Belle II Theory Interface Platform (B2TiP)

Satoshi Mishima (KEK)

World Research Unit for Heavy Flavor Particle Physics Symposium 2016

"Interplay between LHC and Flavor Physics"

Nagoya, Japan, 14-15 March, 2016

Major achievements at Belle

The data are basically consistent with the SM expectations, but a couple of 2-3 sigma tensions have been remaining!

SuperKEKB / Belle II

SuperKEKB: $L = 8 \times 10^{35} \,\mathrm{cm^{-2}s^{-1}}$ **higher statistics**!

- Indirect searches for NP through quantum effects, which enable us to explore above TeV scale.
- Complementary to direct searches for NP at the LHC.

SuperKEKB / Belle II schedule

LHCb vs. Belle II

- **_** LHCb:
 - huge statistics
 - (very) rare decays to clean final states $B_{d,s} \rightarrow \mu^+\mu^-, \ B \rightarrow K^*\mu^+\mu^-, \cdots$

Belle II:

- well-defined initial state (full reconstruction of B)
- very clean environment
- final states with neutrals

 $B
ightarrow\pi^0\pi^0,\;B
ightarrow K_S\pi^0,\;B
ightarrow K_S\pi^0\gamma,\;\cdots$

- final states with missing particles

 $B
ightarrow au
u, \ B
ightarrow D^{(*)} au
u, \ B
ightarrow K^{(*)}
u
u, \ \cdots$

- inclusive modes

 $B o X_s \gamma, \ B o X_s \ell^+ \ell^-, \ \cdots$

Competition and complementarity

Strong physics cases?

What's new after the LOI for SuperKEKB in 2004?

- More results from Babar/Belle
- High-energy data from ATLAS/CMS (and CDF/D0)
- Flavor data from LHCb, ...
- Theoretical progresses (QCD calculations, NP models and their constraints, etc.)
- Detailed simulations based on Belle II Monte Carlo

What are strong physics cases at Belle II?

Belle II Theory Interface Platform (B2TiP)

Initiative to coordinate a joint theory-experimental effort to study the potential impacts of the Belle II program.

Close cooperation between experiment and theory is essential for progress in this field.

Detailed information on B2TiP is available at

https://belle2.cc.kek.jp/~twiki/bin/view/B2TiP

Committees

Organizing committee:

Toru Goto (KEK) Emi Kou (LAL) Phillip Urquijo (Melbourne) Belle2 physics coordinator

Report editors:

Satoshi Mishima (KEK)

Christoph Schwanda (HEPHY)

Ex officio:

Hiroaki Aihara (Tokyo) Belle2 EB chair Thomas Browder (Hawaii) Belle2 spokesperson Marco Ciuchini (Rome3) KEK-FF advisory Thomas Mannel (Siegen) KEK-FF advisory

black = exp. blue = th.

Advisory committee:

Tim Gershon (Warwick) Bostjan Golob (IJS Ljubljana) Shoji Hashimoto (KEK) Francois Le Diberder (LAL) Zoltan Ligeti (LBL) Hitoshi Murayama (IPMU) Matthias Neubert (Mainz) Yoshihide Sakai (KEK) Junko Shigemitsu (Ohio)

WGs and Coordinators

black = exp. blue = th.

43 coordinators! WGI: Semileptonic & Leptonic B decays G. De Nardo (Naples), A. Zupanc (IJS Slovenia), A. Kronfeld (Fermilab), F. Tackmann (DESY), M. Tanaka (Osaka), R. Watanabe (IBS) WG2: Radiative & Electroweak Penguins A. Ishikawa (Tohoku), J. Yamaoka (PNNL), T. Feldman (Siegen), U. Haisch (Oxford) WG3: alpha = phi_2 & beta = phi_1 L. Li Gioi (MPI Munich), S. Mishima (KEK), J. Zupan (Cincinnati) WG4: gamma = phi_3 J. Libby (Madras), M. Blanke (KIT), Y. Grossman (Cornell) WG5: Charmless Hadronic B Decay P. Goldenzweig (KIT), M. Beneke (TUM), C.-W. Chiang (NCU), S. Sharpe (Washington) WG6: Charm G. Casarosa (Pisa), A. Schwartz (Cincinnati), A. Kagan (Cincinnati), A. Petrov (Wayne) WG7: Quarkonium(like) B. Fulsom (PNNL), C. Hanhart (Juelich), R. Mizuk (ITEP), R. Mussa (Torino), C. Shen (Beihang), Y. Kiyo (Juntendo), A. Polosa (Rome), S. Prelovsek (Ljubljana) WG8: Tau, low multiplicity & EW K. Hayasaka (Niigata), T. Ferber (UBC), J. Hisano (Nagoya), E. Passemar (Indiana) WG9: New Physics F. Bernlochner (Bonn), R. Itoh (KEK), Y. Sato (Nagoya), J. Kamenik (IJS Ljubljana), U. Nierste (KIT), L. Silvestrini (Rome), S. Simula (Rome3) 10/35 Satoshi Mishima (KE Satoshi Mishima (KEK)

