Quark-Gluon Plasma: Recent Development of Phenomenological Models

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Kobayashi Maskawa Institute, Nagoya University Department of Physics, Nagoya University *Chiho NONAKA*

February 19, 2018@KMI2019

What is the QGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

High temperature and/or high density

Т

What is the QGP?

Quark-Gluon Plasma

- Quarks and gluons at extreme conditions
 - Early Universe

Т

What is the QGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

Т

- Relativistic Heavy Ion Collisions : Little Bang

What is the sQGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

Relativistic Heavy Ion Collisions

Т

Heavy Ion Collisions

Heavy Ion Collisions

	p+p.		ALICE@LHC
Au+Au(Beam Energy Scan) 7.7, 11.5, 19.8, 27, 39	d+Au,He+Au U+U, Au+Au, 200	Pb+Pb 2760	p+Pb Pb+Pb 5020 GeV
	RHIC	LHC	$\overline{\sqrt{s_{NN}}}$

Heavy Ion Collisions

Statistical Model

Heavy Ion Collisions and QCD phase diagram

Heavy Ion Collisions and QCD phase diagram

Space-Time Evolution

collisions

A start of the sta

thermalization

hydrodynamics hadronization

freezeout

Space time evolution

Thermalization,

Collectivity

Jets

Heavy quarks c and b

photon

medium (light quarks u,d,s)

sQGP, recombination

QCD phase structure

Medium + Physical Observables

Space-Time Evolution

Medium + Physical observables

Equation of State

• Equation of State

 $\mu_{\rm B}$

Neutron star

QCD phase diagram EoS: lattice QCD Shear and bulk viscosities

Property of QGP

Current Status for transport coefficients

shear viscosity bulk viscosity 3 ----α_s < 0.1 ---- α_s < 0.1 (a) (b) __0.1 < α < 0.2 — 0.1 < α_s < 0.2 Hydro + v data I LQCD --- Hydro + v_2^2 data II 10⁻¹ 2 ₹Ī Sum rule -- pion gas --- pion gas l LQCD I s/μ ్లో 10⁻² pion gas II LQCD II massless pions 10⁻³ Hydro **10**⁻⁴ 10⁻⁵ 10⁻² 10⁻¹ 10² 10 10 T/T_c т/т

- Shear viscosity takes the minimum around $T_{\rm c}$. Cf. $\eta/s=1/4\pi$ AdS/CFT
- Hydrodynamic model constant η/s

Chen,Deng,Dong,Wang,PRC87,024910(2013) Bulk viscosity

10²

- Temperature dependence is unclear.
- Hydrodynamic model vanishing

Detailed feature of shear and bulk viscosities

QCD phase diagram EoS: lattice QCD Shear and bulk viscosities

viscosities

Energy (entropy) density distributions

Quantitative Analyses Experimental data collisions thermalization hydro hadronization freezeout my m Initial conditions Hydrodynamics Final state interactions QCD phase diagram Hadron based event **EoS: lattice QCD** generator Shear and bulk viscosities

Energy (entropy) density distributions

Hydrodynamics —

particle

Quantitative Analyses Experimental data collisions thermalization hadronization hydro freezeout m my Hydrodynamics Initial conditions Final state interactions QCD phase diagram Hadron based event **EoS:** lattice QCD generator Shear and bulk viscosities New hydrodynamics Energy (entropy) density distributions code $\partial_{\mu}T^{\mu\nu}$

Akamatsu et al, JCP256,34(2014) Okamoto, Akamatsu, Nonaka, EPJC76,579(2016) Okamoto and Nonaka, EPJC77,383(2017)

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property

- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property

- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

t

 $\eta = \tanh^{-1}$

 $\tau = \sqrt{t^2 - z^2}$

- 1. Development of new hydrodynamics code Milne coordinate
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property
- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property

Riemann solver in Milne coordinates

- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

Small Numerical Dissipation

Akamatsu et al, JCP256,34(2014)

• Numerical dissipation: deviation from analytical solution

Numerical Tests in 1D

- ✓ Bjorken's scaling solutions
- ✓ Landau-Khalatnikov Solution (1D)
- ✓ Longitudinal fluctuations
- ✓ Conservation property

K. Okamoto, Y. Akamatsu and CN, Eur. Phys. J. C76 (2016)579

fluctuations In initial conditions

Sum of violation of conservation

	ϵ_E	\mathcal{E}_M
conservative	1.38E-09	8.59E-09
with souce	1.27E-02	5.61E-02

Application to analyses of RHIC and LHC data C. NONAKA

ΚM

KMI IMX C.

