Precise calculation of muon g-2 based on lattice QCD

Taku Izubuchi (RBC&UKQCD collaboration)

2018-11-16, WPI-next mini-workshop "Hints for New Physics in Heavy Flavors"

Collaborators / Machines

Tom Blum (Connecticut) Peter Boyle (Edinburgh) Norman Christ (Columbia) Vera Guelpers (Southampton) Masashi Hayakawa (Nagoya) James Harrison (Southampton)

Mattia Bruno (BNL/Cern)

Christoph Lehner (BNL) Kim Maltman (York) Chulwoo Jung (BNL) Andreas Jüttner (Southampton) Luchang Jin (Connecticut / RBRC) Antonin Portelli (Edinburgh) Aaron Meyer (BNL)

Part of related calculation are done by resources from USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

Support from RIKEN, JSPS, US DOE, and BNL

Reference

g-2 HVP Phys. Rev. Lett. 121 (2018) 022003

g-2 Hadronic Light-by-Light (HLbL)
 Phys. Rev. D96 (2017) 034515
 Phys. Rev. Lett. 118 (2017) 022005

Tau input for g-2
 PoS Lattice 2018 (2018) 135

muon anomalous magnetic moment

BNL g-2 till 2004 : $\sim 3.7 \sigma$ larger than SM prediction

Contribution	Value $ imes 10^{10}$	Uncertainty $ imes 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		pprox 1.6

$$a_{\mu}^{\mathrm{EXP}} - a_{\mu}^{\mathrm{SM}} = 27.4 \underbrace{(2.7)}_{\mathrm{HVP}} \underbrace{(2.6)}_{\mathrm{HLbL}} \underbrace{(0.1)}_{\mathrm{Other}} \underbrace{(6.3)}_{\mathrm{EXP}} \times 10^{-10}$$

FNAL E989 (began 2017-) move storage ring from BNL x4 more precise results, 0.14ppm

J-PARC E34 ultra-cold muon beam 0.37 ppm then 0.1 ppm, also EDM

4

muon anomalous magnetic moment

(Soa, RFQ, IH, DAW, DLS) (thermal to 300 MeV/c) BNL g-2 till 2004 : $\sim 3.7 \sigma$ larger than SM prediction

Contribution	Value $ imes 10^{10}$	Uncertainty $ imes 10^{10}$
QED (5 loops)	11 658 471.895	800.0
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		pprox 1.6

$$a_{\mu}^{\mathrm{EXP}} - a_{\mu}^{\mathrm{SM}} = 27.4 \underbrace{(2.7)}_{\mathrm{HVP}} \underbrace{(2.6)}_{\mathrm{HLbL} \mathrm{ other}} \underbrace{(0.1)}_{\mathrm{EXP}} \underbrace{(6.3)}_{\mathrm{EXP}} imes 10^{-10}$$

FNAL E989 (began 2017-) move storage ring from BNL x4 more precise results, 0.14ppm

J-PARC E34 ultra-cold muon beam 0.37 ppm then 0.1 ppm, also EDM

5

[Luchang Jin's analogy] Precession of Mercury and GR

Amount (arc- sec/century)	Cause
5025.6	Coordinate (due to precession of equinoxes)
531.4	Gravitational tugs of the other planets
0.0254	Oblateness of the sun (<u>quadrupole moment</u>)
42.98±0.04	General relativity
5600.0	Total
5599.7	Observed

discrepancy recognized since 1859

Known physics

1915 by-then New physics GR revolution

http://worldnpa.org/abstracts/abstracts_6066.pdf

precession of perihelion

Hadronic Vacuum Polarization (HVP) contribution to g-2

 From experimental e+ e- inclusive hadron decay cross section σ_{total}(s) in time-like s = q² >0, and dispersion relation, optical theorem

$$a_{\mu}^{\rm HVP} = \frac{1}{4\pi^2} \int_{-{\bf s}_{\rm th}}^{\infty} ds K(s) \sigma_{\rm total}(s)$$

$$\frac{\gamma}{1} + \frac{\gamma}{1} \Rightarrow \left| \frac{\gamma}{1} + \frac{\gamma}{1} + \frac{\gamma}{1} \right|^2$$

Dispersive methods 2018

[D. Nomura's talk]

KNT18 (PRD97,114025, arXiv:1802.02995)

DHMZ17 (Eur. Phys. J. C77:827)