B2TiP Report

- Outcome = Summary Report
 - New developments in detectors, simulations, softwares and theory.
 - Experimentally and theoretically achievable precisions of some important observables ("golden modes") and their impacts on the understanding of the SM and beyond.
 - Milestone table to clarify the targets for the first 5 to
 I0 ab-I of data, as well as for the final goal at 50 ab-I.
 - To be published as a KEK Report before the Belle II physics run (2017-).

Report planning

2014-2015 Phase I: Planning and discussion Identify "golden modes" Propose and discuss the layout of the sections Identify resources and share the work Phase 2: Work on the physics analysis, write draft 2015-2016 Detailed studies of the golden modes We are here! Studies based on Belle II simulation where possible Draft theory and experimental sections 2016 Phase 3: Editing Finalize performance parameters from Belle II simulation Final editing

Finalize physics analyses

Workshop schedule

- Feb. 2014: Approval at the Belle II executive board.
- B2TIP workshops at KEK (2014), Krakow (2015) and KEK (2015), and mini-workshops, so far.
- In 2016, 4th workshop at Pittsburgh and Report Camp (editorial meeting) at Munich.
 Krakow workshop (~100 participants)

Golden modes

- Each WG has proposed top priority observables (Belle II golden modes), and has been scrutinizing them by estimating the theoretical uncertainties and the achievable precision at Belle II with 5, 10 and 50 ab-1 of data.
- Selection criteria for golden modes:

e.g.,

- Sensitivity to NP is much better than Belle
- Sensitivity is much better than (or competitive to) LHCb
- Significant impact on NP study

WGI: Semileptonic & Leptonic B decays

Missing energy = Belle II golden modes

- **9** Purely leptonic B decays: $B \rightarrow \tau \nu, \ B \rightarrow \mu \nu$
- $\blacksquare B
 ightarrow D^{(*)} au
 u$ Talk by M.Tanaka
 - Measurements of R, q2 distribution, and polarization/angular analysis
- **9** Inclusive Vcb: $B o X_c \ell \nu$
 - Spectra and moments of kinematical distributions
- **9** Exclusive Vub: $B \to \pi \ell \nu$
 - Rate and spectra of variables (q2, E_I)
- **(J**) Inclusive Vub: $B \to X_u \ell \nu$
 - Precise measurement of differential distributions
- \checkmark and (semi-)leptonic Bs decays at $\Upsilon(5S)$

Examples of sensitivity plots

Y. Sato

Belle average by semilept- & had-tag PRD 92, 051102(R) (2015), PRL 110, 131801(2013)

K. Hara at the LAL mini-workshop

35

WG2: Radiative & Electroweak Penguins

() Acp in
$$B o X_{s+d} \gamma$$

9 BF and Acp in
$$B o X_d \gamma$$

)
$$\Delta Acp \text{ in } B \to X_s \gamma$$

 \square TCPV in $B \to K_S \pi^0 \gamma$ and $B \to \rho \gamma$ (WG2&WG3)

LHCb anomalies in P5' and $R_K = rac{B(B o K \mu \mu)}{B(B o K ee)} = 0.745^{+0.090}_{-0.074} \pm 0.036$

DHMV = Descotes-Genon, Hofer, Matias & Virto (2014)

 $O_9 = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu\ell)$

 $\left|C_9^{
m NP}/C_9^{
m SM}
ight|\sim 25\,\%$

Possible interpretations

Results from HEPfit

M. Ciuchini, M. Fedele, E. Franco, S.M. , A. Paul, L. Silvestrini & M.Valli, arXiv:1512.07157

Non-factorizable charm loop has been fitted from the data.

