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DIRAC CE 
WNs 

1.Check slots in a site. 

2.Submit pilot jobs to CE. 

Submit Belle II Jobs. 

Many steps →  Need to detect problems in each step 

Sometimes, CE reports incorrect # of running pilot 
jobs due to the problem of CREAM etc.  

In such cases, DIRAC  misunderstands site is full and 

stops to send jobs. This problem can be 

characterized by long-keeping-silent pilot jobs 

(long time since last communication with DIRAC). 

Pilot silent time distribution (in minutes). 

Red line shows the possible maximum 

silent time for normal pilot jobs. In this case, 

CREAM-CE recognizes finished job as running. 

Submission of pilot jobs to CE often fails  because of CE down 
 or problem on VOMS proxy etc. Pilot jobs are sent by  

“SiteDirector”  agent  but  activity  is  not  stored  in  DB.    DIRAC  agent 
 to monitor the activity of SiteDirector is developed and visualized. 

One site 

Each CE 

SiteDirector 

CheckAgent 

submit 

Analyze log 

Site 

https://ekptrac.physik.uni-karlsruhe.de/trac/HappyFace/ 

Submission to batch server often fails because of  

problem on the batch system. If it is failed,  

status  of  pilot  job  becomes  “Aborted”.   

At the beginning of the pilot job, DIRAC client is installed to 

communicate with DIRAC server. Then, sanity checks of the 

computing node are performed. If a problem is found, the 

pilot job stops immediately. 

Ex. CVMFS not properly mounted, disk full,  
      failed to download DIRAC client etc.. 

Pilot life time distribution (in minutes). 

Redline is possible minimum life time  

for normal pilot jobs. In this case, one of  

WNs does not have enough disk space. 

Payload jobs may fail with many reasons. For  
example, failed to contact meta data server 
(AMGA), failed to handle input/output files, 
and problem on program itself. 

“Job  efficiency”  for  each  site. 
Simultaneous failure for all the site  

means problem on central server. 

In this case, AMGA was down. 

• Belle II experiment is a next-generation B-factory at KEK in 

Japan, which will start for physics run  without vertex detector 

in 2017, where 50 ab-1 data sample will be collected for 10 

years, which corresponds to about 5x1010 BB-pair events.  

• We roughly need to handle 1MHS06 cpu resources ,100PB 

storage for one set of raw data and 100 PB one for MC/analysis 

data, finally. 

• In order to utilize these huge resources, we adopt distributed 

computing technique. 

SVD: 4 DSSD lyrs J 2 DEPFET lyrs + 4 DSSD lyrs 
CDC: small cell, long lever arm 
ACC+TOF J TOP+A-RICH 
ECL: waveform sampling, pure CsI for end-caps 
KLM: RPC J Scintillator +SiPM (end-caps) 

KEKB superKEKB 

• Belle II has adopted DIRAC as the distributing computing 

software framework, which can handle grid, cloud and local 

cluster resources. (http://diracgrid.org/) 

• CVMFS is used to provide Belle II software and libraries. 

• At the present, around 40 sites participates (LCG, OSG, HPC, 

cloud and traditional cluster) and more than 25K concurrent 

jobs are handled at peak. 

Introduction Belle II computing Monitoring 
・For the effective use of huge resources, a monitor system 

   for detecting problems quickly and identifying the source  

  is necessary. 

 

・In this poster, we introduce passive monitors, where  

  data existing in DIRAC DB are retrieved  and  then 

  processed and visualized to detect problems. 

 

 ・In some cases, necessary information are not stored in 

   DIRAC DB. In such cases, DIRAC agents which collect  

   information are developed. 

 

 

 

 

 

 

 

・For active way, please visit poster by K. Hayasaka  

  (sessionB, poster 314, booth 18). 

DIRAC DB Monitor server 

process/ 

visualize 

・Developed at Karlsruhe Institute of Technology 

・Modular structure. 

・In the Belle II HappyFace instance, not only 

   for workload management issue but also 

   downtime etc are shown. 

Now, we can detect problems in each step! 
Automate the process (work in progress) 

・Next step is to identify reason (as much as possible) and inform/disable each site. 

・These process should be automated.   

・Combine with DIRAC Resource Status System 

Notice short  

pilot job exists. 

Download and 

analyze log files. 

Identify the reason and 

 problematic WN name. 

Check if the same problem 

happens for a long time in  

the same WN. 

Inform site 

via GGUS 

Disable the site 

Check problem 

is fixed. 

Enable the site 

HappyFace as a platform 1.Check slots in a site. 

3.Submit pilot jobs to batch system 4.Perform sanity checks 

2.Submit pilot jobs to CE 

5.Execute Belle II Jobs 

Example for  
sanity check failure 

Workload management flow in the DIRAC 

Possible to detect problems 

for sites with multiple CEs. 

Example of error message: 
[BLAH error: submission command failed (exit code = 1) (stdout:)  

(stderr:qsub: Queue is not enabled MSG=queue is disabled.] 

 

4. Perform sanity checks 

5. Execute Belle II Job 

                    ・ 

                  ・ 

Pilot Job 

We aim to resolve the problem quickly and maximize the availability of Belle II computing system! 

3.Submit pilot jobs to     

   batch system. 
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muon g-2 and the eeàππ process	


p  muon g-2 SM value 

p  >3σ deviation from experiments 
p  SM uncertainty is dominated 

by hadronic effects 
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aSMµ = aQED
µ + aEW

µ + aHad,LO
µ + aHad,HO

µ + aHad,LbL
µ

1 Introduction

The Standard-Model (SM) value of the muon anomaly can be calculated with sub-parts-per-
million precision. The comparison between the measured and the SM prediction provides a
test of the completeness of the Standard Model. At present, there appears to be a three- to
four-standard deviation between these two values, which has motivated extensive theoretical
and experimental work on the hadronic contributions to the muon anomaly.

A lepton (` = e, µ, ⌧) has a magnetic moment which is along its spin, given by the
relationship

~µ` = g`
Qe

2m`

~s , g` = 2| {z }
Dirac

(1 + a`), a` =
g` � 2

2
(1)

where Q = ±1, e > 0 and m` is the lepton mass. Dirac theory predicts that g ⌘ 2,
but experimentally, it is known to be greater than 2. The small number a, the anomaly,
arises from quantum fluctuations, with the largest contribution coming from the mass-
independent single-loop diagram in Fig. 1(a). With his famous calculation that obtained
a = (↵/2⇡) = 0.00116 · · · , Schwinger [1] started an “industry”, which required Aoyama,
Hayakawa, Kinoshita and Nio to calculate more than 12,000 diagrams to evaluate the tenth-
order (five loop) contribution [2].
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Figure 1: The Feynman graphs for: (a) The lowest-order (Schwinger) contribution to the
lepton anomaly ; (b) The vacuum polarization contribution, which is one of five fourth-order,
(↵/⇡)2, terms; (c) The schematic contribution of new particles X and Y that couple to the
muon.

The interaction shown in Fig. 1(a) is a chiral-changing, flavor-conserving process, which
gives it a special sensitivity to possible new physics [3, 4]. Of course heavier particles can
also contribute, as indicated by the diagram in Fig. 1(c). For example, X = W

± and Y = ⌫µ,
along with X = µ and Y = Z

0, are the lowest-order weak contributions. In the Standard-
Model, aµ gets measureable contributions from QED, the strong interaction, and from the
electroweak interaction,

a

SM = a

QED + a

Had + a

Weak
. (2)

In this document we present the latest evaluations of the SM value of aµ, and then discuss
expected improvements that will become available over the next five to seven years. The
uncertainty in this evaluation is dominated by the contribution of virtual hadrons in loops.
A worldwide e↵ort is under way to improve on these hadronic contributions. By the time
that the Fermilab muon (g � 2) experiment, E989, reports a result later in this decade,
the uncertainty should be significantly reduced. We emphasize that the existence of E821
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2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).
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Figure 4: (a) The “cut” hadronic vacuum polarization diagram; (b) The e

+
e

� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy
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2.2 Weak contributions

The electroweak contribution (shown in Fig. 2) is now calculated through two loops [9, 10,
11, 12, 13, 14]. The one loop result

a

EW(1)
µ =

GFp
2

m

2
µ

8⇡2

8
><

>:
10

3|{z}
W

+
1

3
(1�4 sin2

✓W )2 � 5

3| {z }
Z

+ O
✓
m

2
µ

M

2
Z

log
M

2
Z

m

2
µ

◆
+

m

2
µ

M

2
H

Z 1

0

dx

2x2(2� x)

1� x+
m2

µ

M2
H
x

2

9
=

;

= 194.8⇥ 10�11
, (6)

was calculated by five separate groups [15] shortly after the Glashow-Salam-Weinberg theory
was shown by ’t Hooft to be renormalizable. Due to the small Yukawa coupling of the Higgs
boson to the muon, only the W and Z bosons contribute at a measurable level in the lowest-
order electroweak term.
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Figure 2: Weak contributions to the muon anomalous magnetic moment. Single-loop con-
tributions from (a) virtual W and (b) virtual Z gauge bosons. These two contributions
enter with opposite sign, and there is a partial cancellation. The two-loop contributions fall
into three categories: (c) fermionic loops which involve the coupling of the gauge bosons
to quarks, (d) bosonic loops which appear as corrections to the one-loop diagrams, and (e)
a new class of diagrams involving the Higgs where G is the longitudinal component of the
gauge bosons. See Ref. [16] for details. The ⇥ indicates the photon from the magnetic field.

The two-loop electroweak contribution (see Figs. 2(c-e)), which is negative [11, 10, 9, 12],
has been re-evaluated using the LHC value of the Higgs mass [14]. The total electroweak
contribution is

a

EW
µ = (153.6± 1.0)⇥ 10�11 (7)

where the error comes from hadronic e↵ects in the second-order electroweak diagrams with
quark triangle loops, along with unknown three-loop contributions[12, 17, 18, 19]. The lead-
ing logs for the next-order term have been shown to be small [12, 14]. The weak contribution
is about 1.3 ppm of the anomaly, so the experimental uncertainty on aµ of ±0.54 ppm now
probes the weak scale of the Standard Model.
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2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).
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� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy
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It should be noted that the negative NLO contribution results
in an anticorrelation between its uncertainty and the uncer-
tainty from the LO contribution, consequently resulting in a
slight reduction in the overall uncertainty that has been
incorporated into Eq. (3.34).
The hadronic LbL contributions, although small compared

to the hadronic vacuum polarization sector, have, in the past,
beendetermined throughmodel-dependent approaches.These
are based on meson exchanges, the large Nc limit, ChPT
estimates, short distance constraints from the operator product
expansion, andpQCD.Over time, several different approaches
to evaluating ahad;LbLμ have been attempted, resulting in good
agreement for the leading Nc (π0 exchange) contribution, but
differing for subleading effects. A commonly quoted deter-
mination of the LbL contribution is the “Glasgow consensus”
estimate of ahad;LbLμ ðGlasgow consensusÞ ¼ ð10.5$ 2.6Þ ×
10−10 [101] (alternatively, see [102–105]). However, recent
works [106–108] have reevaluated the contribution to ahad;LbLμ

due to axial exchanges, where it has been found that this
contribution has, in the past, been overestimated due to an
incorrect assumption that the form factors for the axial meson
contribution are symmetric under the exchange of two photon
momenta [106]. Under this assumption, the determination in
[102] previously found the axial vector contribution to be
ahad;LbL;axialμ ¼ð2.2$0.5Þ×10−10. Correcting this reduces this
contribution to ahad;LbL;axialμ ¼ð0.8$0.3Þ×10−10 [106,107].
Applying this adjustment to theGlasgow consensus result, the
estimate in [108] finds

ahad;LbLμ ¼ ð9.8$ 2.6Þ × 10−10; ð3:35Þ

which is the chosen estimate for ahad;LbLμ in this work. This
result is notably lower than the previously accepted LbL
estimates and will incur an overall downward shift on aSMμ . It
is, however, still within the original uncertainties when
comparing with the original Glasgow consensus estimate.
Alternatively, it should be noted that the estimate of
ahad;LbLμ ¼ ð10.2$ 3.9Þ × 10−10 [108,109], which is a result
that is independent of the Glasgow consensus estimate,
could be employed here. In addition, the recent work [105]
has provided an estimate for the next-to-leading order
hadronic LbL contribution. It has found ahad;NLO-LbLμ ¼
ð0.3$ 0.2Þ × 10−10, which does not alter the hadronic
LbL contribution significantly, but is taken into account
in the full SM prediction given below.
Much work has also been directed at the possibility of a

model independent calculation of ahad;LbLμ to further consoli-
date the SM prediction of aμ. One approach involves the
measurement of transition form factors by KLOE-2 and
BESIII, which can be expected to constrain the leading
pseudoscalar-pole (π0, η; η0) contribution to a precision of
approximately 15% [108]. Alternatively, the pion transition
formfactor (π0 → γ%γ%) canbecalculated on the lattice for the
same purpose [110]. New efforts into the prospects of

determining ahad;LbLμ using dispersive approaches are also
very promising [111–116], where the dispersion relations are
formulated to calculate either thegeneral hadronicLbL tensor
or to calculate ahad;LbLμ directly. These approaches will allow
for the determination of the hadronic LbL contributions from
experimental data and, at the very least, will invoke stringent
constraints on future estimates. Last, there has been huge
progress in developingmethods for a direct lattice simulation
of ahad;LbLμ [110,117–123]. With a proof of principle already
well established, an estimate of approximately 10% accuracy
seems possible in the near future. Considering these develop-
ments and the efforts of the Muon g − 2 Theory Initiative
[124] to promote the collaborative work of many different
groups, the determination of ahad;LbLμ on the level of the
Glasgowconsensuswill, at thevery least, be consolidated and
a reduction of the uncertainty seems highly probable on the
time scales of the new g − 2 experiments.
Following Eq. (3.31), the sum of all the sectors of the SM

results in a total value of the anomalous magnetic moment
of the muon of

aSMμ ¼ ð11659182.04$ 3.56Þ × 10−10; ð3:36Þ
where the uncertainty is determined from the uncertainties
of the individual SM contributions added in quadrature.
Comparing this with the current experimental measurement
given in Eq. (1.1) results in a deviation of

Δaμ ¼ ð27.06$ 7.26Þ × 10−10; ð3:37Þ
corresponding to a 3.7σ discrepancy. This result is compared
with other determinations of aSMμ in Fig. 25. In particular, a
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FIG. 25. A comparison of recent andprevious evaluations ofaSMμ .
The analyses listed in chronological order are DHMZ10 [84], JS11
[85], HLMNT11 [9], FJ17 [79], and DHMZ17 [78]. The prediction
from this work is listed as KNT18, which defines the uncertainty
band that other analyses are compared to. The current uncertainty
on the experimental measurement [1–4] is given by the light blue
band. The light grey band represents the hypothetical situation of
the new experimental measurement at Fermilab yielding the same
mean value for aexpμ as the BNL measurement, but achieving the
projected fourfold improvement in its uncertainty [5].
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2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).
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Figure 4: (a) The “cut” hadronic vacuum polarization diagram; (b) The e

+
e

� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy
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Perturbative QCD fails to be a reliable tool for estimating ahadµ and known approaches to low energy QCD like chiral
perturbation theory as well as extensions of it which incorporate spin-1 bosons or lattice QCD are far from being able to
make precise predictions. We therefore have to resort to a semi-phenomenological approach using dispersion relations
together with the optical theorem and experimental data.

The basic relations are
– analyticity (deriving from causality), which allows one to write the DR

⇧ 0
� (k2) � ⇧ 0

� (0) = k2

⇡

Z 1

0
ds

Im⇧ 0
� (s)

s(s � k2 � i")
. (101)

– optical theorem (deriving from unitarity), which relates the imaginary part of the vacuum polarization amplitude to the
total cross section in e+e�-annihilation

Im⇧ 0
� (s) = s

4⇡↵(s)
�tot(e+e� ! anything) := ↵(s)

3
R(s), (102)

with

R(s) = �tot

�

4⇡↵(s)2

3s
. (103)

The normalization factor is the point cross-section (tree level) �µµ(e+e� ! � ⇤ ! µ+µ�) in the limit s � 4m2
µ. We obtain

the hadronic contribution if we restrict ‘‘anything’’ to hadrons. The complementary leptonic part may be calculated reliably
in perturbation theory and the production of a lepton pair at lowest order is given by

R`(s) =
s

1 � 4m2
`

s

✓

1 + 2m2
`

s

◆

, (` = e, µ, ⌧ ), (104)

which may be read off from the imaginary part given in Eq. (75). This result provides an alternative way to calculate the
renormalized vacuum polarization function Eq. (73), namely, via the DR equation (66) which now takes the form

⇧ 0`
� ren(q

2) = ↵q2

3⇡

Z 1

4m2
`

ds
R`(s)

s(s � q2 � i")
, (105)

yielding the vacuum polarization due to a lepton-loop.
In contrast to the leptonic part, the hadronic contribution cannot be calculated analytically as a perturbative series, but

it can be expressed in terms of the cross section of the reaction e+e� ! hadrons, which is known from experiments. Via

Rhad(s) = � (e+e� ! hadrons)
�

4⇡↵(s)2

3s
, (106)

we obtain the relevant hadronic vacuum polarization

⇧ 0had
� ren(q

2) = ↵q2

3⇡

Z 1

4m2
⇡

ds
Rhad(s)

s(s � q2 � i")
. (107)

At low energies, where the dominating final state consists of two charged pions,11the cross-section is given by the square
of the electromagnetic form factor of the pion F (0)

⇡ (s) (effective ⇡+⇡�� vertex undressed from VP effects, see below),

Rhad(s) = 1
4

✓

1 � 4m2
⇡

s

◆

3
2

|F (0)
⇡ (s)|2, 4m2

⇡ < s < 9m2
⇡ , (108)

which directly follows from the corresponding imaginary part

Im ⇧ 0(⇡)
� (q2) = ↵

12
(1 � 4m2

⇡/s)3/2

of a pion loop in the photon vacuum polarization. At s = 0 we have F (0)
⇡ (0) = 1, i.e., F (0)

⇡ (0) measures the classical pion
charge in units of e. For point-like pions we would have F (0)

⇡ (s) ⌘ 1. There are three differences between the pionic loop
integral and those belonging to the lepton loops:
– the masses are different
– the spins are different
– the pion is composite—the Standard Model leptons are elementary.

11 A much smaller contribution is due to � ⇤ ! ⇡0� , the hadronic final state with the lowest threshold s > m2
⇡0 .

2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).
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Figure 4: (a) The “cut” hadronic vacuum polarization diagram; (b) The e

+
e

� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy
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Figure 34. Diagrammatic representation of the full photon propagator in equation (77).

Figure 35. Diagrammatic relation between the spectral function and the cross-section in
equation (79).

X

µ

e

Figure 36. Vacuum polarization contribution from a small internal mass.

where a is a parameter reflecting the gauge freedom in the free-field propagator (a = 1 in the
Feynman gauge).
Since the photon self-energy is transverse in the q-momenta, the replacement in equation (75)
is unaffected by the possible gauge dependence of the free-photon propagator.

On the other hand, the on-shell renormalized photon self-energy obeys a dispersion relation
with a subtraction at q2 = 0 (associated with the on-shell renormalization); therefore

!(f )(q2)

q2
=
∫ ∞

0

dt

t

1
t − q2

1
π

Im!(f )(t), (78)

where 1
π

Im!(f )(t) denotes the f -spectral function, related to the one-photon e+e− annihilation
cross-section into f +f − (see the illustration in figure 35 ) as follows:

σ (t)e+e−→f +f − = 4π2α

t

1
π

Im!(f )(t). (79)

More specifically, at the one-loop level in perturbation theory

1
π

Im!(f )(t) = α

π

1
3

√

1 −
4m2

f

t

(

1 + 2
m2

f

t

)

θ(t − 4m2
f ). (80)

The simplest example of this class of Feynman diagrams is the one in figure 36, which is
the only contribution of this type at the two-loop level, with the result [90, 80]

a(4)
µ (mµ/me) =

[(2
3

)

︸︷︷ ︸
β1

(
1
2

)
ln

mµ

me
− 25

36
+ O

(
me

mµ

)](α
π

)2
. (81)

Vacuum polarization contributions from fermions with a mass smaller than that of the external
line (me ≪ mµ) are enhanced by the QED short-distance logarithms of the ratio of the two
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Figure 46. Hadronic vacuum polarization contribution.

Notice that the errors in a(4)
µ (total), a(6)

µ (total) and a(8)
µ (total) are very small and dominated

by the error in the τ -mass, and in the µ-mass to a lesser degree. The first error in the total
sum a(2+4+6+8)

µ (QED), which is still the dominant error, is the one induced by the error in the
determination of the fine-structure constant; the second error is the one induced by the lepton
mass ratios.

The most recent estimate of the five-loop contribution by Kinoshita and Nio [88, 107]
gives a result

a(10)
µ (mµ/me, mµ/mτ )vp and l×l ≃ 663 (20)

(α
π

)5
= 4.48 (0.14) × 10−11. (119)

Because this estimate is not yet at the level of rigour of the lowest-order determinations, we
have not included it in table 8; however, we shall take it into account when making a final
comparison between theory and experiment.

The question that naturally arises is whether or not the discrepancy between the
experimental result on the one hand, and the QED contribution from leptons alone which we
have discussed, can be understood in terms of the extra hadronic and electroweak contributions
predicted by the Standard Model. This will be the subject of the following subsections.

7.2. Contributions from hadronic vacuum polarization

All calculations of the lowest-order hadronic vacuum polarization contribution to the muon
anomaly (see figure 46) are based on the spectral representation [110]

a(4)
µ (H)vp = α

π

∫ ∞

0

dt

t

1
π

Im$(H)(t)

∫ 1

0
dx

x2(1 − x)

x2 + t
m2

µ
(1 − x)

, (120)

with the hadronic spectral function 1
π

Im$(H)(t) related to the one photon e+e− annihilation
cross-section into hadrons as follows:

σ (t){e+e−→(γ )→hadrons} = 4π2α

t

1
π

Im$(H)(t). (121)

As already explained in the previous subsection when discussing the contribution from
vacuum polarization due to a heavy lepton, equation (120) results from the replacement

− i
gαβ

q2
⇒ i

(
gαβ − qαqβ

q2

)
$(H)(q2)

q2
(122)

in the free-photon propagator of the lowest-order QED diagram in figure 31 by the one
corrected by the proper hadronic photon self-energy in figure 46. Since the photon self-energy
is transverse in the q-momenta, the replacement is unaffected by the gauge dependence in
the free-photon propagator. The on-shell renormalized photon self-energy obeys a dispersion
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Fig. 24. History of evaluations before 2000 (left) [73–76,186–189,79–81,190,191,83,162–167], and some more recent ones (right) [178–185,161,175];
(e+e�) = e+e�-data based, (e+e�, ⌧ ) = in addition include data from ⌧ spectral functions (see Section 4.1.2).

Fig. 25. Optical theorem for the hadronic contribution to the photon propagator.

Before we will continue with a discussion of the higher order hadronic contributions, we first present additional details
about what precisely goes into the DR equation (109) and briefly discuss some issues concerning the determination of the
required hadronic cross-sections.

4.1.1. Dispersion relations and hadronic e+e�-annihilation cross sections
To leading order in ↵, the hadronic ‘‘blob’’ in Fig. 19 has to be identified with the photon self-energy function ⇧

0had
� (s).

The latter we may relate to the cross-section e+e� ! hadrons by means of the DR equation (101) which derives from
the correspondence Fig. 25 based on unitarity (optical theorem) and causality (analyticity), as elaborated earlier. Note that
⇧

0had
� (q2) is a one particle irreducible (1PI) object, represented by diagrams which cannot be cut into two disconnected

parts by cutting a single photon line. At low energies the imaginary part is related to intermediate hadronic states like
⇡0� , ⇢,!, �, . . . ,⇡⇡ , 3⇡ , 4⇡ , . . . ,⇡⇡� , , . . . , KK , KK⇡ . . . which in the DR correspond to the states produced in e+e�-
annihilation via a virtual photon. At least one hadron plus any strong, electromagnetic or weak interaction contribution
counts. e+e�-data in principle may be used up to energies where � –Z interference comes into play above about 40 GeV.

Experimentally, what is determined is of the form

Rexp
had(s) = Nhad(1 + �RC)

Nnorm"

�norm(s)
�µµ, 0(s)

,

whereNhad is the number of observed hadronic events,Nnorm is the number of observed normalizing events, " is the detector
efficiency–acceptance product of hadronic events while �RC are radiative corrections to hadron production. �norm(s) is the
physical cross-section for normalizing events, including all radiative corrections integrated over the acceptance used for the
luminosity measurement, and �µµ, 0(s) = 4⇡↵2/3s is the normalization. This also shows that a precise measurement of
R(s) requires precise knowledge of the relevant radiative corrections.

Radiation effects may be used to measure �had(s0) at all energies
p
s0 lower than the fixed energy

p
s at which an

accelerator is running [192]. This is possible due to initial state radiation (ISR), which can lead to huge effects for kinematical
reasons. The relevant radiative return (RR) mechanism is illustrated in Fig. 26: in the radiative process e+e� ! ⇡+⇡�� ,
photon radiation from the initial state reduces the invariant mass from s to s0 = s (1� k) of the produced final state, where
k is the fraction of energy carried away by the photon radiated from the initial state. Such RR cross-section measurements
are particularly interesting for machines running on–resonance like the �- and B-factories, which have enhanced event
rates as they are running on top of a peak [193–195]. The first dedicated RR experiment has been performed by KLOE at
DA8NE/Frascati, by measuring the ⇡+⇡� cross-section [86,171] (see Fig. 21 and Refs. [196,197]).

