Prospects for $R(par{p})$ Workshop on $B
ightarrow D^* au
u$, Nagoya

Mark Smith on behalf of the LHCb collaboration

28 March 2017

Imperial College London

Introduction

Tension with SM in R(D) vs $R(D^*) \sim 4\sigma$

Different modes \rightarrow different experimental/theoretical challenges; different physics:

- Pseudo-scalar and vector final states: $R(D^*)$ and R(D).
- Mass of the spectator quarks: $R(D_s)$.
- Isospin: $R(\Lambda_c)$ and $R(\Lambda_c^*)$.
- Heavy quark transition: $D^0 \to K^- l \bar{\nu}_l$.
- Orbital angular momentum: $R(D^{**})$ (also a major feed-down for $R(D^*)$).
- $b \rightarrow u$ transition.

- $B^+ \to \tau^+ \nu_{\tau}$
 - Simplest theoretically.

$$B^0 \to \pi^+ \tau^- \overline{\nu}_{\tau}$$

- Simplest theoretically with a final state hadron.
- Already calculated.

 $\Lambda_b^0 \to p \tau^- \bar{\nu}_\tau$

- $\Lambda_b \rightarrow p$ FF already calculated.
- $\Lambda_b \to \Lambda_c$ FF already calculated.

Experimental considerations

- Need a good *b* decay-vertex.
- Would prefer low backgrounds.

b model here? $l \\ \nu_l \\ \nu_l$

$$B^+ \to \pi^+ \pi^- \tau^+ \nu_\tau$$

- Could go via a light resonance (ρ ?).
- Already attempted theoretically.

$$B^+ o p \bar{p} \tau^+
u_{ au}$$

• Theoretically difficult.

$$B^+
ightarrow N^{*+} \bar{p} au^+
u_{ au}$$

• Theoretically difficult.

$b \rightarrow u$ lepton universality

- $B^+ \to \tau^+ \nu_\tau$
 - Not at LHCb
- $B^0 \to \pi^+ \tau^- \overline{\nu}_\tau$
 - Very difficult at LHCb
- $\Lambda_b^0 \to p \tau^- \bar{\nu}_\tau$
 - Maybe with hadronic au
 - Might look like the $B_s^0 \rightarrow \tau^+ \tau^$ analysis.arXiv:1703.02508
- $B^+ o p \bar{p} \tau^+ \nu_{\tau}$
 - Experimentally preferred option

- $B^+ \to \pi^+ \pi^- \tau^+ \nu_\tau$
 - Lots of wide overlapping resonances.
 - Expect large backgrounds.

 $B^0
ightarrow \psi \pi^+ \pi^-$: Phys.Lett. B742 (2015)

• Lots of wide overlapping resonances.

$R(par{p}) = rac{\mathcal{B}(B^+ o par{p} au^+ u_ au)}{\mathcal{B}(B^+ o par{p}\mu^+ u_\mu)}$

Two high momenta protons:

- Good B-decay vertex
- Low combinatorial background.
- Target flat selection efficiency.

Belle - PRD 89, 011101 (2014)

- $\mathcal{B}(B^- \to p\bar{p}e^-\overline{\nu}_e) = (8.2^{+3.7}_{-3.2} \pm 0.6) \times 10^{-6}$
- $\mathcal{B}(B^- \to p \bar{p} \mu^- \overline{\nu}_\mu) = (3.1^{+3.1}_{-2.4} \pm 0.7) \times 10^{-6}$

 $R(p\bar{p})$

Experimental challenges

Backgrounds with extra charge tracks:

•
$$B^+ \rightarrow p\Lambda_c^- \mu^+ \nu_\mu$$
:
• $\Lambda_c^- \rightarrow \bar{p}K^+ \pi^-$.
• $B \rightarrow N^* p \mu \nu_\mu$
• $N^* \rightarrow p \pi$

Backgrounds with other neutral particles:

We need input from theory:

- $R(p\bar{p})$ prediction.
- Need $B \rightarrow p\bar{p}$ form-factors.
- Need $B \to \Lambda_c p$ form-factors.
- Can we help?
 - Expect good statistics
 - Should we use particular kinematic regions?
 - Is it better to have $p\bar{p}$ collinear?

Outlandish?

- $\Lambda_b \rightarrow p$ was calculated for V_{ub} . Detmold et al. Phys. Rev. D 92, 034503
- $B \rightarrow \pi^+\pi^-$ has been calculated with LCSR. Cheng et al. arXiv:1701.01633

Subsequently:

- Measure differential BF in q^2 .
- Attempt $B^+ \to \Lambda_c^- p \mu^+ \nu$.
- Measure R(pp̄)

- Initially measure the $B \rightarrow p \bar{p} \mu \nu$ branching fraction.
- Reasonably expect $\mathcal{O}(1000)$ signal events.

Plan

LHCb ГНСр

Plan

We should have the statistics to measure differential branching fractions \rightarrow extract form-factors.

Neutrino 4-momentum not fully reconstructible:

- Can calculate q^2 with 2-fold ambiguity.
- Which solution to pick?

Help from a multivariate algorithm? Ciezarek et al. J. High Energ. Phys. (2017):21

- Flight distance and *B* angle are correlated to momentum.
- *B* momentum estimate helps to pick the correct q^2 solution.

Plan

Measure R(pp):

- Exploit kinematic differences between τ and μ modes.
- 3-dimensional template fit to q^2 , m^2_{miss} and E^*_{μ} .

• Avoid warping kinematic distributions.

 $B \rightarrow p \bar{p} \tau \nu$

- A measurement of $\mathcal{B}(B o p \bar{p} \mu \nu_{\mu})$ is underway at LHCb.
- The intention is to make a measurement of $R(p\bar{p})$. Theory input would be appreciated.
- Alternative $b \rightarrow u$ lepton universality measurements are possible but are experimentally more challenging.

Thank you

BACKUP