Observable	q^2 bin [GeV ²]	measurement	full fit	prediction
	[0.1, 0.98]	0.392 ± 0.146	0.781 ± 0.101	0.872 ± 0.087
	[1.1, 2.5]	0.297 ± 0.209	0.409 ± 0.104	0.485 ± 0.129
D'	[2.5, 4]	-0.076 ± 0.351	-0.133 ± 0.103	-0.153 ± 0.115
P_5	[4, 6]	-0.301 ± 0.157	-0.383 ± 0.087	-0.430 ± 0.102
	[6,8]	-0.505 ± 0.120	-0.477 ± 0.102	-0.314 ± 0.215

$$P_5^\prime = rac{S_5}{\sqrt{F_L(1-F_L)}}$$

No significant discrepancy!

20/35

$B \to X_s \ell^+ \ell^-$ at Belle II

- Inclusive $B \to X_s \ell^+ \ell^-$ has a complementary role in NP search to exclusive $B \to K^{(*)} \ell^+ \ell^-$.
- Theoretically cleaner

95% constraints on the high-scale WCs: $R_i = \frac{C_i(\mu_0)}{C_i^{SM}(\mu_0)}$

Belle II sensitivity

T. Hurth, F. Mahmoudi & S. Neshatpour, arXiv: 1410.4545

Future measurements of the inclusive observables at Belle II will allow for a powerful crosscheck!

WG3: alpha = phi_2 & beta = phi_1

Time-dependent analysis = Belle II golden modes

- sensitive to the RH current

WG4: gamma = phi_3

 $B^- \rightarrow DK^-$: free of theoretical uncertainties, since hadronic param's can be determined from data

4/29/2015	WG4 summary	3
Golden mode A_1 V^*_{W} \overline{u} $K^ b$ V_{cb} D^0 \overline{u}	Also, an annihilation process, but depends on same CKM elements $A_{1}r_{B}e^{i(\delta_{B}-\phi_{3})}$ $b \qquad v_{ub} \qquad u$ $B^{-} \qquad w^{-} \qquad v_{w} $	\bar{D}^0
 Same final state for <i>D</i> and <i>D</i> ⇒ ir DCPV 	nterference \Rightarrow the possibi	lity of

- Three types of D final states generally used
 - · CP-eigenstates [GLW]
 - Gronau & London, PLB **253**, 483 (1991), Gronau, & Wyler, PLB **265**, 172 (1991)
 - K+X⁻ (X⁻=π⁻, π⁻ π⁰, π⁻π⁻ π⁺) CF and DCS [ADS]
 - Atwood, Dunietz & Soni, PRD 63, 036005 (2001)
 - Self-conjugate multibody states: K_Sh⁺h⁻ [Dalitz]
 Giri, Grossman, Soffer and Zupan, PRD 68, 054018 (2003); Bondar (unpublished)
 - None of the above (SCS): $K_SK^+\pi^-$ [GLS]
 - Grossman, Ligeti and Soffer, Phys. Rev. D67 071301 (2003)

Toy impact plots for the CKM fit

Reducing only the errors of the angles at the current moment for an exercise.
Courtesy of E. Kou

The angle measurements will be improved significantly!

WG5: Charmless Hadronic B Decay

Final states with neutral particles = Belle II golden modes

9 $B \to K\pi$ system, with emphasis on $K_S\pi^0$ (WG3&WG5) - time-dependent CPV, isospin sum rule, $B \to K\pi$ puzzle

$$\ \, { \, { \hspace{-.45cm} \hspace{-.45cm} \hspace{-.45cm} \hspace{-.45cm} \hspace{-.45cm} \hspace{-.45cm} \hspace{-.45cm} \hspace{-.45cm} B \to K^*\pi, \; B \to K\rho }$$

- isospin sum rule

- comparisons with the above channels

$${}_{\hspace{-.1em}{\scriptstyle \bullet}\hspace{-.1em}}$$
 $B_s o K^0 ar{K}^0$

WG6: Charm

"Golden mode" definition:

a mode in which Belle II will be competitive (with LHCb) and, if NP is present at a sufficiently large level, its signature will be measured/identified