Results for exclusive multi-hadron production channels from BaBar play an important role in the energy range between
1.4 to 2 GeV. In fact new data became available for most of the channels of the exclusive measurements in this region. In
contrast the inclusive measurements date back to the early 1980’s and show much larger uncertainties.
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Perturbative QCD fails to be a reliable tool for estimating ahadµ and known approaches to low energy QCD like chiral
perturbation theory as well as extensions of it which incorporate spin-1 bosons or lattice QCD are far from being able to
make precise predictions. We therefore have to resort to a semi-phenomenological approach using dispersion relations
together with the optical theorem and experimental data.

The basic relations are
– analyticity (deriving from causality), which allows one to write the DR

⇧ 0
� (k2) � ⇧ 0

� (0) = k2

⇡

Z 1

0
ds

Im⇧ 0
� (s)

s(s � k2 � i")
. (101)

– optical theorem (deriving from unitarity), which relates the imaginary part of the vacuum polarization amplitude to the
total cross section in e+e�-annihilation

Im⇧ 0
� (s) = s

4⇡↵(s)
�tot(e+e� ! anything) := ↵(s)

3
R(s), (102)

with

R(s) = �tot

�

4⇡↵(s)2

3s
. (103)

The normalization factor is the point cross-section (tree level) �µµ(e+e� ! � ⇤ ! µ+µ�) in the limit s � 4m2
µ. We obtain

the hadronic contribution if we restrict ‘‘anything’’ to hadrons. The complementary leptonic part may be calculated reliably
in perturbation theory and the production of a lepton pair at lowest order is given by

R`(s) =
s

1 � 4m2
`

s

✓

1 + 2m2
`

s

◆

, (` = e, µ, ⌧ ), (104)

which may be read off from the imaginary part given in Eq. (75). This result provides an alternative way to calculate the
renormalized vacuum polarization function Eq. (73), namely, via the DR equation (66) which now takes the form

⇧ 0`
� ren(q

2) = ↵q2

3⇡

Z 1

4m2
`

ds
R`(s)

s(s � q2 � i")
, (105)

yielding the vacuum polarization due to a lepton-loop.
In contrast to the leptonic part, the hadronic contribution cannot be calculated analytically as a perturbative series, but

it can be expressed in terms of the cross section of the reaction e+e� ! hadrons, which is known from experiments. Via

Rhad(s) = � (e+e� ! hadrons)
�

4⇡↵(s)2

3s
, (106)

we obtain the relevant hadronic vacuum polarization

⇧ 0had
� ren(q

2) = ↵q2

3⇡

Z 1

4m2
⇡

ds
Rhad(s)

s(s � q2 � i")
. (107)

At low energies, where the dominating final state consists of two charged pions,11the cross-section is given by the square
of the electromagnetic form factor of the pion F (0)

⇡ (s) (effective ⇡+⇡�� vertex undressed from VP effects, see below),

Rhad(s) = 1
4

✓

1 � 4m2
⇡

s

◆

3
2

|F (0)
⇡ (s)|2, 4m2

⇡ < s < 9m2
⇡ , (108)

which directly follows from the corresponding imaginary part

Im ⇧ 0(⇡)
� (q2) = ↵

12
(1 � 4m2

⇡/s)3/2

of a pion loop in the photon vacuum polarization. At s = 0 we have F (0)
⇡ (0) = 1, i.e., F (0)

⇡ (0) measures the classical pion
charge in units of e. For point-like pions we would have F (0)

⇡ (s) ⌘ 1. There are three differences between the pionic loop
integral and those belonging to the lepton loops:
– the masses are different
– the spins are different
– the pion is composite—the Standard Model leptons are elementary.

11 A much smaller contribution is due to � ⇤ ! ⇡0� , the hadronic final state with the lowest threshold s > m2
⇡0 .

2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).
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Figure 4: (a) The “cut” hadronic vacuum polarization diagram; (b) The e

+
e

� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy
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Improvement of the precision with which the total cross
section of eþe" annihilation into hadrons is known is also
needed for a more accurate estimation of the hadronic con-
tribution to the muon anomalous magnetic moment because it
is one of the crucial limiting factors in a search for new
physics (Bouchiat and Michel, 1961; Gourdin and de
Rafael, 1969; Bennett et al., 2006).

There is an important relation between spectral functions
in eþe" annihilation into hadrons with isospin I ¼ 1 and
corresponding ! lepton decays based on conservation of
vector current (CVC) and isospin symmetry (Thacker and
Sakurai, 1971; Tsai and Tsai, 1971). Although first detailed
tests of such relations showed satisfactory agreement between
such spectral functions (Kawamoto and Sanda, 1978;
Eidelman and Ivanchenko, 1991), higher accuracy reached
in both eþe" and ! lepton sectors revealed possible system-
atic effects not accounted for in the eþe" and/or ! experi-
ments (Davier et al., 2003a, 2003b). An understanding of
these effects is crucial for improving the accuracy with which
the hadronic contributions to the muon anomalous magnetic
moment can be estimated from ! decays to two and four pions
as first suggested by Alemany, Davier, and Höcker (1998).

Detailed measurements of the energy dependence of vari-
ous exclusive cross sections allow us to improve our knowl-
edge of vector mesons and look for new states, both of light
(Druzhinin, 2007) and heavy quarks (Eichten et al., 2008).

B. Initial state radiation

In eþe" collider experiments, exclusive and total hadronic
cross sections are usually measured by scanning the acces-
sible energy range. The process of eþe" annihilation is
accompanied by emission of one or several photons from
the initial state. The lowest-order Feynman diagram describ-
ing initial state radiation (ISR) is shown in Fig. 2. The
quantity measured directly in the experiment is the visible
cross section

"vis ¼
N

L
; (1)

where N is the number of selected events of the process
eþe" ! hadronsþ n#, n ¼ 0; 1; 2; . . . , and L is the inte-
grated luminosity of the collider collected at the center-of-
mass (c.m.) eþe" energy 2E0. The visible cross section is
related to the Born cross section "0 corresponding to the
lowest-order diagram of Fig. 1 via the integral (Kuraev and
Fadin, 1985) providing the 10"3 accuracy:

"vis ¼
Z 1"m2

min=s

0
"ðs; xÞWðs; xÞ"0½sð1" xÞ'dx; (2)

where s ¼ 4E2
0, x is an effective fraction of the beam energy

E0 carried by photons emitted from the initial state, mmin is
the minimal possible invariant mass of the final hadrons, and
"ðs; xÞ is the detection efficiency for the process eþe" !
hadronsþ n# as a function of x and s. The so-called radiator
function Wðs; xÞ, taking into account higher-order QED con-
tributions, in particular, from the diagram in Fig. 2, is fully
calculable in QED (Actis et al., 2010). Because of the photon

emission from the initial state, the visible cross section
depends on the Born cross section at all energies below the
nominal eþe" c.m. energy 2E0.

In conventional scanning experiments, the influence of ISR
is suppressed by the requirements of the energy and momen-
tum balance between the final hadrons and the initial eþe"

state. In this case the detection efficiency has an x dependence
close to the step function "ðs; xÞ ¼ "0ðsÞ for x < x0, and zero
for x > x0. At small x0, Eq. (2) can be rewritten as

"vis ¼ "0ðsÞ"0ðsÞ½1þ $ðsÞ'; (3)

where 1þ $ðsÞ is the radiative correction factor, which takes
into account higher-order QED corrections. To calculate this
factor it is necessary to know the s dependence of "0 in the
range from sð1" x0Þ to s. For slowly varying cross sections,
$ is about 10% and can be determined with an accuracy better
than 1% using existing data on the cross section energy
dependence. Thus, in scanning experiments, from the data
collected at the c.m. energy

ffiffiffi
s

p
, the cross section "0ðsÞ is

determined directly.
Another approach is also possible. Equation (2) can be

rewritten in the differential form:

d"visðs;mÞ
dm

¼ 2m

s
"ðs;mÞWðs; xÞ"0ðmÞ; (4)

where we have made a transformation to the variable m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1" xÞ

p
, the invariant mass of the hadronic system. At

nonzero x the dominant contribution to the visible cross
section comes from the one-photon ISR (see Fig. 2). With
the inclusion of the ISR photon momentum in the selection
conditions on the energy and momentum balance, the non-
zero detection efficiency for ISR events can be obtained in a
wide range of the hadronic invariant mass. As a result, from
the measurement of the mass spectrum for the process
eþe" ! hadronsþ # at fixed c.m. energy

ffiffiffi
s

p
, the cross

section "0ðmÞ can be extracted in the invariant-mass range
from threshold to the mass close to

ffiffiffi
s

p
.

The idea of utilizing initial state radiation from a high-
mass state to explore electron-positron processes at all ener-
gies below that state was previously outlined by Baier
and Khoze (1965) and Baier and Fadin (1968). The possibil-
ity of exploiting such processes at high-luminosity % and
B factories was discussed by Arbuzov et al. (1998),
Benayoun et al. (1999), Binner, Kühn, and Melnikov
(1999), and Konchatnij and Merenkov (1999) and motivated
studies described in this paper.

e+ hadrons

e- γ

FIG. 2. The lowest-order Feynman diagram describing the initial
state radiation process eþe" ! #þ hadrons.
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A novel method of studying eþe" annihilation into hadrons using initial state radiation
at eþe" colliders is described. After a brief history of the method, its theoretical foundations
are considered. Numerous experiments in which exclusive cross sections of eþe" annihilation
into hadrons below the center-of-mass energy of 5 GeV have been measured are presented.
Some applications of the experimental results to fundamental tests of the standard model are
listed.
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I. INTRODUCTION

A. Why is low-energy eþe" annihilation interesting?

Studies of low-energy eþe" annihilation into hadrons are
of great interest for theory and have numerous applications.
According to current concepts, eþe" annihilation into had-
rons proceeds via an intermediate virtual photon that pro-
duces a pair of quarks q "q, followed by the hadronization of
quarks into observed hadrons. This process is described by
the lowest-order Feynman diagram shown in Fig. 1. When the
initial energy of eþe", or equivalently of the intermediate
virtual photon, is large enough, the process of hadronization
is well described by QCD. At small energies, lower than
2–3 GeV, produced hadrons are relatively soft and intensively
interact with each other forming hadronic resonances. At the
moment QCD fails to describe this energy region. Because
of that, it is vitally important to gain sufficient information
from experiment to be used as input for various QCD-based
theoretical models. QCD sum rules are an example of how
measurements of total and exclusive cross sections can be
used to extract such fundamental parameters of theory as the
strong coupling constant $s, quark, and gluon condensates
(Shifman, Vainshtein, and Zacharov, 1979).

Precise knowledge of vacuum polarization effects based on
the total cross section of eþe" annihilation into hadrons is
necessary to estimate the hadronic contributions to the run-
ning fine-structure constant and thus determine its value at the
Z boson mass $ðM2

ZÞ, a key component of the high-precision
tests of the standard model (Burkhardt et al., 1989; Eidelman
and Jegerlehner, 1995; Hagiwara et al., 2003; Burkhardt and
Pietrzyk, 2005; Actis et al., 2010).

e+

hadrons

e-

FIG. 1. The lowest-order Feynman diagram describing the process
of eþe" annihilation into hadrons.
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Improvement of the precision with which the total cross
section of eþe" annihilation into hadrons is known is also
needed for a more accurate estimation of the hadronic con-
tribution to the muon anomalous magnetic moment because it
is one of the crucial limiting factors in a search for new
physics (Bouchiat and Michel, 1961; Gourdin and de
Rafael, 1969; Bennett et al., 2006).

There is an important relation between spectral functions
in eþe" annihilation into hadrons with isospin I ¼ 1 and
corresponding ! lepton decays based on conservation of
vector current (CVC) and isospin symmetry (Thacker and
Sakurai, 1971; Tsai and Tsai, 1971). Although first detailed
tests of such relations showed satisfactory agreement between
such spectral functions (Kawamoto and Sanda, 1978;
Eidelman and Ivanchenko, 1991), higher accuracy reached
in both eþe" and ! lepton sectors revealed possible system-
atic effects not accounted for in the eþe" and/or ! experi-
ments (Davier et al., 2003a, 2003b). An understanding of
these effects is crucial for improving the accuracy with which
the hadronic contributions to the muon anomalous magnetic
moment can be estimated from ! decays to two and four pions
as first suggested by Alemany, Davier, and Höcker (1998).

Detailed measurements of the energy dependence of vari-
ous exclusive cross sections allow us to improve our knowl-
edge of vector mesons and look for new states, both of light
(Druzhinin, 2007) and heavy quarks (Eichten et al., 2008).

B. Initial state radiation

In eþe" collider experiments, exclusive and total hadronic
cross sections are usually measured by scanning the acces-
sible energy range. The process of eþe" annihilation is
accompanied by emission of one or several photons from
the initial state. The lowest-order Feynman diagram describ-
ing initial state radiation (ISR) is shown in Fig. 2. The
quantity measured directly in the experiment is the visible
cross section

"vis ¼
N

L
; (1)

where N is the number of selected events of the process
eþe" ! hadronsþ n#, n ¼ 0; 1; 2; . . . , and L is the inte-
grated luminosity of the collider collected at the center-of-
mass (c.m.) eþe" energy 2E0. The visible cross section is
related to the Born cross section "0 corresponding to the
lowest-order diagram of Fig. 1 via the integral (Kuraev and
Fadin, 1985) providing the 10"3 accuracy:

"vis ¼
Z 1"m2

min=s

0
"ðs; xÞWðs; xÞ"0½sð1" xÞ'dx; (2)

where s ¼ 4E2
0, x is an effective fraction of the beam energy

E0 carried by photons emitted from the initial state, mmin is
the minimal possible invariant mass of the final hadrons, and
"ðs; xÞ is the detection efficiency for the process eþe" !
hadronsþ n# as a function of x and s. The so-called radiator
function Wðs; xÞ, taking into account higher-order QED con-
tributions, in particular, from the diagram in Fig. 2, is fully
calculable in QED (Actis et al., 2010). Because of the photon

emission from the initial state, the visible cross section
depends on the Born cross section at all energies below the
nominal eþe" c.m. energy 2E0.

In conventional scanning experiments, the influence of ISR
is suppressed by the requirements of the energy and momen-
tum balance between the final hadrons and the initial eþe"

state. In this case the detection efficiency has an x dependence
close to the step function "ðs; xÞ ¼ "0ðsÞ for x < x0, and zero
for x > x0. At small x0, Eq. (2) can be rewritten as

"vis ¼ "0ðsÞ"0ðsÞ½1þ $ðsÞ'; (3)

where 1þ $ðsÞ is the radiative correction factor, which takes
into account higher-order QED corrections. To calculate this
factor it is necessary to know the s dependence of "0 in the
range from sð1" x0Þ to s. For slowly varying cross sections,
$ is about 10% and can be determined with an accuracy better
than 1% using existing data on the cross section energy
dependence. Thus, in scanning experiments, from the data
collected at the c.m. energy

ffiffiffi
s

p
, the cross section "0ðsÞ is

determined directly.
Another approach is also possible. Equation (2) can be

rewritten in the differential form:

d"visðs;mÞ
dm

¼ 2m

s
"ðs;mÞWðs; xÞ"0ðmÞ; (4)

where we have made a transformation to the variable m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1" xÞ

p
, the invariant mass of the hadronic system. At

nonzero x the dominant contribution to the visible cross
section comes from the one-photon ISR (see Fig. 2). With
the inclusion of the ISR photon momentum in the selection
conditions on the energy and momentum balance, the non-
zero detection efficiency for ISR events can be obtained in a
wide range of the hadronic invariant mass. As a result, from
the measurement of the mass spectrum for the process
eþe" ! hadronsþ # at fixed c.m. energy

ffiffiffi
s

p
, the cross

section "0ðmÞ can be extracted in the invariant-mass range
from threshold to the mass close to

ffiffiffi
s

p
.

The idea of utilizing initial state radiation from a high-
mass state to explore electron-positron processes at all ener-
gies below that state was previously outlined by Baier
and Khoze (1965) and Baier and Fadin (1968). The possibil-
ity of exploiting such processes at high-luminosity % and
B factories was discussed by Arbuzov et al. (1998),
Benayoun et al. (1999), Binner, Kühn, and Melnikov
(1999), and Konchatnij and Merenkov (1999) and motivated
studies described in this paper.

e+ hadrons

e- γ

FIG. 2. The lowest-order Feynman diagram describing the initial
state radiation process eþe" ! #þ hadrons.
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I. INTRODUCTION

A. Why is low-energy eþe" annihilation interesting?

Studies of low-energy eþe" annihilation into hadrons are
of great interest for theory and have numerous applications.
According to current concepts, eþe" annihilation into had-
rons proceeds via an intermediate virtual photon that pro-
duces a pair of quarks q "q, followed by the hadronization of
quarks into observed hadrons. This process is described by
the lowest-order Feynman diagram shown in Fig. 1. When the
initial energy of eþe", or equivalently of the intermediate
virtual photon, is large enough, the process of hadronization
is well described by QCD. At small energies, lower than
2–3 GeV, produced hadrons are relatively soft and intensively
interact with each other forming hadronic resonances. At the
moment QCD fails to describe this energy region. Because
of that, it is vitally important to gain sufficient information
from experiment to be used as input for various QCD-based
theoretical models. QCD sum rules are an example of how
measurements of total and exclusive cross sections can be
used to extract such fundamental parameters of theory as the
strong coupling constant $s, quark, and gluon condensates
(Shifman, Vainshtein, and Zacharov, 1979).

Precise knowledge of vacuum polarization effects based on
the total cross section of eþe" annihilation into hadrons is
necessary to estimate the hadronic contributions to the run-
ning fine-structure constant and thus determine its value at the
Z boson mass $ðM2

ZÞ, a key component of the high-precision
tests of the standard model (Burkhardt et al., 1989; Eidelman
and Jegerlehner, 1995; Hagiwara et al., 2003; Burkhardt and
Pietrzyk, 2005; Actis et al., 2010).

e+

hadrons

e-

FIG. 1. The lowest-order Feynman diagram describing the process
of eþe" annihilation into hadrons.
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are additional !’s in the same hemisphere with energy
greater than 0.2 GeV.

The "!"0 invariant-mass-squared (M2
""0) spectrum is

obtained assuming the pion mass for the charged track; it is
shown in Fig. 6 along with the MC prediction. To improve
the "0 energy resolution, a "0 mass constraint is imposed.
The spurious "0 background level depends on the M2

""0

region, varying from 4% to 7%. (This is subtracted using
S!! sidebands.) The final sample contains 5:43" 106

#! ! h!"0$# candidates after the "0 background sub-
traction, where h! denotes "! or K!. This sample is 50
times larger than those of previous studies.

The spectrum is dominated by the %ð770Þ peak and a
shoulder due to the %0ð1450Þ. A small but clear structure
from the %00ð1700Þ is visible at M2

""0 % 2:7 ðGeV=c2Þ2.
There are two sources of background: feed-down from

other # decay modes and the q !q-continuum. Feed-down
background arises mainly from multi-"0 modes such as
#! ! h!ðn"0Þ$# (6:02& 0:08%), # ! KLh

!"0$#

(0:48& 0:04%), and # ! !"!$# (! ! "0!) (0:10&
0:01%). Here h! denotes either "! or K!. After all modes
are included, the total feed-down background level is
ð7:02& 0:08Þ%. The error given here includes a MC sta-
tistical uncertainty as well as the uncertainty on relevant
branching fractions. The contribution of these feed-down
backgrounds dominates at low values of M2

""0 (Fig. 6).

The q !q-continuum background level is ð2:22& 0:05Þ%
in total, and is concentrated mostly in the highM2

""0 region

above 2:0 ðGeV=c2Þ2. Since the reduction of this high-
mass background is essential in the measurement of the
mass spectrum, we impose the stringent requirement that
the tag side contain only one charged track and no photons.
This requirement improves the signal-to-noise ratio in the
high-mass region M2

""0 ' 2:0 ðGeV=c2Þ2 by a factor of 3,

although the total size of the #! ! "!"0$# sample is
reduced by a factor of 2.5. The normalization of the con-
tinuum MC is validated using data in the mass region
above the # lepton mass: M2

""0 >m2
#. Background from

the other non-# processes, such as B !B, Bhabha and
&þ&!! in the final sample is negligible (< 0:1%).

IV. MEASUREMENT OF THE BRANCHING
FRACTION

A. Basic method

The branching fraction for #! ! h!"0$# (Bh"0) is
determined by dividing the signal yield Nh"0 by the total
number of selected # leptons 2N## taking into account
various efficiencies and background corrections:

(mγγ - mπ
0)/σγγ

N
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DATA
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MC(non-τ B.G.)
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FIG. 5. Normalized !! invariant mass (S!!) spectrum for data
(points) and the #! ! h!"0$# signal MC (open histogram), for
the sample described in the text. The data plotted here corre-
spond to 6% of the full data sample used in this analysis. The
arrows indicate the signal region !6< S!! < 5 and the side-
band regions 7< jS!!j< 9. The sideband regions are used to
subtract fake-"0 background. The shaded histogram shows the
non-# background determined from MC simulation.
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FIG. 6. Invariant-mass-squared (M2
""0 ) distribution for #! !

"!"0$# after imposing tight tag-side requirements. The solid
circles with error bars represent the data, and the histogram
represents the MC simulation (signalþ background). The open
histogram shows the contribution from #! ! "!"0$#; the
narrow cross-hatched area shows that from #! ! K!"0$#; the
wide cross-hatched area shows that from #! ! h!ðn"0Þ$#; and
the striped area shows that from the q !q continuum and other
non-# processes.
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Improvement of the precision with which the total cross
section of eþe" annihilation into hadrons is known is also
needed for a more accurate estimation of the hadronic con-
tribution to the muon anomalous magnetic moment because it
is one of the crucial limiting factors in a search for new
physics (Bouchiat and Michel, 1961; Gourdin and de
Rafael, 1969; Bennett et al., 2006).

There is an important relation between spectral functions
in eþe" annihilation into hadrons with isospin I ¼ 1 and
corresponding ! lepton decays based on conservation of
vector current (CVC) and isospin symmetry (Thacker and
Sakurai, 1971; Tsai and Tsai, 1971). Although first detailed
tests of such relations showed satisfactory agreement between
such spectral functions (Kawamoto and Sanda, 1978;
Eidelman and Ivanchenko, 1991), higher accuracy reached
in both eþe" and ! lepton sectors revealed possible system-
atic effects not accounted for in the eþe" and/or ! experi-
ments (Davier et al., 2003a, 2003b). An understanding of
these effects is crucial for improving the accuracy with which
the hadronic contributions to the muon anomalous magnetic
moment can be estimated from ! decays to two and four pions
as first suggested by Alemany, Davier, and Höcker (1998).

Detailed measurements of the energy dependence of vari-
ous exclusive cross sections allow us to improve our knowl-
edge of vector mesons and look for new states, both of light
(Druzhinin, 2007) and heavy quarks (Eichten et al., 2008).

B. Initial state radiation

In eþe" collider experiments, exclusive and total hadronic
cross sections are usually measured by scanning the acces-
sible energy range. The process of eþe" annihilation is
accompanied by emission of one or several photons from
the initial state. The lowest-order Feynman diagram describ-
ing initial state radiation (ISR) is shown in Fig. 2. The
quantity measured directly in the experiment is the visible
cross section

"vis ¼
N

L
; (1)

where N is the number of selected events of the process
eþe" ! hadronsþ n#, n ¼ 0; 1; 2; . . . , and L is the inte-
grated luminosity of the collider collected at the center-of-
mass (c.m.) eþe" energy 2E0. The visible cross section is
related to the Born cross section "0 corresponding to the
lowest-order diagram of Fig. 1 via the integral (Kuraev and
Fadin, 1985) providing the 10"3 accuracy:

"vis ¼
Z 1"m2

min=s

0
"ðs; xÞWðs; xÞ"0½sð1" xÞ'dx; (2)

where s ¼ 4E2
0, x is an effective fraction of the beam energy

E0 carried by photons emitted from the initial state, mmin is
the minimal possible invariant mass of the final hadrons, and
"ðs; xÞ is the detection efficiency for the process eþe" !
hadronsþ n# as a function of x and s. The so-called radiator
function Wðs; xÞ, taking into account higher-order QED con-
tributions, in particular, from the diagram in Fig. 2, is fully
calculable in QED (Actis et al., 2010). Because of the photon

emission from the initial state, the visible cross section
depends on the Born cross section at all energies below the
nominal eþe" c.m. energy 2E0.

In conventional scanning experiments, the influence of ISR
is suppressed by the requirements of the energy and momen-
tum balance between the final hadrons and the initial eþe"

state. In this case the detection efficiency has an x dependence
close to the step function "ðs; xÞ ¼ "0ðsÞ for x < x0, and zero
for x > x0. At small x0, Eq. (2) can be rewritten as

"vis ¼ "0ðsÞ"0ðsÞ½1þ $ðsÞ'; (3)

where 1þ $ðsÞ is the radiative correction factor, which takes
into account higher-order QED corrections. To calculate this
factor it is necessary to know the s dependence of "0 in the
range from sð1" x0Þ to s. For slowly varying cross sections,
$ is about 10% and can be determined with an accuracy better
than 1% using existing data on the cross section energy
dependence. Thus, in scanning experiments, from the data
collected at the c.m. energy

ffiffiffi
s

p
, the cross section "0ðsÞ is

determined directly.
Another approach is also possible. Equation (2) can be

rewritten in the differential form:

d"visðs;mÞ
dm

¼ 2m

s
"ðs;mÞWðs; xÞ"0ðmÞ; (4)

where we have made a transformation to the variable m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1" xÞ

p
, the invariant mass of the hadronic system. At

nonzero x the dominant contribution to the visible cross
section comes from the one-photon ISR (see Fig. 2). With
the inclusion of the ISR photon momentum in the selection
conditions on the energy and momentum balance, the non-
zero detection efficiency for ISR events can be obtained in a
wide range of the hadronic invariant mass. As a result, from
the measurement of the mass spectrum for the process
eþe" ! hadronsþ # at fixed c.m. energy

ffiffiffi
s

p
, the cross

section "0ðmÞ can be extracted in the invariant-mass range
from threshold to the mass close to

ffiffiffi
s

p
.

