} P_{R} d_{j}). \end{aligned}$$

$$\begin{split} \mathcal{L}_{W,Z} &= -\frac{g_2}{\sqrt{2}} W^+_{\mu} \, \bar{u}_i \gamma^{\mu} \left(\left[V \cdot \left(\mathbbm{1} + v^2 C_{Hq}^{(3)} \right) \right]_{ij} P_L + \frac{v^2}{2} \left[C_{Hud} \right]_{ij} P_R \right) d_j + \text{h.c.} \\ &- \frac{g_2}{6c_W} Z_{\mu} \, \bar{u}_i \gamma^{\mu} \left(\left[(3 - 4s_W^2) \mathbbm{1} + 3v^2 \, V \cdot \left\{ C_{Hq}^{(3)} - C_{Hq}^{(1)} \right\} \cdot V^{\dagger} \right]_{ij} P_L \\ &- \left[4s_W^2 \mathbbm{1} + 3v^2 C_{Hu} \right]_{ij} P_R \right) u_j \\ &- \frac{g_2}{6c_W} Z_{\mu} \, \bar{d}_i \gamma^{\mu} \left(\left[(2s_W^2 - 3) \mathbbm{1} + 3v^2 \left\{ C_{Hq}^{(3)} + C_{Hq}^{(1)} \right\} \right]_{ij} P_L \\ &+ \left[2s_W^2 \mathbbm{1} + 3v^2 C_{Hd} \right]_{ij} P_R \right) d_j \,, \end{split}$$

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$Q_{Hq}^{(3)ij} = (H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} H)(\bar{q}_i \tau^I \gamma^{\mu} P_L q_j),$$

$$Q_{Hd}^{ij} = (H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} H)(\bar{d}_i \gamma^{\mu} P_R d_j),$$

Operators for R(D^(*)) anomaly

$$\mathcal{H}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \bigg[(1 + C_{V_L})O_{V_L} + C_{V_R}O_{V_R} + C_{S_L}O_{S_L} + C_{S_R}O_{S_R} + C_TO_T \bigg] \,,$$

with

$$O_{V_L} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau}),$$

$$O_{S_L} = (\bar{c}P_Lb)(\bar{\tau}P_L\nu_{\tau}),$$

$$O_T = (\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau}),$$

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$O_{V_R} = (\bar{c}\gamma^{\mu}P_Rb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau}),$$
$$O_{S_R} = (\bar{c}P_Rb)(\bar{\tau}P_L\nu_{\tau}),$$

Polarization observables in $b \rightarrow c \tau \nu$

The following two polarization observables could be important to confirm/distinguish new physics

Longitudinal D^* polarization ($D^* \rightarrow D^*$

$$F_L(D^*) = \frac{\Gamma(B \to D_L^* \tau \nu)}{\Gamma(B \to D^* \tau \nu)}$$

 θ_{hel} is betwe D^* res

$$P_{\tau}(D^{(*)}) = \frac{\Gamma\left(B \to D^{(*)}\tau^{\lambda=+1/2}\nu\right) - \Gamma\left(B \to D^{(*)}\tau^{\lambda=-1/2}\nu\right)}{\Gamma\left(B \to D^{(*)}\tau\nu\right)}$$

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

$$\pi)$$
(For the angle
een D and B in the
st frame
(Belle, 1903.0)
(Belle, 1903.

 τ polarization asymmetry along the longitudinal directions of $\tau (\tau \rightarrow \pi \nu, \rho \nu)$ [Tanaka, ZPC '95]

Fit of an angle dependence: between π , ρ and $W^*(\tau v)$ in τ rest frame

B anomaly prediction

SU(2)_L-doublet scalar LQ (R_{2})

SU(2)_L-singlet vector LQ (U_1)

 $P_{\tau}(D^*)$ could discriminate the new physics

One can distinguish each new physics scenario

Light

NP?