Hadronic Modes

(a) $D^0 \to K^+ \pi^-, K^+ K^-, \pi^+ \pi^-$ - TDCPV & mixing, time-integrated analyses, Acp (b) $D^0 \to K^0_S K^0_S, \pi^0 \pi^0, D^+ \to \pi^+ \pi^0$ - time-integrated analyses, Acp (c) $D^0 \to K^0_S K^+ K^-, K^0_S K^+ \pi^-, K^+ \pi^- \pi^0, K^0_S \pi^+ \pi^-, \pi^+ \pi^- \pi^0$ Semileptonic Modes - TDCPV & mixing, Dalitz plot analyses

Leptonic and Radiative Decays

(a) $D^+_{(s)} \to e^+ \nu, \ \mu^+ \nu, \ \tau^+ \nu$ - important for lattice QCD (b) $D^0 \to \rho^0 \gamma, \ D^0 \to \gamma \gamma$ - NP searches

Other

- (a) missing energy modes e.g., light dark matter searches
- (b) glueballs
- (c) $D_s^+ \to p\bar{n}$

WG7: Quarkonium(like)

WG7 summary at the 3rd B2TiP workshop

- 1. ISR e+e- -> pi+pi-J/psi(psi'), K+K-J/psi(psi'), pi+pi-hc(1P, 2P), omega/phi chi_cJ, pi+pi-X(3823), gamma X(3872),
 DD(*)pi, ... to search/study Zc, Zc'. Zcs, ... all possible Y states, new resonances and understand the line shapes.
- 2. Y(3S) decays including Y(1D), etab(1S,2S)->gamma gamma, chi_b(1P,2P), ...
- 3. Tow-photon processes: gamma gamma -> phi J/psi to confirm/deny X(4350) and search for Y(4140), study of eta_c(2S), gamma gamma ->omega J/psi, DD*, etac pi0, ... to study X(3915), search for X(3872)-like states, ...
- Data at the Y(6S) peak:
 - study anomalous transitions from Y(6S) to lower bottomonia (nature of Y(6S));
 - search for missing bottomonia in 1D,2D,1F multiplets;
 - search for molecular states Xb, Wb via radiative and pi+pi- transitions.
 - High energy scan:
 - decomposition of Rb into BB,BB*,B*B*,BB*pi,.. (nature of Y(5S), Y(6S));
 - scan of cross-sections e+e- -> bottomonium + light hadrons (search for new vector states);
 - investigate Lambda_b-Lambda_b-bar threshold region.
- 5. B decays to:
 - charmonium (eta_c, J/psi, h_c, chi_cJ, eta_c(2S), psi(2S)), light hadrons and kaon (search for the only missing narrow charmonium state eta_c2(1D), for new charmonium-like states and for new channels of known states);
 - open charm-anti-charm final states (DD, DD*, DD*pi, DsDs,..) and kaon (search for elastic channels of known states, search for new charmonium(-like) states).

WG8: Tau, low multiplicity & EW

WG8 summary at the 3rd B2TiP workshop

5 Golden Modes of WG8, a proposal.

>1) Tau 1: LFV τ→3μ

- >2) Tau 2: CPV τ→K_s πν or Kππν
- >3) Precision two track final states
 - "First Physics": Y(3S)->μμ to measure vacuum polarization (s-channel)
 - Dark Photon direct search into μμ
 - ISR $ee \rightarrow \pi\pi(g)$ and $ee \rightarrow \mu\mu(g)$ @5ab⁻¹
 - AFB(μμ) @5ab⁻¹ (Contact Interactions) and @50ab⁻¹ (rho parameter)
- >4) Dark: Dark Photon A→Invisible
- >5) two photon: eta/pion transition form factor

WG9: New physics

NPWG tasks:

- Benchmark models/points for 5, 10, 50 ab-1 of data with a milestone table for given NP models (providing theoretical predictions for various Belle II golden modes with those models).
- Model-dependent and model-independent fits, aiming at making sensitivity (impact) plots for model parameters with the inputs from WG1-8.
- Relation to measurements from other exp's (e.g., LHC, neutrino, dark matter, future exp's)
- Evaluation and developments of theory codes toward producing global fits.
- Substitution of the second workshop in May! Satoshi Mishima (KEK)