Channel	This work (KNT18)	DHMZ17 [78]	Difference	
Data based channels ($\sqrt{s} \le 1.8 \text{ GeV}$)				
$\pi^0 \gamma (\text{data} + \text{ChPT})$	4.58 ± 0.10	4.29 ± 0.10	0.29	
$\pi^+\pi^-$ (data + ChPT)	503.74 ± 1.96	507.14 ± 2.58	-3.40	
$\pi^+\pi^-\pi^0$ (data + ChPT)	47.70 ± 0.89	46.20 ± 1.45	1.50	
$\pi^+\pi^-\pi^+\pi^-$	13.99 ± 0.19	13.68 ± 0.31	0.31	
• • •				
Total	693.3 ± 2.5	693.1 ± 3.4	0.2	

- Very small error, KNT18: 2.5 x10⁻¹⁰ [0.37%] and DHMZ17 3.4 x10⁻¹⁰ [0.49%]
- Good agreement for total, individual channels have a tention.
- Difference in how to combine experiments and energy bins, correlations among them

Dispersive method status

BaBar and KLOE 2π contribution differ ~ 10(4) x10⁻¹⁰ compared with quoted uncertainties, {2.5 or 3.4} x10⁻¹⁰

[T. Blum PRL91 (2003) 052001]

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum K² = q² >0
- Vector current 2pt function

$$a_{\mu} = \frac{g-2}{2} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dK^2 f(K^2) \hat{\Pi}(K^2) \quad \Pi^{\mu\nu}(q) = \int d^4x e^{iqx} \langle J^{\mu}(x) J^{\nu}(0) \rangle$$

• Low Q2, or long distance, part of Π (Q2) is relevant for g-2

Euclidean Time Momentum Representation

[Bernecker Meyer 2011, Feng et al. 2013]

In Euclidean space-time, project verctor 2 pt to zero spacial momentum, $\vec{p}=0$:

$$C(t) = \frac{1}{3} \sum_{x,i} \langle j_i(x) j_i(0) \rangle$$

g-2 HVP contribution is

$$a_{\mu}^{HVP} = \sum_{t} w(t)C(t)$$

$$w(t) = 2 \int_{0}^{\infty} \frac{d\omega}{\omega} f_{\text{QED}}(\omega^{2}) \left[\frac{\cos \omega t - 1}{\omega^{2}} + \frac{t^{2}}{2}\right]$$

$$w(t) \sim t^{4}$$

$$f_{\text{QED}}(\omega^{2})$$

- Subtraction $\Pi(0)$ is performed. Noise/Signal $\sim e^{(E_{\pi\pi}-m_{\pi})t}$, is improved [Lehner et al. 2015].
- Corresponding $\hat{\Pi}(Q^2)$ has exponentially small volume error [Portelli et al. 2016] . w(t) includes the continuum QED part of the diagram

DWF light HVP [2016 Christoph Lehner]

120 conf (a=0.11fm), 80 conf (a=0.086fm) physical point Nf=2+1 Mobius DWF 4D full volume LMA with 2,000 eigen vector (of e/o preconditioned zMobius D⁺D) EV compression (1/10 memory) using local coherence [C. Lehner Lat2017 Poster] In addition, 50 sloppy / conf via multi-level AMA more than x 1,000 speed up compared to simple CG 13

disconnected quark loop contribution

- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL)]
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit,
 Qu+Qd+Qs = 0
- Use low mode of quark propagator, treat it exactly (all-to-all propagator with sparse random source)
- First non-zero signal

$a_{\mu}^{ m HVP}$ (LO) DISC = $-9.6(3.3)_{ m stat}(2.3)_{ m sys} imes 10^{-10}$

Sensitive to m_{π}

 $\sum_{q \neq d} e_q^2$

crucial to compute at physical mass

HVP QED+ strong IB corrections

- HVP is computed so far at Iso-symmetric quark mass, needs to compute isospin breaking corrections : Qu, Qd, mu-md ≠0
- u,d,s quark mass and lattice spacing are re-tuned using {charge,neutral} x{pion,kaon} and (Omega baryon masses)
- For now, V, S, F, M are computed : assumes EM and IB of sea quark and also shift to lattice spacing is small (correction to disconnected diagram)
- Point-source method : stochastically sample pair of 2 EM vertices a la important sampling with exact photon

Tau input for[T. NHVP IB+QED corrections

[T. Konno's talk] [Y. Maekawa's talk]

Could also compute the difference
 IB correction of
 Δa_u = a_u(e+e-) - a_u(τ)

[M. Bruno et al, arXiv:1811.00508]

I=0 to I=1 contribution from Strong IB+EM effect (left), I=1 contribution EM effects (right)