The idea of utilizing initial state radiation from a high-
mass state to explore electron-positron processes at all ener-
gies below that state was previously outlined by Baier
and Khoze (1965) and Baier and Fadin (1968). The possibil-
ity of exploiting such processes at high-luminosity % and
B factories was discussed by Arbuzov et al. (1998),
Benayoun et al. (1999), Binner, Kühn, and Melnikov
(1999), and Konchatnij and Merenkov (1999) and motivated
studies described in this paper.

e+ hadrons

e- γ

FIG. 2. The lowest-order Feynman diagram describing the initial
state radiation process eþe" ! #þ hadrons.
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I. INTRODUCTION

A. Why is low-energy eþe" annihilation interesting?

Studies of low-energy eþe" annihilation into hadrons are
of great interest for theory and have numerous applications.
According to current concepts, eþe" annihilation into had-
rons proceeds via an intermediate virtual photon that pro-
duces a pair of quarks q "q, followed by the hadronization of
quarks into observed hadrons. This process is described by
the lowest-order Feynman diagram shown in Fig. 1. When the
initial energy of eþe", or equivalently of the intermediate
virtual photon, is large enough, the process of hadronization
is well described by QCD. At small energies, lower than
2–3 GeV, produced hadrons are relatively soft and intensively
interact with each other forming hadronic resonances. At the
moment QCD fails to describe this energy region. Because
of that, it is vitally important to gain sufficient information
from experiment to be used as input for various QCD-based
theoretical models. QCD sum rules are an example of how
measurements of total and exclusive cross sections can be
used to extract such fundamental parameters of theory as the
strong coupling constant $s, quark, and gluon condensates
(Shifman, Vainshtein, and Zacharov, 1979).

Precise knowledge of vacuum polarization effects based on
the total cross section of eþe" annihilation into hadrons is
necessary to estimate the hadronic contributions to the run-
ning fine-structure constant and thus determine its value at the
Z boson mass $ðM2

ZÞ, a key component of the high-precision
tests of the standard model (Burkhardt et al., 1989; Eidelman
and Jegerlehner, 1995; Hagiwara et al., 2003; Burkhardt and
Pietrzyk, 2005; Actis et al., 2010).

e+

hadrons

e-

FIG. 1. The lowest-order Feynman diagram describing the process
of eþe" annihilation into hadrons.
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ISR γ	


scan method	


vary collision energy	


fixed collision energy	


√s = MΥ(4S) 
à √s’ = Mhad  

Llow statistics due to ISR requirement (O(α)) 
Jbut is compensated high luminosity machines 
Jcan scan cross section for wide energy range in 
the same experimental condition	


radiative return method	
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status of ππ cross section measurement	
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p  Already measured precisely(≾1%) by several 
experiments 

p  small discrepancy (a few %) among measurements 
p  must be confirmed by Belle II 
p  target : 0.5% precision (similar or better than Babar)	
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Fig. 1 Bare cross section of e+e− → π+π− versus centre-of-mass energy for different energy ranges. The error bars of the data points include
statistical and systematic uncertainties added in quadrature. The green band shows the HVPTools combination within its 1 σ uncertainty

123

contribution 
for the ρ  
resonance 
to aµ

had 
	


of the KLOE data, and a comparison with other exper-
imental measurements of σππðγÞ are presented. These
covariance matrices are used here as input in the full
πþπ− combination in order to fully incorporate the corre-
lation information of the KLOE data as an influence on
both the estimate of aπ

þπ−
μ and its uncertainty.

The BESIII measurement in the ρ resonance region
(again with full statistical and systematic covariance
matrices) allows for an in-depth comparison of the existing
radiative return measurements already contributing to the
πþπ− channel, namely the three measurements by the
KLOE Collaboration and the finely binned measurement
from the BABAR Collaboration [29]. In [9], details were
given regarding tension between the KLOE and BABAR
measurements, where the BABAR data were considerably
higher. As is evident from Fig. 4, tension exists between the
BABAR data and all other contributing data in the dominant
ρ region. When considering this along with the plots of the
resulting cross section in Fig. 5, it is clear that the new
BESIII data agrees well with the KLOE data and the full

πþπ− combination. Interestingly, however, it is in better
agreement with the BABAR data at the peak of the
resonance where the cross section is largest. Although
BABAR still influences with an increase, the agreement
between the other radiative return measurements and the
direct scan data largely compensates for this effect. This is
demonstrated by Fig. 6, with the combination clearly
favoring the other measurements. Tension between data
sets, however, still exists and is reflected in the local χ2

error inflation, which results in an ∼15% increase in the
uncertainty of aπ

þπ−
μ . The effect of this energy dependent

error inflation is shown in Fig. 7, where the difference in
using a local scaling of the error instead of a global one is
clearly visible. Tensions arise in particular in the ρ
resonance region, where the cross section is large.
The full combination of all πþπ− data is found to give

aπ
þπ−

μ ½0.305 ≤
ffiffiffi
s

p
≤ 1.937 GeV%

¼ 502.97' 1.14' 1.59' 0.06' 0.14

¼ 502.97' 1.97 ð3:3Þ

and

Δαπþπ−ðM2
ZÞ½0.305 ≤

ffiffiffi
s

p
≤ 1.937 GeV%

¼ 34.26' 0.12: ð3:4Þ

Although this value of aπ
þπ−

μ stays well within the error
estimate of [9], it exhibits a substantial decrease of the
mean value. This has been attributed to the new data
combination routine which allows for the full use of
correlations in the determination of the mean value as well
as the uncertainty and the inclusion of the new, precise
radiative return data which suppresses the influence of
BABAR in the ρ resonance region.
In comparisonwith Eq. (3.3), theBABAR data alone in the

same energy range give an estimate of aπ
þπ−

μ ðBABARÞ ¼
513.2' 3.8. Should all available πþπ− data be combined
using a simple weighted average as in Eq. (2.7), which only

360  365  370  375  380  385  390  395

aµ
π+π−

 (0.6 ≤ �√s ≤ 0.9 GeV) x 1010

Fit of all π+π− data: 369.41 ± 1.32

Direct scan only: 370.77 ± 2.61

KLOE combination: 366.88 ± 2.15

BaBar (09): 376.71 ± 2.72

BESIII (15): 368.15 ± 4.22

FIG. 4. The comparison of the integration of the individual
radiative return measurements and the combination of direct scan
πþπ− measurements between 0.6 ≤

ffiffiffi
s

p
≤ 0.9 GeV.
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advantages in Belle II	


p  large statistics 
p  signal events themselves 
p  control samples for estimation 

of systematic uncertainty 
p  well-designed triggers 

p  Neither Belle and BaBar had 
optimized trigger for this measurement 

p  Belle suffered from large 
efficiency loss due to trigger 

p  larger detector coverage 
p  better generator 
p  lessons from the BaBar measurement 

p  All are giving comparable uncertainty, 
but PID-related ones are relatively large 
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F. Systematic errors

Systematic uncertainties affecting the !! sample in
different mass regions are now summarized. The statistical
errors of the measured efficiencies are included with the
main statistical uncertainty on the !! mass spectrum.
However, in some cases, remaining systematic uncertain-
ties are attached to the efficiency measurement process and
quoted as such. Details have been given for each efficiency
study in Secs. IV and VB. The results for all systematic
uncertainties are listed in Table V.

The overall relative systematic uncertainty on the
!!ð"FSRÞ cross section is 5:0# 10$3 in the 0.6–0.9 GeV
range, but significantly larger below and above the central
region. For comparison, the statistical error of the
measured efficiency corrections amounts to 4:7# 10$3 at
the # peak, while the statistical error of the raw spectrum is
1.35% at that mass.

A full treatment of the systematic uncertainties is im-
plemented, using a covariance matrix. To achieve this we
consider the individual systematic errors (for each source,
as given in Table V) to be 100% correlated in all the mass
bins. Then the total systematic covariance matrix is built as
the sum of the covariance matrices corresponding to each
individual systematic source.

G. Consistency check with tight and loose !2 selection

The loose $2 criterion is used in the # central region,
while the tight one is used in the tails where backgrounds are
larger. However it is possible to compare the results obtained
with the two selections in the central region. This provides a
test of the $2 selection efficiency and of the multihadronic
background. The test is also sensitive to unfolding, as mass
resolutions are different in different 2D-$2 regions. For this
test, events are selectedwith the ‘‘# central’’ conditions, and
with either the tight or loose $2 criterion.

The result of the test is expressed as the ratio of the
efficiency-corrected and unfolded spectra for the loose

over the tight $2 selections. The fitted value of this ratio
over the full central range (0:5–1:0 GeV=c2) is found to
be consistent with unity within errors, 0:9983% 0:0049
with a $2=DF of 53:6=49 for 10 MeV=c2 bins. Fits in
100 MeV=c2 intervals, given in Fig. 41, do not show any
significant trend for a resolution mismatch between data
and corrected MC. Deviations from unity are at a much
smaller level than the resolution correction applied to the
MC in the intermediate region (Sec. VII A, shown by the
dashed histogram). They are also within the range of
estimated uncertainties between the two $2 conditions
(background and $2 selection efficiencies). We thus
conclude that the procedure used for correcting the MC
mass-transfer matrix is consistent within the quoted
systematic uncertainties.

TABLE V. Systematic uncertainties (in 10$3) on the cross section for eþe$ ! !!ð"FSRÞ from the determination of the various
efficiencies in different !! mass ranges (in GeV=c2). The statistical part of the efficiency measurements is included in the total
statistical error in each mass bin. The last line gives the total systematic uncertainty on the !! cross section, including the systematic
error on the ISR luminosity from muons.

Sources 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.9 0.9–1.2 1.2–1.4 1.4–2.0 2.0–3.0

Trigger/filter 5.3 2.7 1.9 1.0 0.7 0.6 0.4 0.4
Tracking 3.8 2.1 2.1 1.1 1.7 3.1 3.1 3.1
!-ID 10.1 2.5 6.2 2.4 4.2 10.1 10.1 10.1
Background 3.5 4.3 5.2 1.0 3.0 7.0 12.0 50.0
Acceptance 1.6 1.6 1.0 1.0 1.6 1.6 1.6 1.6
Kinematic fit ($2) 0.9 0.9 0.3 0.3 0.9 0.9 0.9 0.9
Correl. %% ID loss 3.0 2.0 3.0 1.3 2.0 3.0 10.0 10.0
!!=%% non-cancel. 2.7 1.4 1.6 1.1 1.3 2.7 5.1 5.1
Unfolding 1.0 2.7 2.7 1.0 1.3 1.0 1.0 1.0
ISR luminosity 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
Sum (cross section) 13.8 8.1 10.2 5.0 6.5 13.9 19.8 52.4

FIG. 41 (color online). The ratio of the corrected and unfolded
mass spectra (data points) for loose over tight 2D-$2 selection in
the central # region fitted in 100 MeV=c2 bins, compared to the
band of independently estimated uncertainties (solid lines). The
MC mass-matrix resolution correction is shown as the dashed
histogram.

PRECISE MEASUREMENT OF THE . . . PHYSICAL REVIEW D 86, 032013 (2012)

032013-39

list of systematic 
errors in BaBar 

(PRD86 032013)	
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first look at the Belle II data	


p  Belle II phase2 operation 
p  commissioning of the 

accelerator with collisions 
p  end of March – middle of Jul 
p  the first collision at 26th April 

p  full data of 472 pb-1 was used 
p  goal of the analysis 

p  to observe ρ meson peak 
in the mass spectrum 

p  yield comparison 
with MC simulation 

p  study of trigger efficiency 
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celebration of the first 
collision (26th Apr.)	


©KEK IPNS	
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analysis procedure	
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ππγ不変質量分布	


EM calorimeter	


ISR γ	


π	
 π	


e-	
 e+	


drift chamber	


solid : detectable 
dashed : not detectable	


vertex detector	


barrel region	


p  select events with 
p  one energetic photon 

(ECMS>3 GeV) 
p  two charged tracks 

(p>1 GeV/c) 
p  selection criteria 

p  photon points to central 
part of the barrel region 
(50∘<θISR<110∘) 

p  E/p<0.8 
àremove Radiative Bhabha 
(eeàeeγ) contribution 

p  10<M(ππγ)<11 GeV/c2 

àno other extra particles 
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ISR γ	


θ
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all hadrons are in CDC acceptance

 for all hadronsc>1 GeV/
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barrel region	


Belle II MC 
(w/o BG) 	


analysis procedure	


p  select events with 
p  one energetic photon 

(ECMS>3 GeV) 
p  two charged tracks 

(p>1 GeV/c) 
p  selection criteria 

p  photon points to central 
part of the barrel region 
(50∘<θISR<110∘) 

p  E/p<0.8 
àremove Radiative Bhabha 
(eeàeeγ) contribution 

p  10<M(ππγ)<11 GeV/c2 

àno other extra particles 
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acceptance for π±	


θ angle of ISR γ [∘]	


both pions are in CDC	


p>1 GeV/c	
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analysis procedure	


p  select events with 
p  one energetic photon 

(ECMS>3 GeV) 
p  two charged tracks 

(p>1 GeV/c) 
p  selection criteria 

p  photon points to central 
part of the barrel region 
50∘<θISR<110∘ 

p  E/p<0.8 
àremove Radiative Bhabha 
(eeàeeγ) contribution 

p  10<M(ππγ)<11 GeV/c2 

àno other extra particles 
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Belle II 2018

-1 = 472 pbt dL ∫
preliminary

γ-π+π→-e+e
γππMC 
γµµMC 
γKKMC 

data

ππ mass spectrum	


p  ρ meson peak is clearly observed! 
Belle II first “rediscovery” of ρ0àπ+π-  

p  no PID cuts except 
for the E/p cut 
àcontribution 
from µµγ / KKγ
p  peak at low mass 

due to φàK+K- 

p  high mass (>1 GeV/c2) 
is dominated by µµγ

p  reasonable data/MC 
agreement 
p  data/MC = 1.065±0.037stat. 
(0.5-1 GeV/c2) 
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ρàππ	


φàK+K-	
MC trigger efficiency is 
assumed to be 100%	


phase2 data	


µµγ	
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results for other modes	


p  the eeàπππγ process is also studied 
with phase2 data 
p  2nd biggest contribution to aµ

had;LO 

p  ω, φ peaks are successfully 
observed 
“rediscovery” 

p  reasonable data/MC 
agreement	
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trigger efficiency for ππγ	


p  high trigger efficiency is necessary 
for precision measurement 

p  Belle II trigger for eeàππγ 
p  total calorimeter energy 

> 1 GeV 
p  Bhabha veto 

ßloss of this veto 
must be small 

p  large loss by Bhabha veto in Belle 
àprecision measurement was difficult 

p  all Bhabha events were collected in phase2 
p  Efficiency loss can be easily evaluated by 

counting the number of events with Bhabha trig.	
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Belle trigger simulation	
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blue : µµγ 
pink : ππγ	
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calorimeter total energy>1 GeV

lost by Belle-type Bhabha veto

lost by 3D Bhabha veto

Belle II 2018

-1 = 34.6 pbt dL ∫
preliminary

efficiency loss by Bhabha veto 	


p two kinds of Bhabha veto logic 
p “Belle-type” Bhabha veto 
p “new” Bhabha veto 

p results of loss 
evaluation 
p “Belle-type” : 

(6.4±1.3stat)% 
p “new” logic : 

2 events / 360 events 
(0.6±0.4stat)% 

àthe “new” Bhabha veto logic is feasible 
for future runs	
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phase2 data	


red : to be lost by “Belle-
type” Bhabha veto 
blue : to be lost by “new” 
Bhabha veto	


M(ππ) distribution	
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expected performance by MC sim.	
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10-1	
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10-3	


p  apply PID cuts 
p  BG contribution 

p  dominant BG: 
other ISR modes 
(π+π-π0, K+K-,..) 

p  O(%) level BG ; 
same level with BaBar 

p  high BG at low mass: 
πππ0 with low-E π0 

ßcan be reduced 
(kinematic fit...) 

p  efficiency 
p  49% for 50<θISR<110∘ 

p  expect >1M events 
with 500 fb-1 

àcan have results with 
early Belle II data!! 
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summary	


p  eeàππ cross section measurement in Belle II 
with ISR method is critical to reduce 
uncertainty of theoretical value for muon g-2 

p  In Phase2 data, ρ meson peak was clearly 
observed and good data-MC agreement was 
confirmed 

p  Peaks for ω, φàπ+π-π0 are also observed. 
p  Although Belle suffered from large efficiency 

loss due to Bhabha veto in the trigger level, 
such loss is evaluated to be small (≾1%) with a 
new Bhabha veto logic in phase2 data. 

p  The first O(100) fb-1 data will give enough signal 
events, which will be expected in a few years 
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2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).
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Figure 4: (a) The “cut” hadronic vacuum polarization diagram; (b) The e

+
e

� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy

5

hadron	


muon g-2	


p “g-factor” of µ (also e) is slightly 
larger than 2 due to QED effect 
p aµ=(g-2)/2 
p ~3σ discrepancy btw theo. and exp. 

p both have ~0.5 ppm precision 

p strong interaction and 
weak interaction also 
contribute 
p strong : ~60 ppm  
p weak : ~1.3 ppm 

1 Introduction

The Standard-Model (SM) value of the muon anomaly can be calculated with sub-parts-per-
million precision. The comparison between the measured and the SM prediction provides a
test of the completeness of the Standard Model. At present, there appears to be a three- to
four-standard deviation between these two values, which has motivated extensive theoretical
and experimental work on the hadronic contributions to the muon anomaly.

A lepton (` = e, µ, ⌧) has a magnetic moment which is along its spin, given by the
relationship

~µ` = g`
Qe

2m`

~s , g` = 2| {z }
Dirac

(1 + a`), a` =
g` � 2

2
(1)

where Q = ±1, e > 0 and m` is the lepton mass. Dirac theory predicts that g ⌘ 2,
but experimentally, it is known to be greater than 2. The small number a, the anomaly,
arises from quantum fluctuations, with the largest contribution coming from the mass-
independent single-loop diagram in Fig. 1(a). With his famous calculation that obtained
a = (↵/2⇡) = 0.00116 · · · , Schwinger [1] started an “industry”, which required Aoyama,
Hayakawa, Kinoshita and Nio to calculate more than 12,000 diagrams to evaluate the tenth-
order (five loop) contribution [2].

(a) (b) (c)

γ

µ
γ γ

µ

γ

γµ

γ

µ

X X

Y

µ −
e

+
e

µ µ

Figure 1: The Feynman graphs for: (a) The lowest-order (Schwinger) contribution to the
lepton anomaly ; (b) The vacuum polarization contribution, which is one of five fourth-order,
(↵/⇡)2, terms; (c) The schematic contribution of new particles X and Y that couple to the
muon.

The interaction shown in Fig. 1(a) is a chiral-changing, flavor-conserving process, which
gives it a special sensitivity to possible new physics [3, 4]. Of course heavier particles can
also contribute, as indicated by the diagram in Fig. 1(c). For example, X = W

± and Y = ⌫µ,
along with X = µ and Y = Z

0, are the lowest-order weak contributions. In the Standard-
Model, aµ gets measureable contributions from QED, the strong interaction, and from the
electroweak interaction,

a

SM = a

QED + a

Had + a

Weak
. (2)

In this document we present the latest evaluations of the SM value of aµ, and then discuss
expected improvements that will become available over the next five to seven years. The
uncertainty in this evaluation is dominated by the contribution of virtual hadrons in loops.
A worldwide e↵ort is under way to improve on these hadronic contributions. By the time
that the Fermilab muon (g � 2) experiment, E989, reports a result later in this decade,
the uncertainty should be significantly reduced. We emphasize that the existence of E821
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The interaction shown in Fig. 1(a) is a chiral-changing, flavor-conserving process, which
gives it a special sensitivity to possible new physics [3, 4]. Of course heavier particles can
also contribute, as indicated by the diagram in Fig. 1(c). For example, X = W
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0, are the lowest-order weak contributions. In the Standard-
Model, aµ gets measureable contributions from QED, the strong interaction, and from the
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In this document we present the latest evaluations of the SM value of aµ, and then discuss
expected improvements that will become available over the next five to seven years. The
uncertainty in this evaluation is dominated by the contribution of virtual hadrons in loops.
A worldwide e↵ort is under way to improve on these hadronic contributions. By the time
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Improvement of the precision with which the total cross
section of eþe" annihilation into hadrons is known is also
needed for a more accurate estimation of the hadronic con-
tribution to the muon anomalous magnetic moment because it
is one of the crucial limiting factors in a search for new
physics (Bouchiat and Michel, 1961; Gourdin and de
Rafael, 1969; Bennett et al., 2006).

There is an important relation between spectral functions
in eþe" annihilation into hadrons with isospin I ¼ 1 and
corresponding ! lepton decays based on conservation of
vector current (CVC) and isospin symmetry (Thacker and
Sakurai, 1971; Tsai and Tsai, 1971). Although first detailed
tests of such relations showed satisfactory agreement between
such spectral functions (Kawamoto and Sanda, 1978;
Eidelman and Ivanchenko, 1991), higher accuracy reached
in both eþe" and ! lepton sectors revealed possible system-
atic effects not accounted for in the eþe" and/or ! experi-
ments (Davier et al., 2003a, 2003b). An understanding of
these effects is crucial for improving the accuracy with which
the hadronic contributions to the muon anomalous magnetic
moment can be estimated from ! decays to two and four pions
as first suggested by Alemany, Davier, and Höcker (1998).

Detailed measurements of the energy dependence of vari-
ous exclusive cross sections allow us to improve our knowl-
edge of vector mesons and look for new states, both of light
(Druzhinin, 2007) and heavy quarks (Eichten et al., 2008).

B. Initial state radiation

In eþe" collider experiments, exclusive and total hadronic
cross sections are usually measured by scanning the acces-
sible energy range. The process of eþe" annihilation is
accompanied by emission of one or several photons from
the initial state. The lowest-order Feynman diagram describ-
ing initial state radiation (ISR) is shown in Fig. 2. The
quantity measured directly in the experiment is the visible
cross section

"vis ¼
N

L
; (1)

where N is the number of selected events of the process
eþe" ! hadronsþ n#, n ¼ 0; 1; 2; . . . , and L is the inte-
grated luminosity of the collider collected at the center-of-
mass (c.m.) eþe" energy 2E0. The visible cross section is
related to the Born cross section "0 corresponding to the
lowest-order diagram of Fig. 1 via the integral (Kuraev and
Fadin, 1985) providing the 10"3 accuracy:

"vis ¼
Z 1"m2

min=s

0
"ðs; xÞWðs; xÞ"0½sð1" xÞ'dx; (2)

where s ¼ 4E2
0, x is an effective fraction of the beam energy

E0 carried by photons emitted from the initial state, mmin is
the minimal possible invariant mass of the final hadrons, and
"ðs; xÞ is the detection efficiency for the process eþe" !
hadronsþ n# as a function of x and s. The so-called radiator
function Wðs; xÞ, taking into account higher-order QED con-
tributions, in particular, from the diagram in Fig. 2, is fully
calculable in QED (Actis et al., 2010). Because of the photon

emission from the initial state, the visible cross section
depends on the Born cross section at all energies below the
nominal eþe" c.m. energy 2E0.

In conventional scanning experiments, the influence of ISR
is suppressed by the requirements of the energy and momen-
tum balance between the final hadrons and the initial eþe"

state. In this case the detection efficiency has an x dependence
close to the step function "ðs; xÞ ¼ "0ðsÞ for x < x0, and zero
for x > x0. At small x0, Eq. (2) can be rewritten as

"vis ¼ "0ðsÞ"0ðsÞ½1þ $ðsÞ'; (3)

where 1þ $ðsÞ is the radiative correction factor, which takes
into account higher-order QED corrections. To calculate this
factor it is necessary to know the s dependence of "0 in the
range from sð1" x0Þ to s. For slowly varying cross sections,
$ is about 10% and can be determined with an accuracy better
than 1% using existing data on the cross section energy
dependence. Thus, in scanning experiments, from the data
collected at the c.m. energy

ffiffiffi
s

p
, the cross section "0ðsÞ is

determined directly.
Another approach is also possible. Equation (2) can be

rewritten in the differential form:

d"visðs;mÞ
dm

¼ 2m

s
"ðs;mÞWðs; xÞ"0ðmÞ; (4)

where we have made a transformation to the variable m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1" xÞ

p
, the invariant mass of the hadronic system. At

nonzero x the dominant contribution to the visible cross
section comes from the one-photon ISR (see Fig. 2). With
the inclusion of the ISR photon momentum in the selection
conditions on the energy and momentum balance, the non-
zero detection efficiency for ISR events can be obtained in a
wide range of the hadronic invariant mass. As a result, from
the measurement of the mass spectrum for the process
eþe" ! hadronsþ # at fixed c.m. energy

ffiffiffi
s

p
, the cross

section "0ðmÞ can be extracted in the invariant-mass range
from threshold to the mass close to

ffiffiffi
s

p
.