Report outline: common chapters

1	Intr	roduction	1
	1.1	Goals and motivations of the exper-	
		$\operatorname{iment} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	1
	1.2	Introduction	1
		1.2.1 Flavour physics questions to	
		be addressed by Belle II $$.	2
		1.2.2 Advantages of SuperKEKB	
		and Belle II	2
	1.3	Overview of the key aspects of Su-	
		perKEKB	3
	1.4	Overview of the key aspects of Belle II	4
	1.5	New developments in theoretical	
		(QCD) tools	4
	1.6	Particle physics after the B -factories	
		and LHC run I (and run II first data)	4
	1.7	The Belle II Golden channels	4
	1.8	Data taking overview	4
2	Bel	le II Detector	8
2	Bel 2.1	le II Detector Introduction	8 8
2	Bel 2.1 2.2	le II Detector Introduction	8 8
2	Bel 2.1 2.2	le II Detector Introduction	8 8 9
2	Bel 2.1 2.2 2.3	le II Detector Introduction	8 8 9 9
2	Bel 2.1 2.2 2.3 2.4	le II Detector Introduction	8 8 9 9
2	 Bell 2.1 2.2 2.3 2.4 	le II Detector Introduction	8 8 9 9 9
2	Bel 2.1 2.2 2.3 2.4 2.5	le II Detector Introduction	8 8 9 9 9
2	 Bell 2.1 2.2 2.3 2.4 2.5 	le II Detector Introduction	8 8 9 9 9 9
2	Bell 2.1 2.2 2.3 2.4 2.5 2.6	le II Detector Introduction	8 8 9 9 9 9 9 10
2	Bell 2.1 2.2 2.3 2.4 2.5 2.6 2.7	le II DetectorIntroductionSilicon Pixel Detector (PXD) andSilicon Vertex Detector (SVD)Central Drift Chamber (CDC)Time of Propagation Cherenkov Detector (TOP)Aerogel Ring Imaging CherenkovDetector (ARICH)Electromagnetic Calorimeter (ECL) $K_{\rm L}$ - Muon Detector (KLM)	8 8 9 9 9 9 9 10 10
2	Bell 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	le II DetectorIntroductionSilicon Pixel Detector (PXD) andSilicon Vertex Detector (SVD)Central Drift Chamber (CDC)Time of Propagation Cherenkov Detector (TOP)Aerogel Ring Imaging CherenkovDetector (ARICH)Electromagnetic Calorimeter (ECL) K_{L} - Muon Detector (KLM)Trigger System	8 8 9 9 9 9 9 10 10 11
2	Bell 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	le II DetectorIntroductionSilicon Pixel Detector (PXD) andSilicon Vertex Detector (SVD)Central Drift Chamber (CDC)Time of Propagation Cherenkov Detector (TOP)Aerogel Ring Imaging CherenkovDetector (ARICH)Electromagnetic Calorimeter (ECL) K_{L} - Muon Detector (KLM)Trigger SystemDetector commissioning phases	8 8 9 9 9 9 10 10 10 11 11
2	Bell 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	le II DetectorIntroductionSilicon Pixel Detector (PXD) andSilicon Vertex Detector (SVD)Central Drift Chamber (CDC)Time of Propagation Cherenkov Detector (TOP)Aerogel Ring Imaging CherenkovDetector (ARICH)Electromagnetic Calorimeter (ECL) K_L - Muon Detector (KLM)Trigger SystemDetector commissioning phases2.9.1Phase I	8 8 9 9 9 9 9 10 10 11 11 11
2	Bell 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	IntroductionIntroductionSilicon Pixel Detector (PXD) andSilicon Vertex Detector (SVD)Central Drift Chamber (CDC)Time of Propagation Cherenkov Detector (TOP)Aerogel Ring Imaging CherenkovDetector (ARICH)KL- Muon Detector (KLM)Trigger SystemDetector commissioning phases2.9.1Phase I2.9.2Phase II	 8 8 9 9 9 9 10 10 11 11 11 11
2	Bell 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	le II DetectorIntroductionSilicon Pixel Detector (PXD) andSilicon Vertex Detector (SVD)Central Drift Chamber (CDC)Time of Propagation Cherenkov Detector (TOP)Aerogel Ring Imaging CherenkovDetector (ARICH)Electromagnetic Calorimeter (ECL) K_L - Muon Detector (KLM)Trigger SystemDetector commissioning phases2.9.1Phase I2.9.2Phase III2.9.3Phase III	 8 8 9 9 9 9 10 10 11 11 11 11 11