Interplay between Lattice and Experiment

- Check consistency between Lattice and R-ratio
- Short distance from Lattice, Long distance from R-ratio : error already 0.5 - 1.2% around t_{lat/exp} = 2fm

Euclidean time correlation from $e^+e^- R(s)$ **data**

From $e^+e^- R(s)$ ratio, using disparsive relation, zero-spacial momentum projected Euclidean correlation function C(t) is obtained

$$\hat{\Pi}(Q^2) = Q^2 \int_0^\infty ds \frac{R(s)}{s(s+Q^2)} \qquad \text{Lattice can compute Integral of Inclusive cross sections accurately} \\ C^{\text{R-ratio}}(t) = \frac{1}{12\pi^2} \int_0^\infty \frac{d\omega}{2\pi} \hat{\Pi}(\omega^2) e^{i\omega t} = \frac{1}{12\pi^2} \int_0^\infty ds \sqrt{s} R(s) e^{-\sqrt{s}t}$$

- C(t) or w(t)C(t) are directly comparable to Lattice results with the proper limits ($m_q \rightarrow m_q^{\text{phys}}, a \rightarrow 0, V \rightarrow \infty$, QED ...)
- Lattice: long distance has large statistical noise, (short distance: discretization error, removed by $a \to 0$ and/or pQCD)
- R-ratio : short distance has larger error

Comparison of R-ratio and Lattice [F. Jegerlehner alphaQED 2016]

Covariance matrix among energy bin in R-ratio is not available, assumes 100% correlated

Combine R-ratio and Lattice [Christoph Lehner et al PRL18]

 Use short and long distance from R-ratio using smearing function, and mid-distance from lattice

How does this translate to the time-like region?

Most of $\pi\pi$ peak is captured by window from $t_0 = 0.4$ fm to $t_1 = 1.5$ fm, so replacing this region with lattice data reduces the dependence on BaBar versus KLOE data sets.

Continuum limit of a^W

R-ratio + Lattice

HVP results

- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Checking finite volume and discretization error as well as Isospin V effects

Example error budget from RBC/UKQCD 2018 (Fred's alphaQED17 results used for window result)

Window t=[0/1, 1] fm]

vv		
$a_{\mu}^{\text{ud, conn, isospin}}$	$202.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.2)_{\rm A}(0.2)_{\rm Z}$	$649.7(14.2)_{\rm S}(2.8)_{\rm C}(3.7)_{\rm V}(1.5)_{\rm A}(0.4)_{\rm Z}(0.1)_{\rm E48}(0.1)_{\rm E64}$
$a_{\mu}^{\rm s, \ conn, \ isospin}$	$27.0(0.2)_{ m S}(0.0)_{ m C}(0.1)_{ m A}(0.0)_{ m Z}$	$53.2(0.4)_{ m S}(0.0)_{ m C}(0.3)_{ m A}(0.0)_{ m Z}$
$a_{\mu}^{c, \text{ conn, isospin}}$	$3.0(0.0)_{ m S}(0.1)_{ m C}(0.0)_{ m Z}(0.0)_{ m M}$	$14.3(0.0)_{ m S}(0.7)_{ m C}(0.1)_{ m Z}(0.0)_{ m M}$
$a_{\mu}^{\text{uds, disc, isospin}}$	$-1.0(0.1)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}$	$-11.2(3.3)_{\rm S}(0.4)_{\rm V}(2.3)_{\rm L}$
$a_{\mu}^{\rm QED, \ conn}$	$0.2(0.2)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E}$	$5.9(5.7)_{ m S}(0.3)_{ m C}(1.2)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(1.1)_{ m E}$
$a_{\mu}^{\text{QED, disc}}$	$-0.2(0.1)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E}$	$-6.9(2.1)_{ m S}(0.4)_{ m C}(1.4)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(1.3)_{ m E}$
$a_{\mu}^{\rm SIB}$	$0.1(0.2)_{ m S}(0.0)_{ m C}(0.2)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E48}$	$10.6(4.3)_{ m S}(0.6)_{ m C}(6.6)_{ m V}(0.1)_{ m A}(0.0)_{ m Z}(1.3)_{ m E48}$
$a_{\mu}^{\text{udsc, isospin}}$	$231.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm M}$	$705.9(14.6)_{\rm S}(2.9)_{\rm C}(3.7)_{\rm V}(1.8)_{\rm A}(0.4)_{\rm Z}(2.3)_{\rm L}(0.1)_{\rm E48}$
		$(0.1)_{ m E64}(0.0)_{ m M}$
$a_{\mu}^{\text{QED, SIB}}$	$0.1(0.3)_{ m S}(0.0)_{ m C}(0.2)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E}(0.0)_{ m E48}$	$9.5(7.4)_{ m S}(0.7)_{ m C}(6.9)_{ m V}(0.1)_{ m A}(0.0)_{ m Z}(1.7)_{ m E}(1.3)_{ m E48}$
$a_{\mu}^{\mathrm{R-ratio}}$	$460.4(0.7)_{\rm RST}(2.1)_{\rm RSY}$	
a_{μ}	$692.5(1.4)_{\rm S}(0.2)_{\rm C}(0.2)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm E}(0.0)_{\rm E48}$	$715.4(16.3)_{\rm S}(3.0)_{\rm C}(7.8)_{\rm V}(1.9)_{\rm A}(0.4)_{\rm Z}(1.7)_{\rm E}(2.3)_{\rm L}$
	$(0.0)_{ m b}(0.1)_{ m c}(0.0)_{\overline{ m S}}(0.0)_{\overline{ m Q}}(0.0)_{ m M}(0.7)_{ m RST}(2.1)_{ m RSY}$	$(1.5)_{\rm E48}(0.1)_{\rm E64}(0.3)_{\rm b}(0.2)_{\rm c}(1.1)_{\rm \overline{S}}(0.3)_{\rm \overline{Q}}(0.0)_{\rm M}$