The idea of utilizing initial state radiation from a high-
mass state to explore electron-positron processes at all ener-
gies below that state was previously outlined by Baier
and Khoze (1965) and Baier and Fadin (1968). The possibil-
ity of exploiting such processes at high-luminosity % and
B factories was discussed by Arbuzov et al. (1998),
Benayoun et al. (1999), Binner, Kühn, and Melnikov
(1999), and Konchatnij and Merenkov (1999) and motivated
studies described in this paper.

e+ hadrons

e- γ

FIG. 2. The lowest-order Feynman diagram describing the initial
state radiation process eþe" ! #þ hadrons.

1546 Druzhinin et al.: Hadron production via eþe" collisions . . .

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011

eeàππ measurement at Belle II	


p  radiative return method: 
detect eeàππγ events 
p  require energetic γ 

(Initial State Radiation, ISR) 
àeffectively low energy collision 

p hadron inv. mass distribution 
àcorrections 
(BG, eff., unfolding…) 
àcross section for each √s 

p  simultaneous measurement 
of ππγ (signal) and µµγ (normalization) 

p cancellation of various errors 
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Hadron production via eþe" collisions with initial state radiation

V.P. Druzhinin, S. I. Eidelman, S. I. Serednyakov, and E. P. Solodov

Budker Institute of Nuclear Physics SB RAS, Novosibirsk, 630090, Russia
and Novosibirsk State University, Novosibirsk, 630090, Russia

(published 6 December 2011)

A novel method of studying eþe" annihilation into hadrons using initial state radiation
at eþe" colliders is described. After a brief history of the method, its theoretical foundations
are considered. Numerous experiments in which exclusive cross sections of eþe" annihilation
into hadrons below the center-of-mass energy of 5 GeV have been measured are presented.
Some applications of the experimental results to fundamental tests of the standard model are
listed.

DOI: 10.1103/RevModPhys.83.1545 PACS numbers: 13.66.Bc, 14.40.Be, 14.40.Pq

CONTENTS

I. Introduction 1545

A. Why is low-energy eþe" annihilation interesting? 1545

B. Initial state radiation 1546

C. Calculation of ISR and accuracy 1547

D. Monte Carlo generators 1548
II. Experimental Techniques 1548

A. Tagged and untagged ISR 1548

B. Hadronic mass resolution and mass scale
calibration 1550

C. ISR luminosity 1551

D. Comparison with eþe" scan 1552

E. Colliders and detectors using ISR 1553

F. PEP-II and BABAR 1553

G. KEK-B and BELLE 1554

H. DA!NE and KLOE 1554
III. Production of Light Quark Mesons 1555

A. Overview 1555

B. eþe" ! !þ!" 1555

C. eþe" ! !þ!"!0 1557

D. eþe" ! KþK"!0, K0
SK

#!$, and KþK"" 1558

E. eþe" ! !þ!"!þ!", !þ!"2!0 1559

F. eþe" ! KþK"!þ!", KþK"!0!0 1562

G. eþe" ! 2ðKþK"Þ 1565

H. eþe" ! five mesons 1565

I. eþe" ! 3ð!þ!"Þ, 2ð!þ!"!0Þ 1568

J. Summary 1570
IV. Baryon Form Factors 1572

A. General formulas 1572

B. Measurement of timelike baryon form factors 1572

C. eþe" ! p "p# 1573

D. eþe" ! # "## 1573

E. eþe" ! $0 "$0, # "$0ð$0 "#Þ 1574

F. Summary 1574
V. Decays of the J=c and c ð2SÞ 1575

A. Leptonic decays 1576

B. Decays to light mesons and baryons 1577
VI. ISR Studies in the Charmonium Region 1579

A. Final states with open charm 1580

B. New charmoniumlike states 1581
VII. Some Implications for Theory and Perspectives 1583
VIII. Conclusions 1585

I. INTRODUCTION

A. Why is low-energy eþe" annihilation interesting?

Studies of low-energy eþe" annihilation into hadrons are
of great interest for theory and have numerous applications.
According to current concepts, eþe" annihilation into had-
rons proceeds via an intermediate virtual photon that pro-
duces a pair of quarks q "q, followed by the hadronization of
quarks into observed hadrons. This process is described by
the lowest-order Feynman diagram shown in Fig. 1. When the
initial energy of eþe", or equivalently of the intermediate
virtual photon, is large enough, the process of hadronization
is well described by QCD. At small energies, lower than
2–3 GeV, produced hadrons are relatively soft and intensively
interact with each other forming hadronic resonances. At the
moment QCD fails to describe this energy region. Because
of that, it is vitally important to gain sufficient information
from experiment to be used as input for various QCD-based
theoretical models. QCD sum rules are an example of how
measurements of total and exclusive cross sections can be
used to extract such fundamental parameters of theory as the
strong coupling constant $s, quark, and gluon condensates
(Shifman, Vainshtein, and Zacharov, 1979).

Precise knowledge of vacuum polarization effects based on
the total cross section of eþe" annihilation into hadrons is
necessary to estimate the hadronic contributions to the run-
ning fine-structure constant and thus determine its value at the
Z boson mass $ðM2

ZÞ, a key component of the high-precision
tests of the standard model (Burkhardt et al., 1989; Eidelman
and Jegerlehner, 1995; Hagiwara et al., 2003; Burkhardt and
Pietrzyk, 2005; Actis et al., 2010).

e+

hadrons

e-

FIG. 1. The lowest-order Feynman diagram describing the process
of eþe" annihilation into hadrons.
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hadronic contribution	


p  lowest order 
p ~60 ppm contribution 
p related to hadron production 

cross section from e+e- 

p dominating theo. 
uncertainty 

p higher order 
p smaller uncertainty 

p  light-by-light 
p (not discussed here) 

F. Jegerlehner, A. Nyffeler / Physics Reports 477 (2009) 1–110 37

Fig. 24. History of evaluations before 2000 (left) [73–76,186–189,79–81,190,191,83,162–167], and some more recent ones (right) [178–185,161,175];
(e+e�) = e+e�-data based, (e+e�, ⌧ ) = in addition include data from ⌧ spectral functions (see Section 4.1.2).

Fig. 25. Optical theorem for the hadronic contribution to the photon propagator.

Before we will continue with a discussion of the higher order hadronic contributions, we first present additional details
about what precisely goes into the DR equation (109) and briefly discuss some issues concerning the determination of the
required hadronic cross-sections.

4.1.1. Dispersion relations and hadronic e+e�-annihilation cross sections
To leading order in ↵, the hadronic ‘‘blob’’ in Fig. 19 has to be identified with the photon self-energy function ⇧

0had
� (s).

The latter we may relate to the cross-section e+e� ! hadrons by means of the DR equation (101) which derives from
the correspondence Fig. 25 based on unitarity (optical theorem) and causality (analyticity), as elaborated earlier. Note that
⇧

0had
� (q2) is a one particle irreducible (1PI) object, represented by diagrams which cannot be cut into two disconnected

parts by cutting a single photon line. At low energies the imaginary part is related to intermediate hadronic states like
⇡0� , ⇢,!, �, . . . ,⇡⇡ , 3⇡ , 4⇡ , . . . ,⇡⇡� , , . . . , KK , KK⇡ . . . which in the DR correspond to the states produced in e+e�-
annihilation via a virtual photon. At least one hadron plus any strong, electromagnetic or weak interaction contribution
counts. e+e�-data in principle may be used up to energies where � –Z interference comes into play above about 40 GeV.

Experimentally, what is determined is of the form

Rexp
had(s) = Nhad(1 + �RC)

Nnorm"

�norm(s)
�µµ, 0(s)

,

whereNhad is the number of observed hadronic events,Nnorm is the number of observed normalizing events, " is the detector
efficiency–acceptance product of hadronic events while �RC are radiative corrections to hadron production. �norm(s) is the
physical cross-section for normalizing events, including all radiative corrections integrated over the acceptance used for the
luminosity measurement, and �µµ, 0(s) = 4⇡↵2/3s is the normalization. This also shows that a precise measurement of
R(s) requires precise knowledge of the relevant radiative corrections.

Radiation effects may be used to measure �had(s0) at all energies
p
s0 lower than the fixed energy

p
s at which an

accelerator is running [192]. This is possible due to initial state radiation (ISR), which can lead to huge effects for kinematical
reasons. The relevant radiative return (RR) mechanism is illustrated in Fig. 26: in the radiative process e+e� ! ⇡+⇡�� ,
photon radiation from the initial state reduces the invariant mass from s to s0 = s (1� k) of the produced final state, where
k is the fraction of energy carried away by the photon radiated from the initial state. Such RR cross-section measurements
are particularly interesting for machines running on–resonance like the �- and B-factories, which have enhanced event
rates as they are running on top of a peak [193–195]. The first dedicated RR experiment has been performed by KLOE at
DA8NE/Frascati, by measuring the ⇡+⇡� cross-section [86,171] (see Fig. 21 and Refs. [196,197]).

Results for exclusive multi-hadron production channels from BaBar play an important role in the energy range between
1.4 to 2 GeV. In fact new data became available for most of the channels of the exclusive measurements in this region. In
contrast the inclusive measurements date back to the early 1980’s and show much larger uncertainties.

optical theorem	


F. Jegerlehner, A. Nyffeler / Physics Reports 477 (2009) 1–110 33

Perturbative QCD fails to be a reliable tool for estimating ahadµ and known approaches to low energy QCD like chiral
perturbation theory as well as extensions of it which incorporate spin-1 bosons or lattice QCD are far from being able to
make precise predictions. We therefore have to resort to a semi-phenomenological approach using dispersion relations
together with the optical theorem and experimental data.

The basic relations are
– analyticity (deriving from causality), which allows one to write the DR

⇧ 0
� (k2) � ⇧ 0

� (0) = k2

⇡

Z 1

0
ds

Im⇧ 0
� (s)

s(s � k2 � i")
. (101)

– optical theorem (deriving from unitarity), which relates the imaginary part of the vacuum polarization amplitude to the
total cross section in e+e�-annihilation

Im⇧ 0
� (s) = s

4⇡↵(s)
�tot(e+e� ! anything) := ↵(s)

3
R(s), (102)

with

R(s) = �tot

�

4⇡↵(s)2

3s
. (103)

The normalization factor is the point cross-section (tree level) �µµ(e+e� ! � ⇤ ! µ+µ�) in the limit s � 4m2
µ. We obtain

the hadronic contribution if we restrict ‘‘anything’’ to hadrons. The complementary leptonic part may be calculated reliably
in perturbation theory and the production of a lepton pair at lowest order is given by

R`(s) =
s

1 � 4m2
`

s

✓

1 + 2m2
`

s

◆

, (` = e, µ, ⌧ ), (104)

which may be read off from the imaginary part given in Eq. (75). This result provides an alternative way to calculate the
renormalized vacuum polarization function Eq. (73), namely, via the DR equation (66) which now takes the form

⇧ 0`
� ren(q

2) = ↵q2

3⇡

Z 1

4m2
`

ds
R`(s)

s(s � q2 � i")
, (105)

yielding the vacuum polarization due to a lepton-loop.
In contrast to the leptonic part, the hadronic contribution cannot be calculated analytically as a perturbative series, but

it can be expressed in terms of the cross section of the reaction e+e� ! hadrons, which is known from experiments. Via

Rhad(s) = � (e+e� ! hadrons)
�

4⇡↵(s)2

3s
, (106)

we obtain the relevant hadronic vacuum polarization

⇧ 0had
� ren(q

2) = ↵q2

3⇡

Z 1

4m2
⇡

ds
Rhad(s)

s(s � q2 � i")
. (107)

At low energies, where the dominating final state consists of two charged pions,11the cross-section is given by the square
of the electromagnetic form factor of the pion F (0)

⇡ (s) (effective ⇡+⇡�� vertex undressed from VP effects, see below),

Rhad(s) = 1
4

✓

1 � 4m2
⇡

s

◆

3
2

|F (0)
⇡ (s)|2, 4m2

⇡ < s < 9m2
⇡ , (108)

which directly follows from the corresponding imaginary part

Im ⇧ 0(⇡)
� (q2) = ↵

12
(1 � 4m2

⇡/s)3/2

of a pion loop in the photon vacuum polarization. At s = 0 we have F (0)
⇡ (0) = 1, i.e., F (0)

⇡ (0) measures the classical pion
charge in units of e. For point-like pions we would have F (0)

⇡ (s) ⌘ 1. There are three differences between the pionic loop
integral and those belonging to the lepton loops:
– the masses are different
– the spins are different
– the pion is composite—the Standard Model leptons are elementary.

11 A much smaller contribution is due to � ⇤ ! ⇡0� , the hadronic final state with the lowest threshold s > m2
⇡0 .
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2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).

ISR

*

(a) (b) (c)

γ

−e

+e

h
γ

−e

+e
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γ
γ

γ

µ

h

*

Figure 4: (a) The “cut” hadronic vacuum polarization diagram; (b) The e

+
e

� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy

5

O(1)	


error2 budget	


lowest order 
hadronic	


light-by-light	


Physics Reports 477 
(2009) 1–110	


from arXiv1311.2198  	
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51. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 51.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2015. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.))

from PDG	


R=3Σeq
2	


Fermion pair production 
in e+e- collisions	


p  cross section is well understood 

 
p  quark production 

is also well described 
at large √s 
p  charge/flavor/color 

p  for small √s (<2 GeV), 
experimental data 
is necessary 
p  low energy QCD	


AEPSHEP 2016, Beijing October 12-25, 2016

e+e− → µ+µ−

e+ µ−(τ−)

e− µ+(τ+)

σ(e+e− → µ+µ−) = 4πα2

3s β( 3−β
2

2 ),

β =
√

1− 4M2
µ/s,

σ(e+e− → µ+µ−) = 4πα2

3s

√

1 − 4M2
µ/s (1 + 2M2

µ/s).

At s → ∞ σ(e+e− → µ+µ−) = 4πα2

3s ∼ 86.85(nb)/s(GeV2).

S.Eidelman, BINP p.17/73

can be neglected at Mµ
2/s≪1	


86.85 nb / (s [GeV2/c4])	
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√s=2 GeV	


R=σ(eeàhadrons)/σ(eeàµµ) 
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detection eff. study	


p  reduction of systematic errors is crucial 
àneed to understand each efficiency 
within 0.5% 

p  important to keep 
high efficiency  
p  geometrical acceptance 
p  trigger efficiency 
p  reconstruction efficiency 
p  cut efficiency 

p momentum threshold 
p PID cut 
p … 

p  background / unfolding 
/ normalization…	
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ECL	


ISR γ	


π	
 π	


e-	
 e+	


CDC	


solid line : can be detected 
dashed line : not detected	


VXD	


F. Systematic errors

Systematic uncertainties affecting the !! sample in
different mass regions are now summarized. The statistical
errors of the measured efficiencies are included with the
main statistical uncertainty on the !! mass spectrum.
However, in some cases, remaining systematic uncertain-
ties are attached to the efficiency measurement process and
quoted as such. Details have been given for each efficiency
study in Secs. IV and VB. The results for all systematic
uncertainties are listed in Table V.

The overall relative systematic uncertainty on the
!!ð"FSRÞ cross section is 5:0# 10$3 in the 0.6–0.9 GeV
range, but significantly larger below and above the central
region. For comparison, the statistical error of the
measured efficiency corrections amounts to 4:7# 10$3 at
the # peak, while the statistical error of the raw spectrum is
1.35% at that mass.

A full treatment of the systematic uncertainties is im-
plemented, using a covariance matrix. To achieve this we
consider the individual systematic errors (for each source,
as given in Table V) to be 100% correlated in all the mass
bins. Then the total systematic covariance matrix is built as
the sum of the covariance matrices corresponding to each
individual systematic source.

G. Consistency check with tight and loose !2 selection

The loose $2 criterion is used in the # central region,
while the tight one is used in the tails where backgrounds are
larger. However it is possible to compare the results obtained
with the two selections in the central region. This provides a
test of the $2 selection efficiency and of the multihadronic
background. The test is also sensitive to unfolding, as mass
resolutions are different in different 2D-$2 regions. For this
test, events are selectedwith the ‘‘# central’’ conditions, and
with either the tight or loose $2 criterion.

The result of the test is expressed as the ratio of the
efficiency-corrected and unfolded spectra for the loose

over the tight $2 selections. The fitted value of this ratio
over the full central range (0:5–1:0 GeV=c2) is found to
be consistent with unity within errors, 0:9983% 0:0049
with a $2=DF of 53:6=49 for 10 MeV=c2 bins. Fits in
100 MeV=c2 intervals, given in Fig. 41, do not show any
significant trend for a resolution mismatch between data
and corrected MC. Deviations from unity are at a much
smaller level than the resolution correction applied to the
MC in the intermediate region (Sec. VII A, shown by the
dashed histogram). They are also within the range of
estimated uncertainties between the two $2 conditions
(background and $2 selection efficiencies). We thus
conclude that the procedure used for correcting the MC
mass-transfer matrix is consistent within the quoted
systematic uncertainties.

TABLE V. Systematic uncertainties (in 10$3) on the cross section for eþe$ ! !!ð"FSRÞ from the determination of the various
efficiencies in different !! mass ranges (in GeV=c2). The statistical part of the efficiency measurements is included in the total
statistical error in each mass bin. The last line gives the total systematic uncertainty on the !! cross section, including the systematic
error on the ISR luminosity from muons.

Sources 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.9 0.9–1.2 1.2–1.4 1.4–2.0 2.0–3.0

Trigger/filter 5.3 2.7 1.9 1.0 0.7 0.6 0.4 0.4
Tracking 3.8 2.1 2.1 1.1 1.7 3.1 3.1 3.1
!-ID 10.1 2.5 6.2 2.4 4.2 10.1 10.1 10.1
Background 3.5 4.3 5.2 1.0 3.0 7.0 12.0 50.0
Acceptance 1.6 1.6 1.0 1.0 1.6 1.6 1.6 1.6
Kinematic fit ($2) 0.9 0.9 0.3 0.3 0.9 0.9 0.9 0.9
Correl. %% ID loss 3.0 2.0 3.0 1.3 2.0 3.0 10.0 10.0
!!=%% non-cancel. 2.7 1.4 1.6 1.1 1.3 2.7 5.1 5.1
Unfolding 1.0 2.7 2.7 1.0 1.3 1.0 1.0 1.0
ISR luminosity 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
Sum (cross section) 13.8 8.1 10.2 5.0 6.5 13.9 19.8 52.4

FIG. 41 (color online). The ratio of the corrected and unfolded
mass spectra (data points) for loose over tight 2D-$2 selection in
the central # region fitted in 100 MeV=c2 bins, compared to the
band of independently estimated uncertainties (solid lines). The
MC mass-matrix resolution correction is shown as the dashed
histogram.

PRECISE MEASUREMENT OF THE . . . PHYSICAL REVIEW D 86, 032013 (2012)

032013-39

syst. error table 
in the BaBar result 

PRD86 032013	
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p  efficiency is flat 
for large angle ISR γ 
àby limiting ISR γ θ 
angle, acceptance 
can be kept high 
p  lose some events, 

but can be easily 
compensated by 
Belle II high stat. 

p  10-20% loss due to 
momentum cut 
(p>1 GeV/c) 
p  for good muon-ID  

acceptance study	
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2018-02-06 05:28:50
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efficiency for each selection	


p  reconstruction efficiency 
p  ~10% loss, due to γ conversion / π interaction 
p  “good track” selection (fit quality, distance from the interaction 

point,…) 

p  efficiency of event selection 
cuts (tentative) 
p  10<E*

ππγ<11 GeV, 
P*

ππγ<0.5 GeV/c 
p  no other extra 

particles (add. ISR, …) 

p  PID cut 
p  total eff. : 49% 

(to all MC generated events) 

p  50∘<θISR<110∘ 
p  statistics : >1 M events 

                     / 500 fb-1	
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p>1 GeV/c 
in MC truth 	


good tracks selection 
after reconstruction	


applying all the cuts	


efficiency to all MC events	


ISR γ θ [deg]	


Belle II MC 
(w/o BG) 	


e
ff

ic
ie

n
c

y	
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ISR γ energy in lab frame	
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trigger simulation	


p  100% efficiency for good events with ISR γ 
pointing the barrel region 
p  Bhabha veto 

is considered 
p  some loss (O(%)) 

for endcap, 
as designed 
(but these events are 
not used as discussed later) 

p  photon trigger is 
working effectively 
as expected 
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2 3D tracks	


3 or more clusters 
(at least one >300 MeV)	
 E*>2 GeV 

(photon trigger)	


to be prescaled	

2017-12-31 22:48:33
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0.71%)± in endcap (98.57γ, ISR γµµ
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Belle II MC	


sum of all the trigger line 
(except 2, 11 & 12, to be prescaled)	


red : ππ, blue : µµ 
closed : γ in barrel 
open : γ in  endcap	


trigger line	
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PID algorithm	


p assign unique PID for each track 
p  require both tracks to be identified 

as the particle 
of interest 

p  study items 
p µµ ßà ππ cross feed 
p correlated efficiency  

loss 
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e-id	


µ-id	


K-id	


LR<0.9	


LR<0.9	


LR>0.9	


LR>0.9	


LR>0.9	

LR<0.9	


pion	


kaon	


muon	


electron	


likelihood ratio (LR) = Lx/(Lx+Lπ) 
x=e, µ, K	
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KLM structure

Belle II Trigger/DAQ workshop – August 23, 2017 Dmitri Liventsev (VPI/KEK) – KLM trigger status and plan – 2 of 9

• KLM is divided into a barrel and endcaps;

• The barrel is divided into forward and backward halves,

• eight sectors (octants) in each half,

• 15 layers in each sector;

• Endcaps are divided into four sectors (quadrants) each,

• 14 layers in the forward endcap;

• 12 layers in the backward endcap;

• Two inner barrel layers

and entire endcaps

are instrumented with

scintillator strips;

• 13 outer barrel layers

are instrumented with RPCs.

muon/pion separation	


p  mis-identified muons tend 
to be recognized as pions 
àµ-id ineff. = fake π

p  avoiding KLM module gaps, where 
µ-id efficiency is poor 
p  visible in pT-φ plane 
p  set veto regions 

(for barrel/endcap, 
positive/negative µ) 

p  require at least one 
track to be outside 
of the veto regions 
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µµ BG in ππ analysis	


p  reduction by a factor of 5 
by introduction of KLM module gap veto 

p 9% additional efficiency loss 
p  the same level 

with BaBar 
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correlated loss of PID eff.	


p  additional efficiency loss can exist 
due to two tracks close to each other 

p   compare two efficiencies 
p  µ-id for both tracks 

(including correlated loss) 

p  product of µ-id 
efficiency, which was 
taken from single µ MC 
(do not include correlated loss) 

p  significant correlated 
efficiency loss was not 
seen 
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BaBar trigger/filter eff. correction	
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that only requires one reconstructed track (called ‘‘pri-
mary’’), identified as a muon or pion, and the ISR photon.
A1Ckinematic fit is performedand themomentumvector of
the second muon (pion) is predicted from 4-momentum
conservation. Standard track selection is applied to the
primary track and the predicted track is required to be in
the acceptance.

B. Trigger and filtering

A number of trigger conditions are imposed at the hard-
ware (L1) and online software (L3) levels, as well as in a
final filtering, before an event is fully reconstructed and
stored in the BABAR data sample. They are common to all
BABAR analyses, and hence are not specifically designed
to select ISR events. Since individual trigger and filter line
responses are stored for every recorded event, efficiencies
can be computed by comparing the response of trigger
lines, after choosing lines that are as orthogonal and as
efficient as possible. Trigger efficiencies are determined on
data and simulation samples, after applying identical event
selections and measurement methods, and data/MC cor-
rections Ctrig are computed from the comparison of mea-
sured efficiencies on background-subtracted data and
signal MC. Once the physics origins of inefficiencies are
identified, uncertainties are estimated through studies of
biases and data-to-MC comparison of distributions of rele-
vant quantities. Efficiencies and data/MC corrections are
measured separately for the pion and muon channels.

Trigger efficiencies are determined on samples unbiased
with respect to the number of tracks actually reconstructed,
to avoid correlations between trigger and tracking effi-
ciency measurements. In practice, one- and two-track
samples are sufficient and consequently the trigger control
samples are selected through the dedicated 1C kinematic fit
described above. Because of the loose requirement with
respect to tracking, the data samples contain backgrounds
with potentially different trigger efficiencies to that of the
signal. These backgrounds are studied with simulation and
are then subtracted. To obtain data samples that are as pure
as possible, criteria tighter than the standard track selection
are applied to the primary track, including tight PID iden-
tification. Possible biases resulting from the tighter selec-
tion are studied and accounted for in the systematic errors.
Background contributions are subtracted from the data
spectra using properly-normalized simulated samples,
and, if necessary, with data/MC correction of the trigger
efficiencies in an iterative procedure.