3	Bell	le II Si	imulation	14
	3.1	Introd	$uction \ldots \ldots \ldots \ldots \ldots \ldots$	14
	3.2	Gener	ators	14
	3.3	Beam-	induced background	14
	3.4	Detect	tor Simulation	14
	3.5	Comp	uting \ldots \ldots \ldots \ldots	14
	Bibl	iograph	y	14
4	Rec	onstru	action Software	15
	4.1	Introd	$uction \ldots \ldots \ldots \ldots \ldots \ldots$	15
	4.2	Tracki	ng	15
		4.2.1	CDC tracking	15
		4.2.2	VXD tracking	15
		4.2.3	Combined performance	15
		4.2.4	V^0 vertex reconstruction	15
		4.2.5	Alignment	15
		4.2.6	Beamspot	15
	4.3	Charg	ed particle identification	15
		4.3.1	dE/dx measurements	15
		4.3.2	Kaon and pion identification	19
		4.3.3	Proton identification	19
		4.3.4	Deuteron identification	19
		4.3.5	Muon identification	19
		4.3.6	Electron identification	21
	4.4	Neutra	al particle identification	21
		4.4.1	Photon identification	21
		4.4.2	π^0 identification	21
		4.4.3	$K_{\rm L}^0$ identification	21
	Bibl	iograph	y	21
5	Phy	sics A	nalysis Software	27
	5.1	Introd	$uction \ldots \ldots \ldots \ldots \ldots \ldots$	27
	5.2	Partic	le reconstruction	27
	5.3	Vertex	reconstruction	27
		5.3.1	Vertex finding algorithms .	27
		5.3.2	Primary vertex	27

		5.3.3	B-tag vertex (Δt)	27
	5.4	Contin	nuum Suppression	27
		5.4.1	Event topology	27
		5.4.2	Performance	27
	5.5	Flavou	r tagging	27
		5.5.1	Categories	27
		5.5.2	Performance	27
	5.6	$B_{(s)}$ re	econstruction	27
		5.6.1	Hadronic reconstruction	27
		5.6.2	Semileptonic reconstruction	27
		5.6.3	Recoil Analysis Prospects .	27
	5.7	Charn	n reconstruction	27
	Bibl	iograph	y	27
G	The	0.000		າຍ
U	THE	ory ov	Verview	20
	6.1	Introd	uction	28
	6.2	Effect	ive Hamiltonian	30
	6.3	CP vi	olation formulae	32
	6.4	CKM	matrix and unitarity triangle	32
	Bibl	iograph	y	32

Report outline: WG chapters

7	Lep	otonic and Semileptonic B Decays	33
	7.1	Introduction	33
	7.2	Prospects	33
		7.2.1 Leptonic B decays	33
		7.2.2 $B \rightarrow D^{(*)} \tau \nu \dots \dots$	33
		7.2.3 Inclusive V_{cb}	33
		7.2.4 Exclusive $V_{ub} (B \to \pi \ell \nu)$.	33
		7.2.5 Inclusive V_{ub}	33
		7.2.6 (Semi-)leptonic B_s decays .	34
	7.3	Conclusions	34
	Bibl	liography	34
8	Rac B I	diative and Electroweak Penguin Decays	35
	8.1	Introduction	35
	8.2	Theory	35
		8.2.1 Inclusive $B \to X_{s,d} \gamma$ decays	36
		8.2.2 Exclusive $b \to s, d\gamma$ decays	36
		8.2.3 Inclusive $B \to X_s \ell^+ \ell^-$ decay	36
		8.2.4 Exclusive $b \to s, d\ell^+\ell^-$ decays	37
		8.2.5 $B_{d,s} \to \gamma \gamma$ decays	37
		8.2.6 $b \rightarrow d, s\tau^+\tau^-$ transi-	
		tions and lepton flavor non-	
		$universality \ldots \ldots \ldots$	37
		8.2.7 $P \rightarrow \pi u$ and $P \rightarrow D^{(*)} \pi u$	

*	
universality	37
8.2.7 $B \to \tau \nu$ and $B \to D^{(*)} \tau \nu_{\tau}$	
$\operatorname{transitions}$	38
8.2.8 $B \rightarrow K^{(*)}\nu\bar{\nu}$ transitions	
and missing energy signals .	38
8.3 Conclusions	38
Bibliography	38