New physics interpretations of CAA

EFT fittings: $(H^{\dagger}iD_{\mu}^{I}H)(\bar{L}\gamma^{\mu}\tau^{I}L)$ fit [Coutinho, et al, <u>1912.08823</u>]; right-handed current fit [Grossman, et al, 1911.07821, Cirigliano, et al, 2112.02087]; W- ℓ - ν fit [Crivellin, et al, 2002.07184]; G_F fit [Crivellin, et al, 2102.02825] Heavy SU(2) vector boson (~10 TeV) [Capdevila, et al, 2005.13542] Leptoquark (~5TeV) [Marzocca, Trifinopoulos, 2104.05730] Vector-like Quark (1-5 TeV) [Belfatto, et al, 1906.02714, 2103.05549; Cheung, et al, 2001.02853; Branco, et al, 2103.13409] Vector-like Lepton (1-2 TeV) [Endo, Mishima, 2005.03933; Crivellin, et al, 2008.01113; Kirk, 2008.03261 Heavy right-handed neutrino (type I seesaw) can not explain the tension, but the unphysical region [(mixing)² < 0] is favored W^{\pm} How about a light sterile neutrino?

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Neutrino anomalies on the market

- O(1) eV sterile neutrino (neutrino oscillations) from LSND, MiniBooNE, Gallium Anomaly, Reactor Antineutrino Anomaly)
- 7 keV decaying sterile neutrino (3.5 keV photon emission from galaxy clusters)
- 5 MeV bump in antineutrino energy spectrum (RENO, NEOS, Daya Bay, Double Chooz)

But, no conclusive measurements yet

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Sterile neutrino contributions

1. modifies active neutrino coupling

contribution from 1+2 is canceled

$$\begin{split} |\mathcal{M}|^{2} &= |\mathcal{M}_{\rm SM}|^{2} \cos^{2} \theta_{e} + |\mathcal{M}_{\rm SM}|^{2} \sin^{2} \theta_{e} \times f(M_{N}, Q) & [\text{Isakov, Strikman, '86;} \\ \text{Deutxh, Lebrun, Prieels, '90]} \\ &\simeq |\mathcal{M}_{\rm SM}|^{2} \left(\cos^{2} \theta_{e} + \sin^{2} \theta_{e}\right) = |\mathcal{M}_{\rm SM}|^{2} & \text{sterile-neutrino contributions} \\ &\text{are suppressed when } M_{N} \ll Q \end{split}$$

Anomalies in Flavor Physics **Teppei Kitahara**: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

2. decay into sterile neutrino if kinematically possible

Sterile neutrino fitting

Favored parameter regions $(1\sigma/2\sigma)$ in a MeV sterile neutrino model with assuming CKM unitarity

[Kitahara, Tobioka, in progress]

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Kink search in the energy spectrum of the isotope β decays [Bolton, et al, 1912.03058]

 $E_{\text{kink}} = Q - M_N$

PIENU experiment: 1506.05845, 1909.11198

 $\frac{\mathsf{BR}(\pi^+ \to e^+ \nu_e)}{\mathsf{BR}(\pi^+ \to \mu^+ \nu_\mu)}$

Related channel: $R(J/\psi)$

The LFU violation was measured in $B_c^- \rightarrow J/\psi$ transitions

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^- \to J/\psi\tau)}{\mathcal{B}(B_c^- \to J/\psi\ell)}$$

 $R(J/\psi)_{\rm SM} = 0.2582 \pm 0.0038$

JHEP '18]

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

- $R(J/\psi)_{\rm exp} = 0.71 \pm 0.17_{\rm stat} \pm 0.18_{\rm syst}$ [LHCb, 1711.05623]
 - Based on first lattice result [HPQCD, 2007.06956]
 - using N_f=2+1+1, with "HISQ" c and heavy quar **1.8\sigma consistent** b
- **Same-direction tension** as R(D) and R(D^{*}) anomalies
- New physics study, e.g., [Watanabe, PLB '18; Alok, Kumar, Kumar, Kumbhakar, Sankar,