The data/MC corrections for the L1 trigger are found to
be at a few! 10"4 level for muon and pion events. The L3
level involves a track trigger (at least one track is required)
and a calorimetric trigger (demanding at least one high-
energy cluster and one low-energy cluster). Both of them
are efficient for !!"ISR events. For ##"ISR events, the
small efficiency of the calorimetric trigger limits the sta-
tistical precision of the track-trigger and overall efficiency

measurements. Furthermore, a correlated change of the
two trigger line responses for close-by tracks induces
both a nonuniformity in the efficiency and a bias in the
efficiency measurement. This originates from the overlap
of tracks in the drift chamber and of showers in the EMC,
which induces a simultaneous decrease in the track-trigger
efficiency and an increase in the calorimetric-trigger effi-
ciency. Overlap is a major source of overall inefficiency
and difference between data and simulation, necessitating
specific studies. The correction to the MC L3 trigger
efficiency is small for pions, about 2! 10"3 at the $
peak, and known to a precision better than 10"3. The
data/MC correction Ctrig is larger in the ##ð"Þ"ISR chan-
nel, due to the dominant role of the track trigger, about 1%
at a ## mass of 0:7 GeV=c2, and known to a precision of
3! 10"3 (Fig. 5 top). Uncertainties, which increase to
5! 10"3 at the maximum overlap (m## % 0:4 GeV=c2),
are mostly statistical in nature.
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that only requires one reconstructed track (called ‘‘pri-
mary’’), identified as a muon or pion, and the ISR photon.
A1Ckinematic fit is performedand themomentumvector of
the second muon (pion) is predicted from 4-momentum
conservation. Standard track selection is applied to the
primary track and the predicted track is required to be in
the acceptance.

B. Trigger and filtering

A number of trigger conditions are imposed at the hard-
ware (L1) and online software (L3) levels, as well as in a
final filtering, before an event is fully reconstructed and
stored in the BABAR data sample. They are common to all
BABAR analyses, and hence are not specifically designed
to select ISR events. Since individual trigger and filter line
responses are stored for every recorded event, efficiencies
can be computed by comparing the response of trigger
lines, after choosing lines that are as orthogonal and as
efficient as possible. Trigger efficiencies are determined on
data and simulation samples, after applying identical event
selections and measurement methods, and data/MC cor-
rections Ctrig are computed from the comparison of mea-
sured efficiencies on background-subtracted data and
signal MC. Once the physics origins of inefficiencies are
identified, uncertainties are estimated through studies of
biases and data-to-MC comparison of distributions of rele-
vant quantities. Efficiencies and data/MC corrections are
measured separately for the pion and muon channels.

Trigger efficiencies are determined on samples unbiased
with respect to the number of tracks actually reconstructed,
to avoid correlations between trigger and tracking effi-
ciency measurements. In practice, one- and two-track
samples are sufficient and consequently the trigger control
samples are selected through the dedicated 1C kinematic fit
described above. Because of the loose requirement with
respect to tracking, the data samples contain backgrounds
with potentially different trigger efficiencies to that of the
signal. These backgrounds are studied with simulation and
are then subtracted. To obtain data samples that are as pure
as possible, criteria tighter than the standard track selection
are applied to the primary track, including tight PID iden-
tification. Possible biases resulting from the tighter selec-
tion are studied and accounted for in the systematic errors.
Background contributions are subtracted from the data
spectra using properly-normalized simulated samples,
and, if necessary, with data/MC correction of the trigger
efficiencies in an iterative procedure.

The data/MC corrections for the L1 trigger are found to
be at a few! 10"4 level for muon and pion events. The L3
level involves a track trigger (at least one track is required)
and a calorimetric trigger (demanding at least one high-
energy cluster and one low-energy cluster). Both of them
are efficient for !!"ISR events. For ##"ISR events, the
small efficiency of the calorimetric trigger limits the sta-
tistical precision of the track-trigger and overall efficiency

measurements. Furthermore, a correlated change of the
two trigger line responses for close-by tracks induces
both a nonuniformity in the efficiency and a bias in the
efficiency measurement. This originates from the overlap
of tracks in the drift chamber and of showers in the EMC,
which induces a simultaneous decrease in the track-trigger
efficiency and an increase in the calorimetric-trigger effi-
ciency. Overlap is a major source of overall inefficiency
and difference between data and simulation, necessitating
specific studies. The correction to the MC L3 trigger
efficiency is small for pions, about 2! 10"3 at the $
peak, and known to a precision better than 10"3. The
data/MC correction Ctrig is larger in the ##ð"Þ"ISR chan-
nel, due to the dominant role of the track trigger, about 1%
at a ## mass of 0:7 GeV=c2, and known to a precision of
3! 10"3 (Fig. 5 top). Uncertainties, which increase to
5! 10"3 at the maximum overlap (m## % 0:4 GeV=c2),
are mostly statistical in nature.
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Systematic uncertainties are estimated from the study of
biases in the method, determined using the simulation and
calibrated with data-to-MC comparison of distributions
characteristic of the physics source of the bias. Systematic
uncertainties amount to 0:8! 10"3 for muons in the mass
range from 0.4 to 1:0 GeV=c2, and are about a factor of 2
larger outside. For pions, the systematic uncertainty of the
correction is 1:1! 10"3 in the 0:6–0:9 GeV=c2 mass range,
increasing to 2:1!10"3ð0:4–0:6 GeV=c2Þ, 3:8! 10"3

(below 0:4 GeV=c2), 1:7! 10"3 (0:9–1:2 GeV=c2), and
3:1! 10"3 (above 1:2 GeV=c2).

D. Particle identification

The method to determine the PID efficiencies makes use
of the xþx"!ISR sample itself, where one of the produced
charged x particles (x ¼ ", #, K) is tagged using
strict identification criteria, and the second (‘‘opposite’’)
track identification is probed (‘‘tag-and-probe’’ method).
The events are selected through a 1C kinematic fit that
uses only the two tracks, with assumed mass mx. The
requirement $2

xx < 15 is applied to reduce multihadronic
background. In this way the ensemble of opposite tracks

constitutes a pure x sample to be subjected to the identi-
fication process. The residual small impurity in the data
samples is measured and corrected in the efficiency deter-
mination. The same analysis is performed on MC samples
of pure xþx"!ISR events, and data/MC corrections CPID

are determined for each x type, as explained below. Since
the PID efficiency measurement relies on two-track events
that have passed the triggers, CPID is not correlated with
Ctrig or Ctrack, as required by Eq. (7).

1. Particle identification classes

Particle ID measurements in this analysis aim to obtain
from data the values for all the elements %i!‘j’ of the

efficiency matrix, where i is the true e, ", #, or K identity
and ’j’ is the assigned ID from the PID procedure (Table I).
Protons (antiprotons) are not included in the particle
hypotheses because the p !p! final state occurs only at a
very small rate [22]. This contribution is estimated from
simulation, normalized to data, and subtracted statistically
from the mass spectra.
We identify muon candidates by applying criteria on

several discriminant variables related to the track, such as
the energy deposition Ecal in the EMC, and the track
length, hit multiplicity, matching between hits and extrapo-
lated track in the IFR. This defines the "ID selector. The
KID selector is constructed from a likelihood function
using the distributions of dE=dx in the DCH and of the
Cherenkov angle in the DIRC. The electron identification
relies on a simple Ecal=p > 0:8 requirement. As most of
the electrons are vetoed at the preselection level, their
fraction in the pion sample is generally small. Their con-
tribution is completely negligible in the muon sample.
In addition to physical particle types, we assign an ID

type of ’0’ if the number of DIRC photons associated with
the track (NDIRC) is insufficient to define a Cherenkov ring,
thus preventing #-K separation. The ID classes defined in
Table I constitute a complete and orthogonal set that is
convenient for studying cross-feed between different
two-prong ISR final states.
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FIG. 6. The data/MC event tracking correction Ctrack for the
""ð!Þ!ISR (top) and ##ð!Þ!ISR (bottom) cross sections as a
function of the "" and ## masses, respectively.

TABLE I. Definition of particle ID types (first column) using
combinations of experimental conditions (first row): ‘‘þ’’ means
‘‘condition satisfied’’, ‘‘"’’ means ‘‘condition not satisfied’’, an
empty box means ‘‘condition not applied’’. The conditions "ID

and KID correspond to cut-based and likelihood-based selectors,
respectively. The variables NDIRC and Ecal correspond to the
number of photons in the DIRC and the energy deposit in the
EMC associated to the track, respectively.

"ID Ecal=p > 0:8 NDIRC ' 2 KID

’"’ þ
’e’ " þ
’0’ " " þ
’K’ " " " þ
’#’ " " " "
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Systematic uncertainties are estimated from the study of
biases in the method, determined using the simulation and
calibrated with data-to-MC comparison of distributions
characteristic of the physics source of the bias. Systematic
uncertainties amount to 0:8! 10"3 for muons in the mass
range from 0.4 to 1:0 GeV=c2, and are about a factor of 2
larger outside. For pions, the systematic uncertainty of the
correction is 1:1! 10"3 in the 0:6–0:9 GeV=c2 mass range,
increasing to 2:1!10"3ð0:4–0:6 GeV=c2Þ, 3:8! 10"3

(below 0:4 GeV=c2), 1:7! 10"3 (0:9–1:2 GeV=c2), and
3:1! 10"3 (above 1:2 GeV=c2).

D. Particle identification

The method to determine the PID efficiencies makes use
of the xþx"!ISR sample itself, where one of the produced
charged x particles (x ¼ ", #, K) is tagged using
strict identification criteria, and the second (‘‘opposite’’)
track identification is probed (‘‘tag-and-probe’’ method).
The events are selected through a 1C kinematic fit that
uses only the two tracks, with assumed mass mx. The
requirement $2

xx < 15 is applied to reduce multihadronic
background. In this way the ensemble of opposite tracks

constitutes a pure x sample to be subjected to the identi-
fication process. The residual small impurity in the data
samples is measured and corrected in the efficiency deter-
mination. The same analysis is performed on MC samples
of pure xþx"!ISR events, and data/MC corrections CPID

are determined for each x type, as explained below. Since
the PID efficiency measurement relies on two-track events
that have passed the triggers, CPID is not correlated with
Ctrig or Ctrack, as required by Eq. (7).

1. Particle identification classes

Particle ID measurements in this analysis aim to obtain
from data the values for all the elements %i!‘j’ of the

efficiency matrix, where i is the true e, ", #, or K identity
and ’j’ is the assigned ID from the PID procedure (Table I).
Protons (antiprotons) are not included in the particle
hypotheses because the p !p! final state occurs only at a
very small rate [22]. This contribution is estimated from
simulation, normalized to data, and subtracted statistically
from the mass spectra.
We identify muon candidates by applying criteria on

several discriminant variables related to the track, such as
the energy deposition Ecal in the EMC, and the track
length, hit multiplicity, matching between hits and extrapo-
lated track in the IFR. This defines the "ID selector. The
KID selector is constructed from a likelihood function
using the distributions of dE=dx in the DCH and of the
Cherenkov angle in the DIRC. The electron identification
relies on a simple Ecal=p > 0:8 requirement. As most of
the electrons are vetoed at the preselection level, their
fraction in the pion sample is generally small. Their con-
tribution is completely negligible in the muon sample.
In addition to physical particle types, we assign an ID

type of ’0’ if the number of DIRC photons associated with
the track (NDIRC) is insufficient to define a Cherenkov ring,
thus preventing #-K separation. The ID classes defined in
Table I constitute a complete and orthogonal set that is
convenient for studying cross-feed between different
two-prong ISR final states.
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TABLE I. Definition of particle ID types (first column) using
combinations of experimental conditions (first row): ‘‘þ’’ means
‘‘condition satisfied’’, ‘‘"’’ means ‘‘condition not satisfied’’, an
empty box means ‘‘condition not applied’’. The conditions "ID

and KID correspond to cut-based and likelihood-based selectors,
respectively. The variables NDIRC and Ecal correspond to the
number of photons in the DIRC and the energy deposit in the
EMC associated to the track, respectively.
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20

Bit Phase 2 description Prescale

Phase 2 Changes for 2020 Prescale


2020

0 3 or more 3D tracks

1 2 3D tracks, ≥1 within 25 cm, not a trkBhabha 2 3D tracks, ≥1 within 10 cm, not a trkBhabha

2 2 3D tracks, not a trkBhabha 20 20

3 2 3D tracks, trkBhabha 2

4 1 track, <25cm, clust same hemi, no 2 GeV clust 1 track, <10cm, clust same hemi, no 2 GeV clust

5 1 track, <25cm, clust opp hemi, no 2 GeV clust 1 track, <10cm, clust opp hemi, no 2 GeV clust

6 ≥3 clusters inc. ≥1 300 MeV, not an eclBhabha ≥3 clusters inc. ≥2 300 MeV, not an eclBhabha

7 2 GeV E* in [4,14], not a trkBhabha

8 2 GeV E* in [4,14], trkBhabha 2

9 2 GeV E* in 2,3,15,16, not eclBhabha

10 2 GeV E* in 2,3,15 or 16, eclBhabha

11 2 GeV E* in 1 or 17, not eclBhabha 10 20

12 2 GeV E* in 1 or 17, eclBhabha 10 20

13 exactly 1 E*>1 GeV and 1 E>300 MeV, in [4,15]

14 exactly 1 E*>1 GeV and 1 E>300 MeV, in 2,3 or 16 5

15 clusters back-to-back in phi, both >250 MeV, 

no 2 GeV

16 clusters back-to-back in phi, 1 <250 MeV, no 2 GeV clust back-to-back in phi, <250 MeV, no 2 GeV, 

no trk>25cm 3

17 clusters back-to-back in 3D, no 2 GeV 5

Trigger bits generated from the trigger objects

could cost 
physics
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light hadron production	


p  Hadron production cross section is an important 
input for hadronic contribution aµ

had of µ g-2  

p  ππ mode gives 
dominant 
contribution 
(√s<1.8 GeV)	
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                               (√s<1.8 GeV)	


values are taken from 
Eur. Phys. J. C (2017) 77:827	


π+π-	
 π+π-	


34 F. Jegerlehner, A. Nyffeler / Physics Reports 477 (2009) 1–110

Fig. 20. Graph of weight function K̂(s) of the g � 2 dispersion integral.

The compositeness manifests itself in the occurrence of the form factor F⇡ (s), which generates an enhancement: at the ⇢
peak, |F⇡ (s)|2 reaches values of about 45, while the quark partonmodel would give about 7. The remaining difference in the
expressions for the quantities R`(s) and Rhad(s) in Eqs. (104) and (108), respectively, originates in the fact that the leptons
carry spin 1

2 , while the spin of the pion vanishes. Near the threshold, the angularmomentum barrier suppresses the function
Rhad(s) by three powers of momentum, while R`(s) is proportional to the first power. The suppression largely compensates
the enhancement by the form factor—by far the most important property is the mass, which sets the relevant scale.

4.1. Lowest order vacuum polarization contribution

Using Eq. (68) together with Eq. (102), the O(↵2) contributions to ahadµ may be directly evaluated in terms of Rhad(s)
defined in Eq. (106). More precisely we may write

a(4)
µ (vap, had) =

⇣↵mµ

3⇡

⌘2
 

Z E2cut

m2
⇡0

ds
Rdata
had (s) K̂(s)

s2
+
Z 1

E2cut

ds
RpQCD
had (s) K̂(s)

s2

!

, (109)

with a cut Ecut in the energy, separating the non-perturbative part to be evaluated from the data and the perturbative high
energy tail to be calculated using pQCD. The kernel K(s) is represented by Eq. (67) discarding the factor ↵/⇡ . This integral
can be performed analytically. Written in terms of the variable

x = 1 � �µ

1 + �µ

, �µ =
q

1 � 4m2
µ/s,

the result reads12 [154]

K(s) = x2

2
(2 � x2) + (1 + x2)(1 + x)2

x2

✓

ln(1 + x) � x + x2

2

◆

+ (1 + x)
(1 � x)

x2 ln(x). (111)

We have written the integral equation (109) in terms of the rescaled function

K̂(s) = 3s
m2

µ

K(s), (112)

which is only slowly varying in the range of integration. It increasesmonotonically from 0.63... at the⇡⇡ threshold s = 4m2
⇡

to 1 at s = 1. The graph is shown in Fig. 20.
Note the 1/s2-enhancement of contributions from low energies in aµ. Thus the g � 2 kernel gives very high weight to

the low energy range, in particular to the lowest lying resonance, the ⇢ 0. Thus, this 1/E4 magnification of the low energy
region by the aµ kernel-function togetherwith the existence of the pronounced ⇢ 0 resonance in the⇡+⇡� cross-section are
responsible for the fact that pion pair production e+e� ! ⇡+⇡� gives the by far largest contribution to ahadµ . The ⇢ is the
lowest lying vector-meson resonance and shows up in ⇡+⇡� ! ⇢ 0 at m⇢ ⇠ 770 MeV. This dominance of the low energy
hadronic cross-section by a single simple two-body channel is good luck for a precise determination of aµ, although a very
precise determination of the ⇡+⇡� cross-section is a rather difficult task. The experimental data for the low energy region
are shown in Fig. 21. Below about 810 MeV � had

tot (s) ' �⇡⇡ (s) to a good approximation but at increasing energies more and
more channels open and ‘‘measurements of R’’ get more difficult. In the light sector of u, d, s quarks, besides the ⇢ there
is the !, which is mixing with the ⇢, and the � resonance, essentially a s̄s bound system. In the charm region we have the
pronounced c̄c-resonances, the J/ 1S, 2S, . . . resonance series and in the bottom region the b̄b-resonances ⌥1S,⌥2S, . . ..
Many of the resonances are very narrow as indicated in Fig. 22.

12 The representation Eq. (111) of K(s) is valid for the muon (or electron) where we have s > 4m2
µ in the domain of integration s > 4m2

⇡ , and x is real,
and 0  x  1. For the ⌧ Eq. (111) applies for s > 4m2

⌧ . In the region 4m2
⇡ < s < 4m2

⌧ , where 0 < r = s/m2
⌧ < 4, we may use the form

K(s) = 1
2

� r + 1
2
r(r � 2) ln(r) �

✓

1 � 2r + 1
2
r2
◆

'/w, (110)

K(s) : Kernel function	
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Error [20] [21] Future
�a

SM
µ 49 50 35

�a

HLO
µ 42 43 26

�a

HLbL
µ 26 26 25

�(aEXP
µ � a

SM
µ ) 80 80 40

Figure 9: Estimated uncertainties �aµ in units of 10�11 according to Refs. [20, 21] and (last
column) prospects for improved precision in the e+e� hadronic cross-section measurements.
The final row projects the uncertainty on the di↵erence with the Standard Model, �aµ. The
figure give the comparison between a

SM
µ and a

EXP
µ . DHMZ is Ref. [20], HLMNT is Ref. [21];

“SMXX” is the same central value with a reduced error as expected by the improvement
on the hadronic cross section measurement (see text); “BNL-E821 04 ave.” is the current
experimental value of aµ; “New (g-2) exp.” is the same central value with a fourfold improved
precision as planned by the future (g-2) experiments at Fermilab and J-PARC.
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AfkQed, it does not include the contribution from two FSR
photons nor higher-order ISR emission. Both effects are
expected to be at a very small level. The contribution of
two FSR photons is suppressed by the smallness of LO
FSR (about 1% at 1 GeVand 15% at 3 GeV) and NLO FSR
(< 1% at 1 GeVand 2.7% at 3 GeV) corrections for photon
energies E! add:FSR > 0:2 GeV. Even at 3 GeV the expected
contribution of 4! 10"3 has a negligible effect on the
acceptance. The contribution of higher-order ISR emission
is relevant only if the third photon has a significant energy.
From the acceptance change between Phokhara and
AfkQed, and the fraction of NLO ISR above photon
energies of 1 GeV in the eþe" c.m., one estimates a
maximum acceptance bias of 2! 10"3 at threshold and
10"3 at 1 GeV.

3. Fast simulation studies with Phokhara and AfkQed

Since any number of additional photons are accepted at
event selection, an imperfect simulation of NLO ISR does
not affect the event topology selection but alters the event
acceptance through kinematic effects.

The main criteria affecting the geometrical acceptance
are: both muon tracks in the polar angle range 0:4< "# <
2:45 rad, with momenta larger than 1 GeV=c; the most
energetic photon in the c.m. (ISR candidate) with E$

! >
3 GeV and in the polar angle range 0:35< "! < 2:4 rad.
The full acceptance involves all the event selection criteria.

As calculated using the AfkQed generator and the full
simulation, the acceptance needs to be corrected for the
effects resulting from the imperfect description of NLO
ISR. For this correction Phokhara and AfkQed are com-
pared at the generator level. Since the effect of the NLO
differences is to give different longitudinal boosts to the
events, one expects deviations in the geometrical and
momentum acceptance. This justifies the use of the gen-
erators at 4-vector level. To improve on this, track and
photon parameters are smeared using resolution functions
obtained from data. The acceptance is defined at this level
by the polar angle ranges for the ISR photon and the two
muons, and the p > 1 GeV=c requirement on the muons.

We test the sensitivity of the results to using only
fast simulation. Smearing generates a relative shift of
1:0! 10"3 for the acceptance correction. So any inade-
quacy of the resolution functions is expected to be at a
lower level. Some effects are not included in the fast
simulation while they enter the full MC. The main compo-
nents of the overall efficiency for the full simulation are
shown in Fig. 27. While the loss of acceptance is estimated
to be 92% near the $mass, the fast simulation accounts for
78% only. The major contribution to the difference be-
tween full and fast simulation comes from the DIRC crack
removal and the IFR active area (cracks and bad areas).
These azimuthal effects are essentially insensitive to the
longitudinal boosts from additional ISR photons. Fast
simulation is consequently adequate to describe the event

acceptance changes generated by the additional ISR pho-
ton kinematics.

4. Effect of collinear additional ISR in AfkQed

The angular distribution of hard additional ISR
photons can produce a significant transverse momentum
that affects the event acceptance and preselection effi-
ciency. The change of acceptance for collinear and non-
collinear additional ISR is investigated with Phokhara
as it provides an MC sample with additional ISR following
the QED angular distribution. A significant decrease
of the acceptance is observed as a function of the polar
angle of the additional hard (>0:2 GeV) ISR photon.
The difference between Phokhara and AfkQed is aggra-
vated by the mX!ISR

> 8 GeV=c2 requirement used at

generation in AfkQed, which suppresses hard additional
ISR. Both of these effects are kinematic in nature, and are
well studied at the 4-vector level.
The observed differences between data and AfkQed for

the angular and energy distributions for NLO ISR
(Sec. VA2) are overcome in Phokhara, which provides a
much better description of the data. The geometrical
acceptances computed with the smeared 4-vectors in
Phokhara and AfkQed differ by about 2% in most of the
mass range, Phokhara leading understandably to a lower
acceptance (Fig. 28). The global efficiency %##ð!Þ!ISR

obtained with AfkQed is corrected by this factor when
computing the ##ð!Þ!ISR cross section.

FIG. 27. Breakdown of the full simulation acceptance with
respect to the generated events in the ISR photon angular
range in the eþe" center of mass 200–1600 for##ð!Þ!ISR events.
The numbers refer to the sequential application of the select-
ion requirements: (1) trigger þ acceptance selection for recon-
structed ISR photon and tracks; (2) preselection of ISR events þ
E$
! > 3 GeV; (3) p > 1 GeV=c for both tracks; (4) tracks in IFR

active area; (5) tracks in DIRC active area; (6) ‘##’-IDþ
&2 selectionþ J=c rejectionþminor selections.
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I. INTRODUCTION

A. Why is low-energy eþe" annihilation interesting?

Studies of low-energy eþe" annihilation into hadrons are
of great interest for theory and have numerous applications.
According to current concepts, eþe" annihilation into had-
rons proceeds via an intermediate virtual photon that pro-
duces a pair of quarks q "q, followed by the hadronization of
quarks into observed hadrons. This process is described by
the lowest-order Feynman diagram shown in Fig. 1. When the
initial energy of eþe", or equivalently of the intermediate
virtual photon, is large enough, the process of hadronization
is well described by QCD. At small energies, lower than
2–3 GeV, produced hadrons are relatively soft and intensively
interact with each other forming hadronic resonances. At the
moment QCD fails to describe this energy region. Because
of that, it is vitally important to gain sufficient information
from experiment to be used as input for various QCD-based
theoretical models. QCD sum rules are an example of how
measurements of total and exclusive cross sections can be
used to extract such fundamental parameters of theory as the
strong coupling constant $s, quark, and gluon condensates
(Shifman, Vainshtein, and Zacharov, 1979).

Precise knowledge of vacuum polarization effects based on
the total cross section of eþe" annihilation into hadrons is
necessary to estimate the hadronic contributions to the run-
ning fine-structure constant and thus determine its value at the
Z boson mass $ðM2

ZÞ, a key component of the high-precision
tests of the standard model (Burkhardt et al., 1989; Eidelman
and Jegerlehner, 1995; Hagiwara et al., 2003; Burkhardt and
Pietrzyk, 2005; Actis et al., 2010).

e+

hadrons

e-

FIG. 1. The lowest-order Feynman diagram describing the process
of eþe" annihilation into hadrons.
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Improvement of the precision with which the total cross
section of eþe" annihilation into hadrons is known is also
needed for a more accurate estimation of the hadronic con-
tribution to the muon anomalous magnetic moment because it
is one of the crucial limiting factors in a search for new
physics (Bouchiat and Michel, 1961; Gourdin and de
Rafael, 1969; Bennett et al., 2006).

There is an important relation between spectral functions
in eþe" annihilation into hadrons with isospin I ¼ 1 and
corresponding ! lepton decays based on conservation of
vector current (CVC) and isospin symmetry (Thacker and
Sakurai, 1971; Tsai and Tsai, 1971). Although first detailed
tests of such relations showed satisfactory agreement between
such spectral functions (Kawamoto and Sanda, 1978;
Eidelman and Ivanchenko, 1991), higher accuracy reached
in both eþe" and ! lepton sectors revealed possible system-
atic effects not accounted for in the eþe" and/or ! experi-
ments (Davier et al., 2003a, 2003b). An understanding of
these effects is crucial for improving the accuracy with which
the hadronic contributions to the muon anomalous magnetic
moment can be estimated from ! decays to two and four pions
as first suggested by Alemany, Davier, and Höcker (1998).