9	Time Dependent CP Violation of B			
	mesons and the determination of ϕ_1 ,			
	ϕ_2			42
	9.1	Introd	$uction \ldots \ldots \ldots \ldots \ldots \ldots$	42
	9.2	Determ	nination of ϕ_1	42
		9.2.1	$\sin 2\phi_1 \text{ from } B^0 \to J/\psi K_S$	42
		9.2.2	Other $b \to c\bar{c}s$ decay modes	42
		9.2.3	$\sin 2\phi_1$ from $b \to q\bar{q}s, q =$	
			u, d, s	42
		9.2.4	$B_d \to \phi K_S$	42
		9.2.5	$B_d \to \eta' K_S$	42
		9.2.6	$B \to \pi K$	42
	9.3	Determ	nination of ϕ_2	42
		9.3.1	$B \to \pi \pi$	43

	9.3.2 $B \to \rho \pi$	43
	9.3.3 $B \rightarrow \rho \rho$	43
9.4	Time dependent CP asymmetries in	
	$B_d \to K_S \pi^0 \gamma$	43
9.5	Conclusions	43
Bibl	iography	43
10 Det	ermination of the UT angle ϕ_3	44
10.1	Introduction	44
10.2	The ultimate precision	45
10.3	Review of $B \to D^{(*)}K^{(*)}$ measure-	
	ments	45
10.4	Auxiliary measurements	46
10.5	Outlook and conclusions	47
Bibl	iography	47
11 Cha	rmless Hadronic <i>B</i> Decays and	
Dire	ect CP Violation	51
11.1	Introduction	51
	11.1.1 Two-body decay theory	51
	11.1.2 <i>B</i> meson light-cone distribu-	-
	tion	51
	11.1.3 Direct CPA at NLO	51
11.2	Two-body decays	51
	11.2.1 $B \to KK$	51
	11.2.2 $K\pi$ CP Asymmetries	51
	11.2.3 $B_s \to KK$	51
	11.2.4 $B_s \to \phi \pi^0 \ldots \ldots \ldots$	51
11.3	Quasi-two-body decays	51
	11.3.1 $B \to VV$ decays	51
11.4	Three-body decays	51
	11.4.1 Three-body decay theory	51
	11.4.2 Dalitz methods and CPA	51
11.5	Conclusions	51
Bibl	iography	51
10.01		-
12 Cha	irm flavour	52
12.1	Outline	52
12.2		52 F 9
12.3	I lleory	02 59
12.4	Experiment	02 59
	12.4.1 Haufoffic Modes	02 59
	12.4.2 Definite profile Modes	52 59
19 F	12.4.5 Leptonic and Radiative Modes	02 59
12.0	12.5.1 Missing onergy modes	02 59
	12.0.1 IMISSING energy modes	52

12.5.2 Glueballs	52	
12.5.3 $D_s^+ \to p\bar{n}$	52	
Bibliography	52	
13 Quarkonium(like) Physics	53	
13.1 General Introduction	53	
13.2 Golden Modes	53	
13.3 Regular Quarkonia	54	
13.4 Hadronic transitions	54	
13.5 QCD Exotics	54	14
13.5.1 Introduction	54	
13.5.2 Models	54	
13.6 Lattice Studies	54	
13.7 Processes	54	
13.7.1 B Decays	54	
13.7.2 Initial State Radiation	54	
13.7.3 Two Photon Collisions	54	
13.7.4 Double Charmonium Pro-		
duction	54	
Threshold	54	
13.7.6 e^+e^- Collisions Above $B\bar{B}$		
Threshold	54	
13.8 General Introduction	54	
13.9 Hadronic Transitions	56	
13.10Regular Quarkonia - open issues and		
challenges	56	
13.11QCD Exotics	56	
$13.11.1$ Models \ldots	57	
13.11.2 Facing the Experiment	58	
13.12Lattice QCD	59	
13.12.1 Lattice methodology	59	
13.12.2 Spectrum of quarkonia be-		
low open-flavor threshold .	60	
13.12.3 Excited charmonia within	co	
12 12 4 Wester and scalar recommender	00 60	
12.12.5 Charmonium like states	00	
X(3872) and $V(4140)$	61	
A(5072) and $I(4140)$	01	
73.12.0 Onlarged quarkonnull-like	62	
13 12 7 Pentaguarks	62	
$13128\overline{OO}_{aa}$ tetraquarks	63	
13 12 9 Badiative transitions and	00	
leptonic widths of quarkonia	63	
13.12.10Outlook	63	
	-	