"K π puzzle": Direct CPV in $B \rightarrow K\pi$ modes

Direct CP asymmetry is obtained by $A_{CP} = \frac{\Gamma(B \to f) - \Gamma(B \to f)}{\Gamma(\bar{R} \to \bar{f}) + \Gamma(R \to f)}$

 $\Delta A_{CP}(K\pi) = A_{CP}(B^+ \to \pi^0 K^+) - A_{CP}(B^0 \to \pi^- K^+) = 0 @ SM leading order$

All data are in agreement with each other 2.3σ tension $A_{CP}|_{\text{BaBar}}(B^+ \to \pi^0 K^+) = (3.0 \pm 3.9 \pm 1.0)\%$ $A_{CP}|_{\text{Belle}}(B^+ \to \pi^0 K^+) = (4.3 \pm 2.4 \pm 0.2)\%$ $\Delta A_{CP}|_{exp}(K\pi) = (12.4 \pm 2.1)\%$ [HFLAV averages 2019] $\begin{aligned} A_{CP} |_{\text{BaBar}} (B^0 \to \pi^- K^+) &= (-10.7 \pm 1.6^{+0.6}_{-0.4}) \% \\ A_{CP} |_{\text{Belle}} (B^0 \to \pi^- K^+) &= (-6.9 \pm 1.4 \pm 0.7) \% \end{aligned}$ SM explanation can be possible, if this contribution is bigger than the NLO prediction $A_{CP}|_{CDF}(B^0 \to \pi^- K^+) = (-8.3 \pm 1.3 \pm 0.4)\%$ $B^$ by a factor of 2 $A_{CP}|_{\rm LHCb}(B^0 \to \pi^- K^+) = (-8.4 \pm 0.4 \pm 0.3)\%$

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

The difference between two direct CP asymmetries [note that $\mathcal{B}(B \to K\pi) = \mathcal{O}(10^{-5})$]

$$\Delta A_{CP}|_{SM}(K\pi) = (1.8^{+4.1}_{-3.2})\%$$

[Hofer, Scherer, Vernazza, JHEP '11; Crivellin, Gross, Pokorski, Vernazza, PRD '20]

[Li, Mishima, PRD '11; Beaudry, Datta, London, Rashed, Roux, JHEP '18]

 \bar{u}

The first observation of CPV in D-meson

Difference of Difference of $D^0 \rightarrow h^- h^+$ and $D^0 \rightarrow h^- h^+$

The Direct CPV is *amplified* in the difference! $V_{cd}: V_{us} \simeq -1:1$

Detection asymmetry and final-state independent uncertainty are dropped!

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Direct CPV $A_{CP}(D^0 \to K^- K^+) \equiv \frac{\#(D^0(t=0) \to K^- K^+) - \#(D^0(t=0) \to K^- K^+)}{\#(D^0(t=0) \to K^- K^+) + \#(\bar{D}^0(t=0) \to K^- K^+)}$

Direct CP violation in D

Anomalies in Flavor Physics

Teppei Kitahara: Nagoya U. KMI, KEK, The 4th KMI school, Nagoya University, December 17, 2022

Latest result [LHCb, 1903.08726]

 $\Delta a_{CP}^{dir} = (-15.7 \pm 2.9) \times 10^{-4}$ 5.3 σ discovery of CPV! But, need confirmation by Belle II A reliable SM prediction [QCD sum rule] $\left|\Delta a_{CP}^{dir}\right| < (2.0 \pm 0.3) \times 10^{-4}$ [Khodjamirian, Petrov, PLB '17]

Smaller than the data by a factor of 7; 4.7 σ tension

(QCD sum rule works well in *B* physics)

SM explanation could be possible by QCD re scattering $D^0 \rightarrow "\pi\pi" \rightarrow K^-K^+$ [Grossman, FPCP2020]

New physics implications; 2HDM, MSSM, vector-like quark [Dery, Nir, JHEP '19]