Detailed measurements of the energy dependence of vari-
ous exclusive cross sections allow us to improve our knowl-
edge of vector mesons and look for new states, both of light
(Druzhinin, 2007) and heavy quarks (Eichten et al., 2008).

B. Initial state radiation

In eþe" collider experiments, exclusive and total hadronic
cross sections are usually measured by scanning the acces-
sible energy range. The process of eþe" annihilation is
accompanied by emission of one or several photons from
the initial state. The lowest-order Feynman diagram describ-
ing initial state radiation (ISR) is shown in Fig. 2. The
quantity measured directly in the experiment is the visible
cross section

"vis ¼
N

L
; (1)

where N is the number of selected events of the process
eþe" ! hadronsþ n#, n ¼ 0; 1; 2; . . . , and L is the inte-
grated luminosity of the collider collected at the center-of-
mass (c.m.) eþe" energy 2E0. The visible cross section is
related to the Born cross section "0 corresponding to the
lowest-order diagram of Fig. 1 via the integral (Kuraev and
Fadin, 1985) providing the 10"3 accuracy:

"vis ¼
Z 1"m2

min=s

0
"ðs; xÞWðs; xÞ"0½sð1" xÞ'dx; (2)

where s ¼ 4E2
0, x is an effective fraction of the beam energy

E0 carried by photons emitted from the initial state, mmin is
the minimal possible invariant mass of the final hadrons, and
"ðs; xÞ is the detection efficiency for the process eþe" !
hadronsþ n# as a function of x and s. The so-called radiator
function Wðs; xÞ, taking into account higher-order QED con-
tributions, in particular, from the diagram in Fig. 2, is fully
calculable in QED (Actis et al., 2010). Because of the photon

emission from the initial state, the visible cross section
depends on the Born cross section at all energies below the
nominal eþe" c.m. energy 2E0.

In conventional scanning experiments, the influence of ISR
is suppressed by the requirements of the energy and momen-
tum balance between the final hadrons and the initial eþe"

state. In this case the detection efficiency has an x dependence
close to the step function "ðs; xÞ ¼ "0ðsÞ for x < x0, and zero
for x > x0. At small x0, Eq. (2) can be rewritten as

"vis ¼ "0ðsÞ"0ðsÞ½1þ $ðsÞ'; (3)

where 1þ $ðsÞ is the radiative correction factor, which takes
into account higher-order QED corrections. To calculate this
factor it is necessary to know the s dependence of "0 in the
range from sð1" x0Þ to s. For slowly varying cross sections,
$ is about 10% and can be determined with an accuracy better
than 1% using existing data on the cross section energy
dependence. Thus, in scanning experiments, from the data
collected at the c.m. energy

ffiffiffi
s

p
, the cross section "0ðsÞ is

determined directly.
Another approach is also possible. Equation (2) can be

rewritten in the differential form:

d"visðs;mÞ
dm

¼ 2m

s
"ðs;mÞWðs; xÞ"0ðmÞ; (4)

where we have made a transformation to the variable m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1" xÞ

p
, the invariant mass of the hadronic system. At

nonzero x the dominant contribution to the visible cross
section comes from the one-photon ISR (see Fig. 2). With
the inclusion of the ISR photon momentum in the selection
conditions on the energy and momentum balance, the non-
zero detection efficiency for ISR events can be obtained in a
wide range of the hadronic invariant mass. As a result, from
the measurement of the mass spectrum for the process
eþe" ! hadronsþ # at fixed c.m. energy

ffiffiffi
s

p
, the cross

section "0ðmÞ can be extracted in the invariant-mass range
from threshold to the mass close to

ffiffiffi
s

p
.

The idea of utilizing initial state radiation from a high-
mass state to explore electron-positron processes at all ener-
gies below that state was previously outlined by Baier
and Khoze (1965) and Baier and Fadin (1968). The possibil-
ity of exploiting such processes at high-luminosity % and
B factories was discussed by Arbuzov et al. (1998),
Benayoun et al. (1999), Binner, Kühn, and Melnikov
(1999), and Konchatnij and Merenkov (1999) and motivated
studies described in this paper.

e+ hadrons

e- γ

FIG. 2. The lowest-order Feynman diagram describing the initial
state radiation process eþe" ! #þ hadrons.
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2.2.1 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value. The lowest-order diagram
shown in Fig. 3(a) dominates this contribution and its error, but the hadronic light-by-light
contribution Fig. 3(e) is also important. We discuss both of these contributions below.

Figure 3: The hadronic contribution to the muon anomaly, where the dominant contribution
comes from the lowest-order diagram (a). The hadronic light-by-light contribution is shown
in (e).

ISR

*
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Figure 4: (a) The “cut” hadronic vacuum polarization diagram; (b) The e

+
e

� annihilation
into hadrons; (c) Initial state radiation accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc
2, well below the perturbative

region of QCD. However it can be calculated from the dispersion relation shown pictorially
in Fig. 4,

a

had;LO
µ =

⇣
↵mµ

3⇡

⌘2
Z 1

m2
⇡

ds

s

2
K(s)R(s), where R ⌘ �tot(e+e� ! hadrons)

�(e+e� ! µ

+
µ

�)
, (8)

using the measured cross sections for e+e� ! hadrons as input, where K(s) is a kinematic
factor ranging from 0.4 at s = m

2
⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relation

relates the bare cross section for e

+
e

� annihilation into hadrons to the hadronic vacuum
polarization contribution to aµ. Because the integrand contains a factor of s�2, the values
of R(s) at low energies (the ⇢ resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relative contribution to the integral for the
di↵erent energy regions, and the right-hand gives the contribution to the error squared on
the integral. The contribution is dominated by the two-pion final state, but other low-energy

5

R(s): need s 
dependence	
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ᛦƴᘍƘƱ 6 உ஛ƴƸƢǂƯƷȢǸȥȸȫƕƦǖƍᲦ7
உɶƴǤȳǹȈȸȫܦʕƱƳǔŵȇȸǿƷᛠǈЈƠƴƭ

ƍƯƸᲦRPC ƷᛠǈЈƠǋԃǊƯƢǂƯƷᛠǈЈƠǷ

׋ 10: Ǩȳȉǭȣȃȗ KLMȢǸȥȸȫƷɥᢿǁƷǤȳ

ǹȈȸȫŵ
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׋ 11: Ǩȳȉǭȣȃȗ KLMȢǸȥȸȫƷɦᢿǁƷǤȳ

ǹȈȸȫŵ

ǹȆȠǛ٭୼ƢǔƜƱƴƳƬƨŵᛠǈЈƠᘺፗƷᙌ˺Ƹ

ǢȡȪǫƕɶ࣎ƴƳƬƯƓǓᲦRPCƴƭƍƯƸǤȳȇǣ

ǢȊܖٻᲦǷȳȁȬȸǿƴƭƍƯƸȏȯǤܖٻƕᘍƬƯ

ƍǔŵ2014 Ʒ࠰ 6 உƴƦǕƧǕƷǷǹȆȠǛɟƭƴƠ

ƨȆǹȈǛǤȳȇǣǢȊܖٻưᘍƏƜƱƴƳƬƯƓǓᲦ

ƜǕƷኽௐǛ៊ǇƑƯᲦٰƴƸȐȬȫᢿƷ 1/8 Ɣ 1/16
Ǜ̅ဇƠƨȆǹȈǛʖܭƠƯƍǔŵ

6 おわりに
ȐȃǯȯȸȉͨƷȢǸȥȸȫƷኵǈᇌƯƱǤȳǹȈȸ

ȫᲦHVǷǹȆȠƱᛠǈЈƠǷǹȆȠƷನሰƳƲǇƩǇ

ƩǍǔǂƖƜƱƸƋǔƷƩƕᲦᚘဒƞǕƨǋƷƕ࢟Ʊ

ƳƬƯನᡯ˳ƴӕǓ˄ƚǒǕǔƷǛᙸǔƱᲦƦǕƳǓƴ

ज़ॼขƍŵࢨǋ࢟ǋƳƔƬƨ Belle II ౨Ј֥ƕƋƪǒƜ

ƪǒưᙌ˺ƞǕƯƍǔƷǛᙸǔƱᲦBelle II ᬴ܱƕڼǇ

ǔƷƩƳƱᲦൢӳƍƕλǔŵƜǜƳ࿢ؾƸ 10 ƴ࠰ 1 Ღࡇ

ƠƔǋɭမǛᙸบƠƯǋƦƏƸƳƍƷưᲦ᬴ܱƕ᧏ڼƞ

ǕƯ៽ᢊƴƷǔǇưƷ 2Ღ3 ᲦಏƠǜưᒊіƠƨƍƱ࠰

࣬ƬƯƍǔŵ
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KLM-gap veto cut	


p veto regions in track pT-φ plane 
(φ is measured with respect to gap angle φ0) 

p defined for each of particle charge 
and θ direction (endcap or barrel) 

p require at least 
one track to be 
outside this veto 
region 
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Belle II MC (single µ)	


when track φ=90∘	
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PID performance – µµ mode	


p µµ/ππ modes can be background 
for each other 

p MC stat. : 
~5 fb-1 equiv. 

p µµ-ID eff. 
p ~80% 
p loss by veto cut: 

5% 
p ππàµµ bkg. ratio 

p ~0.4% 
(Mµµ<1 GeV/c2) 

dimuon mass [GeV/c2]	
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Belle II MC	


blue : ππ sim (bkg) 
before/after µ-ID	


1	
 2	
 3	
 4	
 5	


black & red : µµ sim. (signal) 
red : µ-ID for both tracks	
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PID performance – ππ mode	


p  ππ-ID cut efficiency 
p  69% 
p  loss by veto cut: 8.8% 

p  µµàππ background 
p  0.15% (<1 GeV/c2) 
ßfactor 5 reduction 
due to the veto cut 
p  same level as BaBar 

p  required statistic 
p  5.3k evts / 5 fb-1 
à>100 fb-1 

possible in early stage 
of Belle II run 

(BaBar : 232 fb-1 PRD86 032013) 

2017-09-04 02:57:41
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Belle II MC	


Belle II MC (5 fb-1)	


black & red : ππ sim. (signal) 
red : π-ID for both tracks	


blue : µµ sim (bkg) 
before/after π-ID	
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radiator function	

p probability to emit ISR γ to produce 

a particle system (X) with mass of m 	
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Improvement of the precision with which the total cross
section of eþe" annihilation into hadrons is known is also
needed for a more accurate estimation of the hadronic con-
tribution to the muon anomalous magnetic moment because it
is one of the crucial limiting factors in a search for new
physics (Bouchiat and Michel, 1961; Gourdin and de
Rafael, 1969; Bennett et al., 2006).

There is an important relation between spectral functions
in eþe" annihilation into hadrons with isospin I ¼ 1 and
corresponding ! lepton decays based on conservation of
vector current (CVC) and isospin symmetry (Thacker and
Sakurai, 1971; Tsai and Tsai, 1971). Although first detailed
tests of such relations showed satisfactory agreement between
such spectral functions (Kawamoto and Sanda, 1978;
Eidelman and Ivanchenko, 1991), higher accuracy reached
in both eþe" and ! lepton sectors revealed possible system-
atic effects not accounted for in the eþe" and/or ! experi-
ments (Davier et al., 2003a, 2003b). An understanding of
these effects is crucial for improving the accuracy with which
the hadronic contributions to the muon anomalous magnetic
moment can be estimated from ! decays to two and four pions
as first suggested by Alemany, Davier, and Höcker (1998).

Detailed measurements of the energy dependence of vari-
ous exclusive cross sections allow us to improve our knowl-
edge of vector mesons and look for new states, both of light
(Druzhinin, 2007) and heavy quarks (Eichten et al., 2008).

B. Initial state radiation

In eþe" collider experiments, exclusive and total hadronic
cross sections are usually measured by scanning the acces-
sible energy range. The process of eþe" annihilation is
accompanied by emission of one or several photons from
the initial state. The lowest-order Feynman diagram describ-
ing initial state radiation (ISR) is shown in Fig. 2. The
quantity measured directly in the experiment is the visible
cross section

"vis ¼
N

L
; (1)

where N is the number of selected events of the process
eþe" ! hadronsþ n#, n ¼ 0; 1; 2; . . . , and L is the inte-
grated luminosity of the collider collected at the center-of-
mass (c.m.) eþe" energy 2E0. The visible cross section is
related to the Born cross section "0 corresponding to the
lowest-order diagram of Fig. 1 via the integral (Kuraev and
Fadin, 1985) providing the 10"3 accuracy:

"vis ¼
Z 1"m2

min=s

0
"ðs; xÞWðs; xÞ"0½sð1" xÞ'dx; (2)

where s ¼ 4E2
0, x is an effective fraction of the beam energy

E0 carried by photons emitted from the initial state, mmin is
the minimal possible invariant mass of the final hadrons, and
"ðs; xÞ is the detection efficiency for the process eþe" !
hadronsþ n# as a function of x and s. The so-called radiator
function Wðs; xÞ, taking into account higher-order QED con-
tributions, in particular, from the diagram in Fig. 2, is fully
calculable in QED (Actis et al., 2010). Because of the photon

emission from the initial state, the visible cross section
depends on the Born cross section at all energies below the
nominal eþe" c.m. energy 2E0.

In conventional scanning experiments, the influence of ISR
is suppressed by the requirements of the energy and momen-
tum balance between the final hadrons and the initial eþe"

state. In this case the detection efficiency has an x dependence
close to the step function "ðs; xÞ ¼ "0ðsÞ for x < x0, and zero
for x > x0. At small x0, Eq. (2) can be rewritten as

"vis ¼ "0ðsÞ"0ðsÞ½1þ $ðsÞ'; (3)

where 1þ $ðsÞ is the radiative correction factor, which takes
into account higher-order QED corrections. To calculate this
factor it is necessary to know the s dependence of "0 in the
range from sð1" x0Þ to s. For slowly varying cross sections,
$ is about 10% and can be determined with an accuracy better
than 1% using existing data on the cross section energy
dependence. Thus, in scanning experiments, from the data
collected at the c.m. energy

ffiffiffi
s

p
, the cross section "0ðsÞ is

determined directly.
Another approach is also possible. Equation (2) can be

rewritten in the differential form:

d"visðs;mÞ
dm

¼ 2m

s
"ðs;mÞWðs; xÞ"0ðmÞ; (4)

where we have made a transformation to the variable m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1" xÞ

p
, the invariant mass of the hadronic system. At

nonzero x the dominant contribution to the visible cross
section comes from the one-photon ISR (see Fig. 2). With
the inclusion of the ISR photon momentum in the selection
conditions on the energy and momentum balance, the non-
zero detection efficiency for ISR events can be obtained in a
wide range of the hadronic invariant mass. As a result, from
the measurement of the mass spectrum for the process
eþe" ! hadronsþ # at fixed c.m. energy

ffiffiffi
s

p
, the cross

section "0ðmÞ can be extracted in the invariant-mass range
from threshold to the mass close to

ffiffiffi
s

p
.

The idea of utilizing initial state radiation from a high-
mass state to explore electron-positron processes at all ener-
gies below that state was previously outlined by Baier
and Khoze (1965) and Baier and Fadin (1968). The possibil-
ity of exploiting such processes at high-luminosity % and
B factories was discussed by Arbuzov et al. (1998),
Benayoun et al. (1999), Binner, Kühn, and Melnikov
(1999), and Konchatnij and Merenkov (1999) and motivated
studies described in this paper.

e+ hadrons

e- γ

FIG. 2. The lowest-order Feynman diagram describing the initial
state radiation process eþe" ! #þ hadrons.
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Analysis of ISR events at eþe" factories provides inde-
pendent and contiguous measurements of hadronic cross
sections in the low-energy region and also contributes to
the spectroscopy of low-mass resonances.

C. Calculation of ISR and accuracy

To lowest order (see Fig. 2), the probability of the initial
state radiation of the photon with energy xE0 and polar angle
! is as follows (Baier and Khoze, 1965; Bonneau and Martin,
1971):

w0ð!; xÞ ¼
"

#x

!ð1" xþ x2=2Þsin2!" ðx2=2Þsin4!
½sin2!þ ð4m2

e=sÞcos2!'2

" 4m2
e

s

ð1" 2xÞsin2!" x2cos4!

½sin2!þ ð4m2
e=sÞcos2!'2

"
; (5)

where " is the fine-structure constant, and me is the electron
mass.

The ISR photon is predominantly emitted at small angles
with respect to the beam axis. In Fig. 3 we show the depen-
dence of the function W0ð!0; xÞ=W0ð0; xÞ on the polar-angle
limit !0, where

W0ð!0; xÞ ¼
Z #"!0

!0

w0ð!; xÞ sin!d!: (6)

The integration is performed for three values of x at 2E0 ¼
10:58 GeV, the c.m. energy of B factories. It can be seen that
the angular distribution of the ISR photon weakly depends on
x and that a considerable fraction of photons is emitted at
large angles. In the next section we discuss two approaches to
study ISR events, a tagged and an untagged one. In the tagged
approach the ISR photon should be detected, i.e., emitted at a
large angle, into the fiducial volume of the detector. At
B factories (2E0 ¼ 10:58 GeV) about 10% of high-energy
ISR photons have 30( < !< 150(. This angular range cor-
responds approximately to the fiducial volume of the electro-
magnetic calorimeter of the BABAR detector. A fraction of the
large-angle ISR increases with a decrease in energy as shown

in Fig. 4. The compact expressions for W0 can be written for
two practically applicable cases. For the range of integration
!0 < !< #" !0, !0 ) me=

ffiffiffi
s

p
,

W0ð!0; xÞ ¼
"

#x

!
ð2" 2xþ x2Þ ln1þ cos!0

1" cos!0
" x2 cos!0

"
:

(7)

For the full range of polar angles 0< !< #,

W0ð0; xÞ ¼
"

#x

$
ln

s

m2
e
" 1

%
ð2" 2xþ x2Þ: (8)

The formulas given above describe ISR processes in the
lowest QED order. To estimate a contribution of higher-order
diagrams (loops and related to extra photon emission) the
function WðxÞ from Kuraev and Fadin (1985) can be used,
which takes into account soft multiphoton emission and "2

terms in the leading logarithmic approximation. In this ap-
proximation the accuracy !W=W is expected to be better
than 1%. The relative difference between WðxÞ and W0ð0; xÞ
as a function of the invariant mass of the final hadronic
system is shown in Fig. 5 for 2E0 ¼ 1:02 GeV, the c.m.
energy of the $ factory in Frascati. It can be seen that the
radiative correction to the lowest-order radiator function
reaches 15%. It should be noted that the size of the radiation
correction depends on experimental conditions. For example,
Aubert et al. (2006a) calculated the function WðxÞ at 2E0 ¼
10:58 GeV with conditions that the highest-energy ISR pho-
ton has a polar angle in the range 20( < !< 160( and that
the invariant mass of the hadronic system combined with the
ISR photon is >8 GeV=c2. The latter condition restricts the
maximum energy of extra photons emitted from the initial
state. With these conditions the radiative correction factor
1þ % ¼ Wð20(; xÞ=W0ð20(; xÞ is close to unity with the
maximum deviation % of about 2%.

To provide accuracy better than 1% required for the mea-
surement of the exclusive hadronic cross sections at low
energies, the calculation of the radiator function should in-
clude the higher-order radiative correction, in particular, due
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FIG. 3. The relative probability for the ISR photon emitted into
the polar-angle range !0 < !< 180( " !0 for three representative
values of x.
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FIG. 4. The relative probability for the ISR photon emitted into
the polar-angle range 30( < !< 150( as a function of the eþe"

c.m. energy for three representative values of x.
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cross section for e+e-àX at m	


observed 
spectrum	


to emission of extra photons. Several theoretical papers are
devoted to study radiative corrections to ISR processes, for
example, Arbuzov et al. (1998), Binner, Kühn, and Melnikov
(1999), Khoze et al. (2001, 2002), Rodrigo et al. (2002), and
Czyż et al. (2003). The approaches of Binner, Kühn, and
Melnikov (1999), Rodrigo et al. (2002), and Czyż et al.
(2003) allow one to develop generators of Monte Carlo (MC)
events and are used in analyses of experimental data. Binner,
Kühn, and Melnikov (1999) considered the photon emission
at large angles only; radiative corrections are calculated in the
leading logarithmic approximation with the structure function
technique (Caffo, Czyż, and Remiddi, 1994, 1997). The
accuracy of the method is determined by neglecting sublead-
ing !2 contributions and is estimated by Rodrigo et al.
(2001) to be about 1%. Rodrigo et al. (2002), Czyż et al.
(2003) calculated the one-loop corrections and exact matrix
element for emission of two hard photons. The accuracy of
this next-to-leading-order (NLO) calculation is estimated to
be about 0.5% (Rodrigo et al., 2002) due to higher-order
effects.

D. Monte Carlo generators

The calculation of the radiator function is usually per-
formed with the Monte Carlo method. A special computer
code referred to as an ‘‘event generator’’ provides events (sets
of the four momenta of the final particles) distributed over the
phase space according to the matrix element squared of the
process under study. The phase space can be restricted by
placing conditions on the angles and energies of the generated
ISR photons. These conditions should be less strict than the
actual experimental conditions used for event selection.

The interaction of the generated particles with the detector
and the detector response are then simulated. In modern
experiments the detector simulation is based on the GEANT4

(Agostinelli et al., 2003) package. The simulated events are
reconstructed with the program chain used for experimental
data. The detection efficiency is determined as the ratio of the

mass spectrum of simulated events that passed selection
criteria to the spectrum of generated events.

Most of the ISR analyses discussed in this paper are based
on two event generators. Historically, EVA was the first ISR
Monte Carlo generator. The AFKQED package used in the
BABAR experiment at the Stanford Linear Accelerator
Center (SLAC) B factory is a development of the EVA gen-
erator (Binner, Kühn, and Melnikov, 1999; Czyż and Kühn,
2001) initially designed to simulate ISR production of 2" and
4" final states with an ISR photon emitted at large angles.
The soft-photon radiation from the initial state is generated
with the structure function method (Caffo, Czyż, and
Remiddi, 1994, 1997). Two extra photons are emitted in the
directions of the initial electron and positron. The program
has a modular structure allowing us to implement new had-
ronic modes easily. The AFKQED package includes genera-
tions of 2", 3", 4", 5", 6", and #"þ"" states, modes with
kaons K !Kþ n"n ¼ 0, 1, 2, 3, and 4, and protons p !p and
p !p2". The generation of the process eþe" ! $þ$"% is
also included into the AFKQED package. For this process both
initial and final state radiation (FSR) diagrams and their
interference are taken into account. For charged particles
the final state radiation is generated using the PHOTOS pack-
age (Barberio, van Eijk, and Was, 1991).

The PHOKHARA event generator is used in the BABAR and
Belle experiments at the B factories, and in the KLOE
experiment at the & factory. Its latest version 6.11 includes
generation of the 2", 3", 4", K !K, p !p, and " !" hadronic
states, and the process eþe" ! $þ$"%. The initial state
radiation is generated in NLO (Rodrigo et al., 2002; Czyż
et al., 2003); i.e., one or two photons can be emitted by the
initial electron and positron. The generator can be used for
simulation of both tagged and untagged ISR measurements.
For the processes eþe" ! $þ$"%, eþe" ! "þ""%, and
eþe" ! KþK"%, NLO FSR radiative corrections are imple-
mented. In particular, a hard ISR photon can be accompanied
by emission of a soft photon from the final state.

For all hadronic states, except the two-body 2" and K !K as
well as "þ"""0, the structure of the electromagnetic had-
ronic current entering the matrix element of the process
eþe" ! hadrons is model dependent and the object of a
study by itself. This model dependence is the second source
of the theoretical uncertainty. For most of the measurements
of multihadron cross sections, its contribution significantly
exceeds the 0.5%–1.0% uncertainty of the radiator function.
To estimate the model uncertainty, distributions of hadrons in
data are compared to the corresponding simulated distribu-
tions. Usually, the difference between the detection efficiency
obtained with different models of the hadronic currents is
taken as an estimate of the model uncertainty.

II. EXPERIMENTAL TECHNIQUES

A. Tagged and untagged ISR

There are two approaches for studying ISR events. In the
first approach, the untagged one, detection of the ISR photon
is not required, but all final hadrons must be detected and
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) dependence of the relative

difference between the radiator function WðxÞ from Kuraev and
Fadin (1985) and the lowest-order function W0ð0; xÞ for 2E0 ¼
1:02 GeV.
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ISR γ to forward and backward 
directions is dominant 
àonly ~10% of ISR γ can 
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Improvement of the precision with which the total cross
section of eþe" annihilation into hadrons is known is also
needed for a more accurate estimation of the hadronic con-
tribution to the muon anomalous magnetic moment because it
is one of the crucial limiting factors in a search for new
physics (Bouchiat and Michel, 1961; Gourdin and de
Rafael, 1969; Bennett et al., 2006).

There is an important relation between spectral functions
in eþe" annihilation into hadrons with isospin I ¼ 1 and
corresponding ! lepton decays based on conservation of
vector current (CVC) and isospin symmetry (Thacker and
Sakurai, 1971; Tsai and Tsai, 1971). Although first detailed
tests of such relations showed satisfactory agreement between
such spectral functions (Kawamoto and Sanda, 1978;
Eidelman and Ivanchenko, 1991), higher accuracy reached
in both eþe" and ! lepton sectors revealed possible system-
atic effects not accounted for in the eþe" and/or ! experi-
ments (Davier et al., 2003a, 2003b). An understanding of
these effects is crucial for improving the accuracy with which
the hadronic contributions to the muon anomalous magnetic
moment can be estimated from ! decays to two and four pions
as first suggested by Alemany, Davier, and Höcker (1998).