13.13Processes	64
13.13.1 B-decays	64
13.13.2 Initial–State–Radiation	64
13.13.3 Two–Photon Collisions	64
13.13.4 Double–Charmonium Pro-	
$\operatorname{duction}$	64
13.14Conclusions	64
Bibliography	64
4 Tau and low multiplicity physics	65
14.1 Introduction	65
14.2 Golden Modes	66
14.2.1 Lepton flavour violation in	
$ au ightarrow 3\mu$ decay	66
14.2.2 Study of CP violation in	
$ au o K_S^0 \pi u_{ au}$	66
14.2.3 $e^+e^- \rightarrow \pi^+\pi^-$ cross sec-	
tion for $(g-2)_{\mu}$ (H. Czyz,	
B. Shvartz, T. Ferber)	66
14.2.4 Search for a Dark Photon de-	
caying into Light Dark mat-	
ter (C. Hearty, T. Ferber) \cdot	67
14.2.5 Precision Measurement of	
the π^0 and η transition form	
factor	67
14.3 Conclusions	67
Bibliography	67

Satoshi Mishima (KEK)

Report outline: NP & Global fit chapter

15 New physics and global analyses	69
15.1 Introduction	69
15.2 Model-independent analyses of new	
$physics \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	69
15.2.1 Tree-level decays \ldots	69
15.2.2 (Semi-)leptonic rare decays	69
15.2.3 $\mathbf{B} - \overline{\mathbf{B}}$ mixing	69
15.3 Models of physics beyond the Stan-	
$dard Model \dots \dots \dots \dots \dots$	69
15.3.1 Multi Higgs-doublet models	69
15.3.2 (Next-to-) Minimal Super-	
symmetric Model	70
15.3.3 Models with extended gauge	
sector	70
15.3.4 Models of Compositeness .	70
15.3.5 Models with a Dark Sector	70
15.3.6 Models for LFV? \ldots	70
15.4 Codes for global analyses \ldots	70
15.4.1 UTfit and HEPfit \ldots \ldots	70
15.4.2 CKMfitter	70
15.4.3 Myfitter	70
15.4.4 SuperIso	70
$15.4.5$ SUSY_Flavour	70
15.4.6 pypmc	70
$15.4.7 EOS \ldots \ldots \ldots \ldots \ldots$	70
15.4.8 GammaCombo?	70
15.5 Conclusions	70
Bibliography	70

To do

- Work on detailed simulations of the golden modes.
- Create Belle II impact (sensitivity) plots for NP searches.
- Complete the chapters, and review, edit and proofread them.
 - 4th B2TIP workshop at Univ. of Pittsburgh (23-25 May)
 - Report Camp (Editorial meeting) at MIAPP (Nov)
 - and small editorial meetings
- Finalize the report by the end of 2016 before phase 2 of the SuperKEKB operation starts.

Summary

- B2TiP is a joint theory-experiment effort to study the potential impacts of the Belle II program, which are complementary/competitive to those of the LHC and of other experiments at intensity frontiers.
- The most important outcome will be a KEK report, which summarizes important observables ("golden modes") at Belle II with their achievable precision and their impact on our understanding of the SM and/or NP.
 - ~ by the end of 2016

Please stay tuned and join the B2TiP activity!

4th B2TiP workshop, Pittsburgh, May 23-25 early registration by Apr. 15! https://kds.kek.jp/indico/event/19723/

Satoshi Mishima (KEK)

Backup

Fit result of the hadronic contribution

Khodjamiria

SM@HEPfit

Fit result of the hadronic contributions

$$h_{\lambda}(q^{2}) = \frac{\epsilon_{\mu}^{*}(\lambda)}{m_{B}^{2}} \int d^{4}x e^{iqx} \langle \bar{K}^{*} | T\{j_{\rm em}^{\mu}(x)\mathcal{H}_{\rm eff}^{\rm had}(0)\} | \bar{B} \rangle$$

= $h_{\lambda}^{(0)} + \frac{q^{2}}{1\,{\rm GeV}^{2}} h_{\lambda}^{(1)} + \frac{q^{4}}{1\,{\rm GeV}^{4}} h_{\lambda}^{(2)},$

The first and second terms could be reinterpreted as a modification of C7 and C9, respectively.