Application to analyses of RHIC and LHC data C. NONAKA

Our Model

Experimental data

Our Model

C. NONAKA

temperature dependence of transport coefficients

ALICE Pb+Pb $\sqrt{s_{NN}}=2.76\,$ TeV, LHC

- \checkmark Rapidity distributions
- $\sqrt{P_{\rm T}}$ distributions
- \checkmark Mean $P_{\rm T}$
- \checkmark Collective flows v_2 and v_3

What physical observable is interesting?

Our Model

Experimental data

Shear viscosity

Rapidity Distributions

pseudorapidity $\eta_{
m p}$

• Parameters in initial condition TRENTO are fixed from comparison with experimental data at 0-5 % centrality.

Effect of Bulk Viscosity

 $\eta/s = 0.17$

• Shear + Bulk viscosities

Transverse momentum spectra $+\frac{\zeta}{s} = b\frac{\eta}{s}\left(\frac{1}{3} - c_s^2\right)$

Bulk viscosity reduces the transverse expansion.

- -> Slope of P_{T} spectra becomes steep.
- -> Close to ALICE data.

Finite bulk viscosity

Effect on Collective Flow

• Collective flow as a function of η_{p}

• (3+1)-d calculation

- v_n with bulk viscosity is much closer to the ALICE data: amplitude and slope
- Effect of bulk viscosity at forward rapidity is large.

Finite bulk viscosity

Collective Flow

Collective Flow

Collective Flow

- (3+1)-d calculation
- v_n with bulk viscosity is much closer to the ALICE data: amplitude and slope
- Effect of bulk viscosity at forward rapidity is large.

Finite bulk viscosity

pseudorapidity

 $\eta_{\rm p}$

Temperature Dependent η/s

C. NONAKA

Temperature Dependent η/s

Temperature Dependent η/s

Temperature Dependent η/s

- 0-5 % centrality η/s of QGP and hadron phases is important.
- 30-40 % centrality η/s of hadron phase is important.

C. NONAKA

Central dependence of $v_2(\eta_p)$ reveals temperature dependence of viscosities.

- Tools for analyses of relativistic heavy ion collisions
 - New relativistic viscous hydrodynamics code
 - Quantitative analyses of QGP bulk property
 - More detailed structure of QGP fluid ex. vorticity

Space time evolution

temperature dependence of viscosities

Hydrodynamic Model Nagoya group

medium (light quarks u,d,s)

Medium

Tools for analyses of relativistic heavy ion collisions

Application to other physical observables

Jets, heavy quarks, photons, electromagnetic probes...

Physical Observables

Pre-Equilibrium & Initial State

Strongly coupled QGP, Thermalization, Quark recombination Collectivity in small systems, Correlations & Fluctuations

QCD at Finite Temperature and Density

QCD phase structure

Hadron Thermodynamics and Chemistry

Electromagnetic probes, Jet quenching High temperature matter, Search for Chiral symmetry restoration

Takamoto and Inutsuka, arXiv:1106.1732 Akamatsu et al, JCP256,34(2014) Okamoto, Akamatsu, Nonaka, EPJC76,579(2016) Okamoto and Nonaka, EPJC77,383(2017)

• Relativistic viscous hydrodynamics: $\partial_{\mu}T^{\mu
u} = 0$

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + \Delta T^{\mu\nu}$$

1. dissipative fluid dynamics = advection + dissipation

Riemann solver: Godunov method Two shock approximation *Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005)* Rarefaction wave — shock wave

Stable with small numerical viscosity

2. relaxation equation = advection + stiff equation

Shear and Bulk Viscosities

shear viscosity

$$\ \, \eta/s=0.17$$

shear + bulk viscosities

$$\eta/s = 0.17$$

$$\zeta = b\eta \left(\frac{1}{3} - c_s^2\right)^2 \quad b =$$

ALICE Pb+Pb $\sqrt{s_{NN}}=2.76$ TeV, LHC

- ✓ Rapidity distributions central collision: parameter fixing
- $\checkmark P_{\rm T}$ distributions
- \checkmark Mean $P_{\rm T}$

 \checkmark Collective flows v_2 and v_3

40 Molnar et al., PRC89,074010(2014)

temperature dependent shear + bulk viscosities

 η /s dependence

• p_{T} spectra

 $P_{\rm T}$ spectra do not depend on η/s .

Effect on Expansion

Bulk viscosity is large below 200 MeV.

- -> Its effect appears around $T_c \sim 160$ MeV.
- -> Expansion rate decreases in lower temperature region.
- -> Volume elements of fluid remain around T_c temperature longer.