Detailed measurements of the energy dependence of vari-
ous exclusive cross sections allow us to improve our knowl-
edge of vector mesons and look for new states, both of light
(Druzhinin, 2007) and heavy quarks (Eichten et al., 2008).

B. Initial state radiation

In eþe" collider experiments, exclusive and total hadronic
cross sections are usually measured by scanning the acces-
sible energy range. The process of eþe" annihilation is
accompanied by emission of one or several photons from
the initial state. The lowest-order Feynman diagram describ-
ing initial state radiation (ISR) is shown in Fig. 2. The
quantity measured directly in the experiment is the visible
cross section

"vis ¼
N

L
; (1)

where N is the number of selected events of the process
eþe" ! hadronsþ n#, n ¼ 0; 1; 2; . . . , and L is the inte-
grated luminosity of the collider collected at the center-of-
mass (c.m.) eþe" energy 2E0. The visible cross section is
related to the Born cross section "0 corresponding to the
lowest-order diagram of Fig. 1 via the integral (Kuraev and
Fadin, 1985) providing the 10"3 accuracy:

"vis ¼
Z 1"m2

min=s

0
"ðs; xÞWðs; xÞ"0½sð1" xÞ'dx; (2)

where s ¼ 4E2
0, x is an effective fraction of the beam energy

E0 carried by photons emitted from the initial state, mmin is
the minimal possible invariant mass of the final hadrons, and
"ðs; xÞ is the detection efficiency for the process eþe" !
hadronsþ n# as a function of x and s. The so-called radiator
function Wðs; xÞ, taking into account higher-order QED con-
tributions, in particular, from the diagram in Fig. 2, is fully
calculable in QED (Actis et al., 2010). Because of the photon

emission from the initial state, the visible cross section
depends on the Born cross section at all energies below the
nominal eþe" c.m. energy 2E0.

In conventional scanning experiments, the influence of ISR
is suppressed by the requirements of the energy and momen-
tum balance between the final hadrons and the initial eþe"

state. In this case the detection efficiency has an x dependence
close to the step function "ðs; xÞ ¼ "0ðsÞ for x < x0, and zero
for x > x0. At small x0, Eq. (2) can be rewritten as

"vis ¼ "0ðsÞ"0ðsÞ½1þ $ðsÞ'; (3)

where 1þ $ðsÞ is the radiative correction factor, which takes
into account higher-order QED corrections. To calculate this
factor it is necessary to know the s dependence of "0 in the
range from sð1" x0Þ to s. For slowly varying cross sections,
$ is about 10% and can be determined with an accuracy better
than 1% using existing data on the cross section energy
dependence. Thus, in scanning experiments, from the data
collected at the c.m. energy

ffiffiffi
s

p
, the cross section "0ðsÞ is

determined directly.
Another approach is also possible. Equation (2) can be

rewritten in the differential form:

d"visðs;mÞ
dm

¼ 2m

s
"ðs;mÞWðs; xÞ"0ðmÞ; (4)

where we have made a transformation to the variable m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1" xÞ

p
, the invariant mass of the hadronic system. At

nonzero x the dominant contribution to the visible cross
section comes from the one-photon ISR (see Fig. 2). With
the inclusion of the ISR photon momentum in the selection
conditions on the energy and momentum balance, the non-
zero detection efficiency for ISR events can be obtained in a
wide range of the hadronic invariant mass. As a result, from
the measurement of the mass spectrum for the process
eþe" ! hadronsþ # at fixed c.m. energy

ffiffiffi
s

p
, the cross

section "0ðmÞ can be extracted in the invariant-mass range
from threshold to the mass close to

ffiffiffi
s

p
.

The idea of utilizing initial state radiation from a high-
mass state to explore electron-positron processes at all ener-
gies below that state was previously outlined by Baier
and Khoze (1965) and Baier and Fadin (1968). The possibil-
ity of exploiting such processes at high-luminosity % and
B factories was discussed by Arbuzov et al. (1998),
Benayoun et al. (1999), Binner, Kühn, and Melnikov
(1999), and Konchatnij and Merenkov (1999) and motivated
studies described in this paper.

e+ hadrons

e- γ

FIG. 2. The lowest-order Feynman diagram describing the initial
state radiation process eþe" ! #þ hadrons.
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to emission of extra photons. Several theoretical papers are
devoted to study radiative corrections to ISR processes, for
example, Arbuzov et al. (1998), Binner, Kühn, and Melnikov
(1999), Khoze et al. (2001, 2002), Rodrigo et al. (2002), and
Czyż et al. (2003). The approaches of Binner, Kühn, and
Melnikov (1999), Rodrigo et al. (2002), and Czyż et al.
(2003) allow one to develop generators of Monte Carlo (MC)
events and are used in analyses of experimental data. Binner,
Kühn, and Melnikov (1999) considered the photon emission
at large angles only; radiative corrections are calculated in the
leading logarithmic approximation with the structure function
technique (Caffo, Czyż, and Remiddi, 1994, 1997). The
accuracy of the method is determined by neglecting sublead-
ing !2 contributions and is estimated by Rodrigo et al.
(2001) to be about 1%. Rodrigo et al. (2002), Czyż et al.
(2003) calculated the one-loop corrections and exact matrix
element for emission of two hard photons. The accuracy of
this next-to-leading-order (NLO) calculation is estimated to
be about 0.5% (Rodrigo et al., 2002) due to higher-order
effects.

D. Monte Carlo generators

The calculation of the radiator function is usually per-
formed with the Monte Carlo method. A special computer
code referred to as an ‘‘event generator’’ provides events (sets
of the four momenta of the final particles) distributed over the
phase space according to the matrix element squared of the
process under study. The phase space can be restricted by
placing conditions on the angles and energies of the generated
ISR photons. These conditions should be less strict than the
actual experimental conditions used for event selection.

The interaction of the generated particles with the detector
and the detector response are then simulated. In modern
experiments the detector simulation is based on the GEANT4

(Agostinelli et al., 2003) package. The simulated events are
reconstructed with the program chain used for experimental
data. The detection efficiency is determined as the ratio of the

mass spectrum of simulated events that passed selection
criteria to the spectrum of generated events.

Most of the ISR analyses discussed in this paper are based
on two event generators. Historically, EVA was the first ISR
Monte Carlo generator. The AFKQED package used in the
BABAR experiment at the Stanford Linear Accelerator
Center (SLAC) B factory is a development of the EVA gen-
erator (Binner, Kühn, and Melnikov, 1999; Czyż and Kühn,
2001) initially designed to simulate ISR production of 2" and
4" final states with an ISR photon emitted at large angles.
The soft-photon radiation from the initial state is generated
with the structure function method (Caffo, Czyż, and
Remiddi, 1994, 1997). Two extra photons are emitted in the
directions of the initial electron and positron. The program
has a modular structure allowing us to implement new had-
ronic modes easily. The AFKQED package includes genera-
tions of 2", 3", 4", 5", 6", and #"þ"" states, modes with
kaons K !Kþ n"n ¼ 0, 1, 2, 3, and 4, and protons p !p and
p !p2". The generation of the process eþe" ! $þ$"% is
also included into the AFKQED package. For this process both
initial and final state radiation (FSR) diagrams and their
interference are taken into account. For charged particles
the final state radiation is generated using the PHOTOS pack-
age (Barberio, van Eijk, and Was, 1991).

The PHOKHARA event generator is used in the BABAR and
Belle experiments at the B factories, and in the KLOE
experiment at the & factory. Its latest version 6.11 includes
generation of the 2", 3", 4", K !K, p !p, and " !" hadronic
states, and the process eþe" ! $þ$"%. The initial state
radiation is generated in NLO (Rodrigo et al., 2002; Czyż
et al., 2003); i.e., one or two photons can be emitted by the
initial electron and positron. The generator can be used for
simulation of both tagged and untagged ISR measurements.
For the processes eþe" ! $þ$"%, eþe" ! "þ""%, and
eþe" ! KþK"%, NLO FSR radiative corrections are imple-
mented. In particular, a hard ISR photon can be accompanied
by emission of a soft photon from the final state.

For all hadronic states, except the two-body 2" and K !K as
well as "þ"""0, the structure of the electromagnetic had-
ronic current entering the matrix element of the process
eþe" ! hadrons is model dependent and the object of a
study by itself. This model dependence is the second source
of the theoretical uncertainty. For most of the measurements
of multihadron cross sections, its contribution significantly
exceeds the 0.5%–1.0% uncertainty of the radiator function.
To estimate the model uncertainty, distributions of hadrons in
data are compared to the corresponding simulated distribu-
tions. Usually, the difference between the detection efficiency
obtained with different models of the hadronic currents is
taken as an estimate of the model uncertainty.

II. EXPERIMENTAL TECHNIQUES

A. Tagged and untagged ISR

There are two approaches for studying ISR events. In the
first approach, the untagged one, detection of the ISR photon
is not required, but all final hadrons must be detected and
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ISR luminosity	


larger signal-to-background ratio. For the process eþe" !
2ð!þ!"Þ!0" (Aubert et al., 2007c) in the mass region of the
J=c and c ð2SÞ mesons discussed in Sec. V, the value of the
mass resolution obtained from the fit to the J=c spectrum is
about 9 MeV=c2, in good agreement with MC simulation.

For the final states containing charmed and charmonium
mesons (J=c!þ!"; D !D, etc.), the typical resolution in the
4–5 GeV=c2 mass range is about 5 MeV=c2. The correspond-
ing cross sections were measured with the 20–25 MeV=c2

mass bin. For these final states the influence of the limited
mass resolution on the cross section measurement is
negligible.

The precision of the absolute mass scale calibration can be
tested by comparison of the measured mass values for known
resonances with their nominal values. For many multihadron
states (see Sec. V) the mass calibration is performed at the
J=c mass. The difference between the measured and nominal
(Eidelman et al., 2004) J=c masses is found to be less than
1 MeV=c2 [see, for example, Aubert et al. (2007c, 2008b)].
For the 3! final state the mass scale shift was determined at
the !- and #-meson masses (Aubert et al., 2004b) m! "
mnominal

! ¼ "ð0:2& 0:1Þ MeV=c2 and m# "mnominal
# ¼

"ð0:6& 0:2Þ MeV=c2. We conclude that for the measure-
ments of hadronic cross sections at B factories the mass
scale is defined with a relative accuracy better than or about
5' 10"4.

C. ISR luminosity

It is clear that radiation of a hard photon significantly
decreases the cross section, so the ISR technique can be
efficient at high-luminosity colliders only. To compare the
effectiveness of the ISR method for the measurement of
hadronic cross sections with direct eþe" experiments, it is
useful to introduce the concept of ISR luminosity. The mass
spectrum for the ISR process eþe" ! X" is expressed in
terms of the ISR differential luminosity dL=dm and the Born
cross section for the process eþe" ! X as

dN

dm
¼ "ðmÞ½1þ $ðmÞ)%0ðmÞ dL

dm
; (9)

where 1þ $ðmÞ ¼ WðmÞ=W0ðmÞ is the radiative correction
factor discussed in Sec. I.C. The ISR luminosity is propor-
tional to the total integrated luminosity L collected in an
experiment and the lowest-order radiator function given by
Eqs. (7) or (8) depending on the angular range used for
determination of the detection efficiency "ðmÞ:

dL

dm
¼ W0ðmÞ 2m

s
L: (10)

The mass dependence of the ISR differential luminosity
multiplied by the detection efficiency for the BABAR experi-
ment is shown in Fig. 10 for masses below 2:2 GeV=c2. The
detection efficiency used was calculated in Sec. II.A for
the process eþe" ! !þ!"" with a tagged ISR photon.
The integrated luminosity is taken to be 500 fb"1. The dashed
curve in Fig. 10 shows the same quantity calculated for the
KLOE experiment with an integrated luminosity of 240 pb"1

and detection efficiency taken for the case of an untagged ISR
photon (see Fig. 8). A luminosity of 240 pb"1 was used in the

recent measurement (Ambrosino et al., 2009) of the eþe" !
!þ!" cross section in the 0:592–0:975 GeV=c2 mass range.
The total integrated luminosity collected by the KLOE ex-
periment is about an order of magnitude larger, 2:5 fb"1. The
KLOE ISR luminosity is shown only up to 0:92 GeV=c2.
It increases sharply and reaches 21 pb"1 at 0:975 GeV=c2. It
should be noted that the BABARmeasurement of the eþe" !
!þ!" cross section (Aubert et al., 2009a) is also based on a
part of the recorded data corresponding to 232 fb"1. The
histogram in Fig. 10 shows the distribution of the integrated
luminosities collected in some direct eþe" experiments. At
masses below 1:4 GeV=c2 the statistics of the SND experi-
ment (Achasov et al., 2002) recorded at the VEPP-2M
collider is presented. This is the largest integrated luminosity
collected in this mass region in a single experiment. The
mass bin 1:0–1:1 GeV=c2 does not include about 13 pb"1

taken by SND in the vicinity of the #-meson resonance. The
significant part of the statistics from the 0:7–0:8 GeV=c2

mass interval is collected in the !-meson mass
window 0:76–0:80 GeV=c2. In the c.m. energy range
1:4–2:2 GeV=c2 the experiments with the largest statistics
are DM1 and DM2 at the Orsay eþe" collider DCI. The
histogram at m> 1:4 GeV=c2 shows a sum of the integrated
luminosities collected with these detectors.

At low masses of the hadronic system the data samples of
ISR events currently available at B factories exceed the
statistics collected in conventional eþe" experiments, espe-
cially at masses below 0.7 and above 1:4 GeV=c2. The ISR
luminosity of the # factory increases rapidly with mass. For
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FIG. 10. The mass dependence of the ISR differential luminosity
multiplied by the detection efficiency. The solid curve shows
"dL=dm for the B factory (2E0 ¼ 10:58 GeV, L ¼ 500 fb"1,
tagged ISR photon), while the dashed curve shows the same
function for the # factory (2E0 ¼ 1:02 GeV, L ¼ 240 pb"1, un-
tagged ISR photon). The histogram represents integrated luminos-
ities collected in direct eþe" experiments with the SND detector
(Achasov et al., 2002) at the Novosibirsk VEPP-2M collider (below
1:4 GeV=c2), and with the DM1 (Bisello et al., 1981) and DM2
(Antonelli et al., 1992) detectors at the Orsay DCI collider (above
1:4 GeV=c2).
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Figure 18. The pie diagrams in the left- and right-hand columns show the fractions of the total
contributions and (errors)2, respectively, coming from various energy intervals in the dispersion
integrals (2) and (13). The pie diagrams for the LO hadronic contribution to g−2, shown in the first
row, correspond to sub-contributions with energy boundaries at mπ , 0.6, 0.9, 1.4, 2 GeV and ∞,
whereas for the hadronic contribution to the QED coupling, shown in the second row, the boundaries
are at mπ , 0.6, 0.9, 1.4, 2, 4, 11.09 GeV and ∞. In the (error)2 pie diagrams we also included
the (error)2 arising from the treatment of the radiative corrections to the data.

discrepancy between the two alternatives, and, in the past, we had used a sum-rule analysis [2]
to distinguish between them. However, in the region below 2 GeV, many exclusive channels
with higher multiplicities are now much better probed through the radiative return analyses of
the BaBar data, and the sum of the exclusive channels is better determined. This has prompted
us to re-investigate the sum-rule analysis including the new data in the input. We now find
good agreement of the sum rules with the world-average value of αs if the sum of exclusive
channels is used, which is slightly higher than the inclusive data, and a worsened agreement
if inclusive data are input. We therefore now use the exclusive data, which are also more
accurate.

Furthermore, new much more accurate BES data are seen to be in perfect agreement
with the pQCD predictions of e+e− → hadrons in the range from 2.6 GeV up to the charm
threshold. We therefore use pQCD in this region, but with a conservative error of about 3.5%
corresponding to the accuracy of the latest BES data. The use of pQCD from 2 GeV would
result in a slight shift (−1.2×10−10 for aµ), with an even stronger preference for the exclusive
data in the sum-rule analysis, see figure 12.

In summary, we find the updated LO and HO HVP corrections to be

ahad, LO VP
µ = (694.91 ± 4.27) × 10−10, (16)

ahad, HO VP
µ = (−9.84 ± 0.07) × 10−10. (17)

When the representative value of the hadronic light-by-light correction,

ahad,l−by−l
µ = (10.5 ± 2.6) × 10−10, (18)
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contributions and (errors)2, respectively, coming from various energy intervals in the dispersion
integrals (2) and (13). The pie diagrams for the LO hadronic contribution to g−2, shown in the first
row, correspond to sub-contributions with energy boundaries at mπ , 0.6, 0.9, 1.4, 2 GeV and ∞,
whereas for the hadronic contribution to the QED coupling, shown in the second row, the boundaries
are at mπ , 0.6, 0.9, 1.4, 2, 4, 11.09 GeV and ∞. In the (error)2 pie diagrams we also included
the (error)2 arising from the treatment of the radiative corrections to the data.

discrepancy between the two alternatives, and, in the past, we had used a sum-rule analysis [2]
to distinguish between them. However, in the region below 2 GeV, many exclusive channels
with higher multiplicities are now much better probed through the radiative return analyses of
the BaBar data, and the sum of the exclusive channels is better determined. This has prompted
us to re-investigate the sum-rule analysis including the new data in the input. We now find
good agreement of the sum rules with the world-average value of αs if the sum of exclusive
channels is used, which is slightly higher than the inclusive data, and a worsened agreement
if inclusive data are input. We therefore now use the exclusive data, which are also more
accurate.

Furthermore, new much more accurate BES data are seen to be in perfect agreement
with the pQCD predictions of e+e− → hadrons in the range from 2.6 GeV up to the charm
threshold. We therefore use pQCD in this region, but with a conservative error of about 3.5%
corresponding to the accuracy of the latest BES data. The use of pQCD from 2 GeV would
result in a slight shift (−1.2×10−10 for aµ), with an even stronger preference for the exclusive
data in the sum-rule analysis, see figure 12.

In summary, we find the updated LO and HO HVP corrections to be

ahad, LO VP
µ = (694.91 ± 4.27) × 10−10, (16)

ahad, HO VP
µ = (−9.84 ± 0.07) × 10−10. (17)

When the representative value of the hadronic light-by-light correction,

ahad,l−by−l
µ = (10.5 ± 2.6) × 10−10, (18)
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Hadronic Vacuum Polarization Contribution to

g � 2 of the Leptons and ↵(MZ)

F. Jegerlehnera�

aDESY-IfH Zeuthen, Platanenallee 6, D-15738 Zeuthen, Germany

We review and compare recent calculations of hadronic vacuum polarization e�ects. In particular, we consider
the anomalous magnetic moments g � 2 of the leptons and �(M

Z

) , the e�ective fine structure constant at the
Z–resonance.

1. VACUUM POLARIZATION AND
CHARGE SCREENING

Typically, charged particles in a collision of im-
pact energy E interact electromagnetically with
an e�ective charge which is the charge contained
in the sphere of radius r � 1/E around the par-
ticles. As illustrated in Fig. 1 for one of the par-
ticles, the e�ective charge, due to vacuum polar-
ization by virtual pair–creation, is larger than the
classical charge which is seen in a large sphere
(r ! 1). This charge screening is a particular
kind of charge renormalization.

Figure 1. Vacuum polarization by virtual pair
creation.

Commonly, Fig. 1 is represented by a Feyn-
man diagram like the one in Fig. 2 contributing
to muon scattering. Not surprising, the e�ective
fine structure “constant” �(E) appears in many
places in physics whenever the typical energy of
a process is not in the classical regime. The ma-
jor contribution to charge screening comes from
light charged particle–antiparticle pairs of mass
�
Report on work in collaboration with S. Eidelman [1].

m <�E/2. While the lepton contributions can be
easily calculated in QED perturbation theory the
contribution of the strongly interacting quarks is
not so easy to obtain. This is the issue of our
discussion.

Figure 2. Feynman diagram describing the vac-
uum polarization in muon scattering.

1.1. Formal definition:

The e�ective QED coupling constant at scalep
s may be written as

�(s) =
�

1���(s)
(1)

with

��(s) = �4��Re
⇥
��

�(s)���
�(0)

⇤
(2)

where ��
�(s) is the photon vacuum polarization

function

i

Z
d4x eiq·x�0|Tjµ

em(x)j�
em(0)|0�

= �(q2gµ� � qµq�)��
�(q2) (3)

and jµ
em(x) is the electromagnetic current.

(a)

(b)

Figure 1.7: Vacuum polarization [22]: (a)conceptual diagram and (b)corresponding Feynman
diagrams. The (a) shows that a pair of charged particles polarize the vacuum (in a fashion
similar to an electric charge polarizing a dielectric material), which in turn partially screens
the electric charges. The (b) shows the type of Feynman diagrams that lead to the vacuum
polarization for muon scattering.

13

closer to each other 
(= high energy scale) 
 à less screening 
 à stronger interaction	


J. Crnkovic, 
PhD thesis	


“charge screening”	
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cut optimization	


p tight cut (require both tracks to be 
outside the veto regions) loses 
efficiency, while background 
reduction is not so large 

µµ efficiency	
 ππàµµ BG	
 ππ efficiency	
 µµàππ BG	


no veto cut	
 85.2%	
 0.39%	
 75.3%	
 0.83%	


loose cut	
 80.9%	
 0.39%	
 68.7%	
 0.15%	


tight cut	
 58.2%	
 0.40%	
 46.2%	
 0.10%	


M<1 GeV/c2	
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trigger efficiency for ππγ	


p  high trigger efficiency is necessary 
for precision measurement 

p  Belle II trigger for eeàππγ 
p  total calorimeter energy 

> 1 GeV 
p  Bhabha veto 

ßloss of this veto 
must be small 

p  large loss by Bhabha veto in Belle 
àprecision measurement was difficult 

p  Bhabha veto logic in Belle II 
p  2D Bhabha veto: 

rely only on θ information 
p  3D Bhabha veto: 

include φ information	
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allows to detect events of an eþe" interaction
rejecting the beam background whose energy
deposition in the calorimeter is usually small. This
trigger has simple logic and can provide fast
response to be within a time window of the GDL
requirement(less than 1:85 ms).

If the energy deposited in the TC is above the
threshold value, the analog sum signal of the STM
called GATESUM is further transmitted into an
analog adder (AAA). Such an arrangement
suppresses the contribution of the electronics
incoherent noise from all TCs without energy
deposition. The AAA adds four or five GATE-
SUM signals and resulting signals go to the other
analog adder (AAB) producing an entire f-ring
analog sum signal. As shown in Fig. 3, the number
of f-rings in the y-direction is 12 in the barrel and
5 in both endcap regions. AAA modules are

located near the detector while AAB modules are
in the electronics hut (about 30 m away). The
scheme of two-stage analog summation allows to
simplify the cabling. The analog current signal
driving method between AAA and AAB was
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Fig. 2. Schematic diagram of ECL calorimeter readout electronics.
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Fig. 3. Calorimeter division for the selection of Bhabha events
in the y-direction in which each unit represents one f-ring sum.
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Belle-type Bhabha veto	


Belle trigger simulation	


2	
0	
 4	
 6	
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trigger efficiency study	


p All the Bhabha events were recorded 
in phase2 data due to low luminosity 
p no loss of events by Bhabha veto 
p can evaluate expected loss directly	
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loss = 	

# of events triggered by Bhabha trigger 	


# of all events 	


standard calorimeter trigger (total E>1 GeV && !2D-Bhabha) 
OR 
2D-Bhabha trigger	
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event loss by Bhabha veto 	


p  2D Bhabha 
p  (12.3±0.8stat)% (M(ππ)<2 GeV/c2) 

p  significantly large 
p  3D Bhabha 

p  available only for the last 
short period 

p  loosen γ angle cut 
to increase statistics 
[50∘,110∘]à[17∘,128∘] 

p  2 events / 360 events 
(0.6±0.4stat)% 

p  much smaller loss 
àcan use the 3D Bhabha 
veto logic instead of the Belle 
-type Bhabha veto	
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2D Bhabha veto	


phase2 data	


3D Bhabha veto	


phase2 data	
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current situation of e g-2	


p measurement : 
(Harvard U)  

p theory 

p QED mass-dependent term : 
                               2.7478(2) × 10−12  

p had 

p weak  

at Brookhaven motivated significant work over the past thirty years that permitted more
than an order of magnitude improvement in the knowledge of the hadronic contribution.
Motivated by Fermilab E989 this work continues, and another factor of two improvement
could be possible.

Both the electron [5] and muon [6] anomalies have been measured very precisely:

a

exp
e = 1 159 652 180.73 (28)⇥ 10�12 ±0.24 ppb (3)

a

exp
µ = 1 165 920 89 (63)⇥ 10�11 ±0.54 ppm (4)

While the electron anomaly has been measured to ' 0.3 ppb (parts per billion) [5], it is
significantly less sensitive to heavier physics, because the relative contribution of heavier
virtual particles to the muon anomaly goes as (mµ/me)2 ' 43000. Thus the lowest-order
hadronic contribution to ae is [7]: a

had,LO
e = (1.875 ± 0.017) 10�12, 1.5 ppb of ae. For the

muon the hadronic contribution is ' 60 ppm (parts per million). So with much less precision,
when compared with the electron, the measured muon anomaly is sensitive to mass scales
in the several hundred GeV region. This not only includes the contribution of the W and
Z bosons, but perhaps contributions from new, as yet undiscovered, particles such as the
supersymmetric partners of the electroweak gauge bosons (see Fig. 1(c)).

2 Summary of the Standard-Model Value of a
µ

2.1 QED Contribution

The QED contribution to aµ is well understood. Recently the four-loop QED contribution
has been updated and the full five-loop contribution has been calculated [2]. The present
QED value is

a

QED
µ = 116 584 718.951 (0.009)(0.019)(0.007)(.077)⇥ 10�11 (5)

where the uncertainties are from the lepton mass ratios, the eight-order term, the tenth-
order term, and the value of ↵ taken from the 87Rb atom ↵

�1(Rb) = 137.035 999 049(90)
[0.66 ppb]. [8].

3

1.5 ppb	


The mass-dependent terms A2 and A3 of the fourth and
sixth orders are known [23–28] and reevaluated using the
updated mass ratios [3],

Að4Þ
2 ðme=m!Þ ¼ 5:197 386 67 ð26Þ $ 10%7;

Að4Þ
2 ðme=m"Þ ¼ 1:837 98 ð34Þ $ 10%9;

Að6Þ
2 ðme=m!Þ ¼ %7:373 941 55 ð27Þ $ 10%6;

Að6Þ
2 ðme=m"Þ ¼ %6:583 0 ð11Þ $ 10%8;

Að6Þ
3 ðme=m!; me=m"Þ ¼ 0:1909ð1Þ $ 10%12:

(8)

Except for Að6Þ
3 all are known analytically so that the

uncertainties come only from fermion-mass ratios.
The mass-dependent terms of the eighth-order and

the muon contribution to the tenth-order are numeri-
cally evaluated [11–19]. Our new results are summa-
rized as

Að8Þ
2 ðme=m!Þ ¼ 9:222 ð66Þ $ 10%4;

Að8Þ
2 ðme=m"Þ ¼ 8:24 ð12Þ $ 10%6;

Að8Þ
3 ðme=m!; me=m"Þ ¼ 7:465 ð18Þ $ 10%7;

Að10Þ
2 ðme=m!Þ ¼ %0:003 82 ð39Þ:

(9)

The leading order and next-to-leading order (NLO) con-
tributions of the hadronic vacuum-polarization (v.p.) [29]
as well as the hadronic light-by-light-scattering (l-l) term
[30] are given as

aeðhad:v:p:Þ¼1:866ð10Þexpð5Þrad$10%12;

aeðNLOhad:v:p:Þ¼%0:2234ð12Þexpð7Þrad$10%12;

aeðhad:l-lÞ¼0:035ð10Þ$10%12;

(10)

where the first uncertainty is from hadron production ex-
periments and the second uncertainty is from the estimate
of radiative correction. At present no direct evaluation of
the two-loop electroweak effect is available. The best
estimate is the one obtained by scaling down from the
electroweak effect on a! [31–34]:

aeðweakÞ ¼ 0:0297 ð5Þ $ 10%12: (11)

To compare the theoretical prediction with the measure-
ment (1), we need the value of the fine-structure constant
# determined by a method independent of g% 2. The
best # available at present is the one obtained from

I(a) I(b) I(c) I(d) I(e)

I(f) I(g) I(h) I(i) I(j)

II(a) II(b) II(c) II(d) II(e)

II(f) III(a) III(b) III(c) IV

V VI(a) VI(b) VI(c) VI(d) VI(e)

VI(f) VI(g) VI(h) VI(i) VI(j) VI(k)

FIG. 2. Typical self-energy-like diagrams representing 32
gauge-invariant subsets contributing to the tenth-order lepton
g% 2. Solid lines represent lepton lines propagating in a weak
magnetic field.

TABLE I. The eighth-order QED contribution from 13 gauge-invariant groups to electorn g% 2. The values with a superscript a, b,
or c are quoted from Refs. [39,8,37], respectively. nf shows the number of vertex diagrams contributing to Að8Þ

1 . Other values are

obtained from evaluation of new programs. The mass-dependence of Að8Þ
3 is Að8Þ

3 ðme=m!; me=m"Þ. The numbers with the asterisks are

in agreement with the results in Ref. [40].

group nf Að8Þ
1 Að8Þ

2 ðme=m!Þ $ 103 Að8Þ
2 ðme=m"Þ $ 105 Að8Þ

3 $ 107

I(a) 1 0:000 876 865 & & &a 0.000 226 456 (14) 0.000 080 233 (5) 0.000 011 994 (1)
I(b) 6 0.015 325 20 (37) 0.001 704 139 (76) 0.000 602 805 (26) 0.000 014 097 (1)
I(c) 3 0:011 130 8ð9Þb 0.011 007 2 (15) 0.006 981 9 (12) 0.172 860 (21)
I(d) 15 0.049 514 8 (38) 0.002 472 5 (7) 0.087 44 (1) 0
II(a) 36 %0:420 476 ð11Þ %0:086 446 ð9Þ %0:045 648 ð7Þ 0
II(b) 6 %0:027 674 89 ð74Þ %0:039 000 3 ð27Þ %0:030 393 7 ð42Þ %0:458 96 8ð17Þ
II(c) 12 %0:073 445 8 ð54Þ %0:095 097 ð24Þ %0:071 697 ð25Þ %1:189 69 ð67Þ
III 150 1.417 637 (67) 0.817 92 (95) 0.6061 (12) 0
IV(a) 18 0.598 838 (19) 0.635 83 (44) 0.451 17 (69) 8.941 (17)
IV(b) 60 0.822 36 (13) 0:041 05ð93Þ' 0:014 31ð95Þ' 0
IV(c) 48 %1:138 52 ð20Þ %0:1897 ð64Þ %0:102 ð11Þ 0
IV(d) 18 %0:990 72ð10Þc %0:1778 ð12Þ %0:0927 ð13Þ 0
V 518 %2:1755 ð20Þ 0 0 0
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The mass-dependent terms A2 and A3 of the fourth and
sixth orders are known [23–28] and reevaluated using the
updated mass ratios [3],
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The mass-dependent terms of the eighth-order and

the muon contribution to the tenth-order are numeri-
cally evaluated [11–19]. Our new results are summa-
rized as
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The leading order and next-to-leading order (NLO) con-
tributions of the hadronic vacuum-polarization (v.p.) [29]
as well as the hadronic light-by-light-scattering (l-l) term
[30] are given as
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where the first uncertainty is from hadron production ex-
periments and the second uncertainty is from the estimate
of radiative correction. At present no direct evaluation of
the two-loop electroweak effect is available. The best
estimate is the one obtained by scaling down from the
electroweak effect on a! [31–34]:

aeðweakÞ ¼ 0:0297 ð5Þ $ 10%12: (11)

To compare the theoretical prediction with the measure-
ment (1), we need the value of the fine-structure constant
# determined by a method independent of g% 2. The
best # available at present is the one obtained from
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gauge-invariant subsets contributing to the tenth-order lepton
g% 2. Solid lines represent lepton lines propagating in a weak
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the measurement of h=mRb [35], combined with the very
precisely known Rydberg constant and mRb=me [3] :

!!1ðRb10Þ¼137:035999049ð90Þ ½0:66 ppb&: (12)

With this ! the theoretical prediction of ae becomes

aeðtheoryÞ ¼ 1 159 652 181:78 ð6Þð4Þð2Þð77Þ
' 10!12 ½0:67 ppb&; (13)

where the first, second, third, and fourth uncertainties come
from the eighth-order term (5), the tenth-order term (6), the
hadronic corrections (10), and the fine-structure constant
(12), respectively. This is in good agreement with the
experiment (1):

aeðHVÞ ! aeðtheoryÞ ¼ !1:05 ð0:82Þ ' 10!12: (14)

More rigorous comparison between experiment and theory
is hindered by the uncertainty of!!1ðRbÞ in (12). Note that
the sum 1:678ð16Þ ' 10!12 of the hadronic contributions
(10) is now larger than Eq. (14).

The Eq. (13) shows clearly that the largest source of
uncertainty is the fine-structure constant (12). To put it
differently, it means that a non-QED !, even the best one
available at present, is too crude to test QED to the extent
achieved by the theory and measurement of ae. Thus it
makes more sense to test QED by an alternative approach,
namely, compare !!1ðRb10Þ with !!1 obtained from the-
ory and measurement of ae. This leads to

!!1ðaeÞ¼137:0359991727ð68Þð46Þð19Þð331Þ ½0:25ppb&;
(15)

where the first, second, third, and fourth uncertainties come
from the eighth-order and the tenth-order QED terms, the
hadronic and electroweak terms, and the measurement of
aeðHVÞ in (1), respectively. The uncertainty due to theory
has been improved by a factor 4.5 compared with the
previous one [22].

Let us now discuss the eighth- and tenth-order calcula-
tions in more details. The 13 gauge-invariant groups of the
eighth-order were numerically evaluated by VEGAS [36]
and published [8,9]. As an independent check, we built all
programs of the 12 groups from scratch with the help of
automatic code generator GENCODEN, except for Group IV
(d) which had already been calculated by two different
methods [37]. The new values of the mass-independent
contributions of all 12 groups are consistent with the old
values. We have thus statistically combined two values and
listed the results in Table I. Since the validity of the new
programs were confirmed in this way, we used the new
programs as well as the old programs to evaluate the mass-

dependent terms Að8Þ
2 and Að8Þ

3 .
Group V deserves a particular attention which consists

of 518 vertex diagrams and is the source of the largest

uncertainty of að8Þe . The programs generated by GENCODEN

have been evaluated with intense numerical work which
led to!2:173 77 ð235Þ. This is consistent with the value in
[9], !2:179 16 ð343Þ. The combined value is

Að8Þ
1 ½GroupV& ¼ !2:175 50ð194Þ: (16)

This improvement results in about 40% reduction of the
uncertainty of the eighth-order term.
The tenth-order contribution comes from 32 gauge-

invariant subsets (see Fig. 2). The FORTRAN programs of
integrals of 15 subsets I(a-f), II(a,b), II(f), VI(a-c), VI(e,f),
and VI(i) are straightforward and obtained by a slight
modification of programs for the eighth-order diagrams.
Together with the results of subsets VI(j,k), the contributions

TABLE II. Summary of contributions to the tenth-order lepton
g! 2 from 32 gauge-invariant subsets. nF is the number of

vertex diagrams contributing to Að10Þ
1 . The numerical values of

individual subsets were originally obtained in the references in

the fifth column. The values Að10Þ
1 of subsets I(d), I(f), II(a), II(b),

and VI(c) in [10] are corrected as indicated by the asterisk. The
corrected values are listed in this table.

set nF Að10Þ
1 Að10Þ

2 ðme=m"Þ Reference

I(a) 1 0.000 470 94 (6) 0.000 000 28 (1) [10]

I(b) 9 0.007 010 8 (7) 0.000 001 88 (1) [10]

I(c) 9 0.023 468 (2) 0.000 002 67 (1) [10]

I(d) 6 0.003 801 7 (5) 0.000 005 46 (1) [10]*

I(e) 30 0.010 296 (4) 0.000 001 60 (1) [10]

I(f) 3 0.007 568 4 (20) 0.000 047 54 (1) [10]*

I(g) 9 0.028 569 (6) 0.000 024 45 (1) [12]

I(h) 30 0.001 696 (13) !0:000 010 14 ð3Þ [12]

I(i) 105 0.017 47 (11) 0.000 001 67 (2) [16]

I(j) 6 0.000 397 5 (18) 0.000 002 41 (6) [11]

II(a) 24 !0:109 495 ð23Þ !0:000 737 69 ð95Þ [10]*

II(b) 108 !0:473 559 ð84Þ !0:000 645 62 ð95Þ [10]*

II(c) 36 !0:116 489 ð32Þ !0:000 380 25 ð46Þ [15]

II(d) 180 !0:243 00 ð29Þ !0:000 098 17 ð41Þ [15]

II(e) 180 !1:344 9 ð10Þ !0:000 465 0 ð40Þ [13]

II(f) 72 !2:433 6 ð15Þ !0:005 868 ð39Þ [10]

III(a) 300 2.127 33 (17) 0.007 511 (11) [17]

III(b) 450 3.327 12 (45) 0.002 794 (1) [17]

III(c) 390 4.921 (11) 0.003 70 (36) [19]

IV 2072 !7:7296 ð48Þ !0:011 36 ð7Þ [18]

V 6354 10.09 (57) 0 Equation (7)

VI(a) 36 1.041 32 (19) 0.006 152 (11) [10]

VI(b) 54 1.346 99 (28) 0.001 778 9 (35) [10]

VI(c) 144 !2:5289 ð28Þ !0:005 953 ð59Þ [10]*

VI(d) 492 1.8467 (70) 0.001 276 (76) [14]

VI(e) 48 !0:4312 ð7Þ !0:000 750 ð8Þ [10]

VI(f) 180 0.7703 (22) 0.000 033 (7) [10]

VI(g) 480 !1:5904 ð63Þ !0:000 497 ð29Þ [14]

VI(h) 630 0.1792 (39) 0.000 045 (9) [14]

VI(i) 60 !0:0438 ð12Þ !0:000 326 ð1Þ [10]

VI(j) 54 !0:2288 ð18Þ !0:000 127 ð13Þ [10]

VI(k) 120 0.6802 (38) 0.000 015 6 (40) [10]
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the measurement of h=mRb [35], combined with the very
precisely known Rydberg constant and mRb=me [3] :

!!1ðRb10Þ¼137:035999049ð90Þ ½0:66 ppb&: (12)

With this ! the theoretical prediction of ae becomes

aeðtheoryÞ ¼ 1 159 652 181:78 ð6Þð4Þð2Þð77Þ
' 10!12 ½0:67 ppb&; (13)

where the first, second, third, and fourth uncertainties come
from the eighth-order term (5), the tenth-order term (6), the
hadronic corrections (10), and the fine-structure constant
(12), respectively. This is in good agreement with the
experiment (1):

aeðHVÞ ! aeðtheoryÞ ¼ !1:05 ð0:82Þ ' 10!12: (14)

More rigorous comparison between experiment and theory
is hindered by the uncertainty of!!1ðRbÞ in (12). Note that
the sum 1:678ð16Þ ' 10!12 of the hadronic contributions
(10) is now larger than Eq. (14).

The Eq. (13) shows clearly that the largest source of
uncertainty is the fine-structure constant (12). To put it
differently, it means that a non-QED !, even the best one
available at present, is too crude to test QED to the extent
achieved by the theory and measurement of ae. Thus it
makes more sense to test QED by an alternative approach,
namely, compare !!1ðRb10Þ with !!1 obtained from the-
ory and measurement of ae. This leads to

!!1ðaeÞ¼137:0359991727ð68Þð46Þð19Þð331Þ ½0:25ppb&;
(15)

where the first, second, third, and fourth uncertainties come
from the eighth-order and the tenth-order QED terms, the
hadronic and electroweak terms, and the measurement of
aeðHVÞ in (1), respectively. The uncertainty due to theory
has been improved by a factor 4.5 compared with the
previous one [22].

Let us now discuss the eighth- and tenth-order calcula-
tions in more details. The 13 gauge-invariant groups of the
eighth-order were numerically evaluated by VEGAS [36]
and published [8,9]. As an independent check, we built all
programs of the 12 groups from scratch with the help of
automatic code generator GENCODEN, except for Group IV
(d) which had already been calculated by two different
methods [37]. The new values of the mass-independent
contributions of all 12 groups are consistent with the old
values. We have thus statistically combined two values and
listed the results in Table I. Since the validity of the new
programs were confirmed in this way, we used the new
programs as well as the old programs to evaluate the mass-

dependent terms Að8Þ
2 and Að8Þ

3 .
Group V deserves a particular attention which consists

of 518 vertex diagrams and is the source of the largest

uncertainty of að8Þe . The programs generated by GENCODEN

have been evaluated with intense numerical work which
led to!2:173 77 ð235Þ. This is consistent with the value in
[9], !2:179 16 ð343Þ. The combined value is

Að8Þ
1 ½GroupV& ¼ !2:175 50ð194Þ: (16)

This improvement results in about 40% reduction of the
uncertainty of the eighth-order term.
The tenth-order contribution comes from 32 gauge-

invariant subsets (see Fig. 2). The FORTRAN programs of
integrals of 15 subsets I(a-f), II(a,b), II(f), VI(a-c), VI(e,f),
and VI(i) are straightforward and obtained by a slight
modification of programs for the eighth-order diagrams.
Together with the results of subsets VI(j,k), the contributions
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at Brookhaven motivated significant work over the past thirty years that permitted more
than an order of magnitude improvement in the knowledge of the hadronic contribution.
Motivated by Fermilab E989 this work continues, and another factor of two improvement
could be possible.

Both the electron [5] and muon [6] anomalies have been measured very precisely:

a

exp
e = 1 159 652 180.73 (28)⇥ 10�12 ±0.24 ppb (3)

a

exp
µ = 1 165 920 89 (63)⇥ 10�11 ±0.54 ppm (4)

While the electron anomaly has been measured to ' 0.3 ppb (parts per billion) [5], it is
significantly less sensitive to heavier physics, because the relative contribution of heavier
virtual particles to the muon anomaly goes as (mµ/me)2 ' 43000. Thus the lowest-order
hadronic contribution to ae is [7]: a

had,LO
e = (1.875 ± 0.017) 10�12, 1.5 ppb of ae. For the

muon the hadronic contribution is ' 60 ppm (parts per million). So with much less precision,
when compared with the electron, the measured muon anomaly is sensitive to mass scales
in the several hundred GeV region. This not only includes the contribution of the W and
Z bosons, but perhaps contributions from new, as yet undiscovered, particles such as the
supersymmetric partners of the electroweak gauge bosons (see Fig. 1(c)).

2 Summary of the Standard-Model Value of a
µ

2.1 QED Contribution

The QED contribution to aµ is well understood. Recently the four-loop QED contribution
has been updated and the full five-loop contribution has been calculated [2]. The present
QED value is

a

QED
µ = 116 584 718.951 (0.009)(0.019)(0.007)(.077)⇥ 10�11 (5)

where the uncertainties are from the lepton mass ratios, the eight-order term, the tenth-
order term, and the value of ↵ taken from the 87Rb atom ↵

�1(Rb) = 137.035 999 049(90)
[0.66 ppb]. [8].
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2.2 Weak contributions

The electroweak contribution (shown in Fig. 2) is now calculated through two loops [9, 10,
11, 12, 13, 14]. The one loop result
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was calculated by five separate groups [15] shortly after the Glashow-Salam-Weinberg theory
was shown by ’t Hooft to be renormalizable. Due to the small Yukawa coupling of the Higgs
boson to the muon, only the W and Z bosons contribute at a measurable level in the lowest-
order electroweak term.
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Figure 2: Weak contributions to the muon anomalous magnetic moment. Single-loop con-
tributions from (a) virtual W and (b) virtual Z gauge bosons. These two contributions
enter with opposite sign, and there is a partial cancellation. The two-loop contributions fall
into three categories: (c) fermionic loops which involve the coupling of the gauge bosons
to quarks, (d) bosonic loops which appear as corrections to the one-loop diagrams, and (e)
a new class of diagrams involving the Higgs where G is the longitudinal component of the
gauge bosons. See Ref. [16] for details. The ⇥ indicates the photon from the magnetic field.

The two-loop electroweak contribution (see Figs. 2(c-e)), which is negative [11, 10, 9, 12],
has been re-evaluated using the LHC value of the Higgs mass [14]. The total electroweak
contribution is

a

EW
µ = (153.6± 1.0)⇥ 10�11 (7)

where the error comes from hadronic e↵ects in the second-order electroweak diagrams with
quark triangle loops, along with unknown three-loop contributions[12, 17, 18, 19]. The lead-
ing logs for the next-order term have been shown to be small [12, 14]. The weak contribution
is about 1.3 ppm of the anomaly, so the experimental uncertainty on aµ of ±0.54 ppm now
probes the weak scale of the Standard Model.

4

multi-hadron cross sections are also important. These data for e+e� annihilation to hadrons
are also important as input into the determination of ↵QED(MZ) and other electroweak
precision measurements.

Figure 5: Contributions to the dispersion integral for di↵erent energy regions, and to the
associated error (squared) on the dispersion integral in that energy region. Taken from
Hagiwara et al. [21].

Two recent analyses [20, 21] using the e

+
e

� ! hadrons data obtained:

a

had;LO
µ = (6 923± 42)⇥ 10�11

, (9)

a

had;LO
µ = (6 949± 43)⇥ 10�11

, (10)

respectively. Important earlier global analyses include those of Hagiwara et al. [22], Davier,
et al., [23], Jegerlehner and Ny✏er [24].

In the past, hadronic ⌧ spectral functions and CVC, together with isospin breaking
corrections have been used to calculate the hadronic contribution [25, 20]. While the original
predictions showed a discrepancy between e

+
e

� and ⌧ based evaluations, it has been shown
that after �-⇢ mixing is taken into account, the two are compatible [26]. Recent evaluations
based on a combined e

+
e

� and ⌧ data fit using the Hidden Local Symmetry (HLS) model
have come to similar conclusions and result in values for a

HVP
µ that are smaller than the

direct evaluation without the HLS fit [27, 28].
The most recent evaluation of the next-to-leading order hadronic contribution shown in

Fig. 3(b-d), which can also be determined from a dispersion relation, is [21]

a

had;NLO
µ = (�98.4± 0.6exp ± 0.4rad )⇥ 10�11

. (11)

2.2.2 Hadronic light-by-light contribution

The hadronic light-by-light contribution (HLbL) cannot at present be determined from data,
but rather must be calculated using hadronic models that correctly reproduce properties of
QCD. This contribution is shown below in Fig. 6(a). It is dominated by the long-distance
contribution shown in Fig. 6(b). In fact, in the so called chiral limit where the mass gap
between the pseudoscalars ( Goldstone-like) particles and the other hadronic particles (the
⇢ being the lowest vector state in Nature) is considered to be large, and to leading order
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The most recent evaluation of the next-to-leading order hadronic contribution shown in

Fig. 3(b-d), which can also be determined from a dispersion relation, is [21]

a

had;NLO
µ = (�98.4± 0.6exp ± 0.4rad )⇥ 10�11

. (11)

2.2.2 Hadronic light-by-light contribution

The hadronic light-by-light contribution (HLbL) cannot at present be determined from data,
but rather must be calculated using hadronic models that correctly reproduce properties of
QCD. This contribution is shown below in Fig. 6(a). It is dominated by the long-distance
contribution shown in Fig. 6(b). In fact, in the so called chiral limit where the mass gap
between the pseudoscalars ( Goldstone-like) particles and the other hadronic particles (the
⇢ being the lowest vector state in Nature) is considered to be large, and to leading order

6

in the 1/Nc–expansion (Nc the number of colors), this contribution has been calculated an-
alytically [29] and provides a long-distance constraint to model calculations. There is also
a short-distance constraint from the operator product expansion (OPE) of two electromag-
netic currents which, in specific kinematic conditions, relates the light-by-light scattering
amplitude to an Axial-Vector-Vector triangle amplitude for which one has a good theoretical
understanding [30].

Unfortunately, the two asymptotic QCD constraints mentioned above are not su�cient
for a full model independent evaluation of the HLbL contribution. Most of the last decade
calculations found in the literature are compatible with the QCD chiral and large-Nc lim-
its. They all incorporate the ⇡

0-exchange contribution modulated by ⇡

0
�

⇤
�

⇤ form factors
correctly normalized to the Adler, Bell-Jackiw point-like coupling. They di↵er, however,
on whether or not they satisfy the particular OPE constraint mentioned above, and in the
shape of the vertex form factors which follow from the di↵erent models.

X

µ

+ Permutations

q

kkk 21 3

p
1

p
2

H

(a) (b)

Figure 6: (a)The Hadronic Light-by contribution. (b) The pseudoscalar meson contribution.

A synthesis of the model contributions, which was agreed to by authors from each of the
leading groups that have been working in this field, can be found in ref. [31]1. They obtained

a

HLbL
µ = (105± 26)⇥ 10�11

. (12)

An alternate evaluation [24, 32] obtained, aHLbL
µ = (116±40)⇥10�11, which agrees well with

the Glasgow Consensus [31]. Additional work on this contribution is underway on a number
of fronts, including on the lattice. A workshop was held in March 2011 at the Institute for
Nuclear Theory in Seattle [33] which brought together almost all of the interested experts.
This will be followed by a workshop at the Mainz Institute for Theoretical Physics in April
2014.

One important point should be stressed here. The main physics of the hadronic light-
by-light scattering contribution is well understood. In fact, but for the sign error unraveled
in 2002, the theoretical predictions for aHLbL

µ have been relatively stable for more than ten
years2.

1This compilation is generally referred to as the “Glasgow Consensus” since it grew out of a workshop in
Glasgow in 2007. http://www.ippp.dur.ac.uk/old/MuonMDM/

2A calculation using a Dyson-Schwinger approach [34] initially reported a much larger value for the HLbL

7

We have therefore

a!ðexpÞ # a!ðSMÞ ¼ 249ð87Þ % 10#11: (19)

The size of discrepancy between theory and experiment
has not changed much, since the tenth-order QED con-
tribution is not a significant source of theoretical uncer-
tainties. Let us emphasize, however, that the complete

calculation of að10Þ! enables us to concentrate on improving
the precision of the hadronic contributions.
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TABLE III. Contributions to muon g# 2 from QED perturba-

tion term að2nÞ! ð"=#Þn % 1011. They are evaluated with two
values of the fine-structure constant determined by the Rb
experiment and by the electron g# 2 (ae).

order with "#1ðRbÞ with "#1ðaeÞ
2 116 140 973.318 (77) 116 140 973.213 (30)
4 413 217.6291 (90) 413 217.6284 (89)
6 30 141.902 48 (41) 30 141.902 39 (40)
8 381.008 (19) 381.008 (19)
10 5.0938 (70) 5.0938 (70)
a!ðQEDÞ % 1011 116 584 718.951 (80) 116 584 718.846 (37)
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