Pure Lattice

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10} . The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

For the pure lattice number the dominant errors are (S) statistics, (V) finite-volume errors, and (C) the continuum limit extrapolation uncertainty.

For the window method there are additional R-ratio systematic (RSY) and R-ratio statistical (RST) errors.

Hadronic Light-by-Light (HLbL) contributions

27

////

HLbL from Models

 Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9–12) x 10⁻¹⁰ with 25-40% uncertainty

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 28.8(6.3)_{\exp}(4.9)_{SM} \times 10^{-10}$$
 [3.6 σ]

F. Jegerlehner , x 10¹¹

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
π^0,η,η'	85±13	82.7±6.4	83±12	114±10	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	0 ± 10	-19±19	-19±13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	15±10	22 ± 5
scalars	-6.8 ± 2.0	—	—	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7±11.1	_	-	2.3	21 ± 3
total	83±32	89.6±15.4	80±40	136±25	105±26	116 ± 39

Coordinate space Point photon method

[Luchang Jin et al., PRD93, 014503 (2016)]

Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected :

disconnected problem in Lattice QED+QCD -> connected problem with analytic photon

QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x,y, z and x_{op} is summed over space-time exactly

- Short separations, Min[|x-z|, |y-z|, |x-y|] < R ~ O(0.5) fm, which has a large contribution due to confinement, are summed for all pairs</p>
- longer separations, Min[|x-z|, |y-z|, |x-y|] >= R, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

Dramatic Improvement ! Luchang Jin

 $x_{\rm op}, \mu$ x, ρ

 y, σ

SU(3) hierarchies for d-HLbL

- At m_s=m_{ud} limit, following type of disconnected HLbL diagrams survive Q_u + Q_d + Q_s = 0
- Physical point run using similar techniques to c-HLbL.
- other diagrams suppressed by
 O(m_s-m_{ud}) / 3 and O((m_s-m_{ud})²)

140 MeV Pion, connected and disconnected LbL results

[Luchang Jin et al., Phys.Rev.Lett. 118 (2017) 022005]

 $= (0.0427 \pm 0.0108) \times \left(\frac{\alpha}{\pi}\right)^3 = (5.35 \pm 1.35) \times 10^{-10}$

HLbL

Lattice 2017 Updates from PRL (2017)

Discretization error

 \rightarrow a scaling study for 1/a = 2.7, 1.4, 1.0 GeV at physical quark mass for both connected and disconnected is being finalized

Finite volume

QED_L (photon/lepton in a box) [08 Hayakawa Uno] Infinite Volume and continuum lepton + photon diagrams

- Lattice calculation for g-2 calculation is improved very rapidly
- HVP
 - New methods using low mode for connected at physical quark mass,
 - disconnected quark loop at physical quark mass, QED and IB studies are included
 - Combining with R-ratio experiment data for cross-check and improvement => 0.4 % error
 - Eventually the window will be enlarged for a pure LQCD prediction (currently 2.6 % error)
 - Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
 - Checking finite volume and discretization error as well as Isospin V effects
 - We could compute Inclusive hadron cross sections at Euclidean q² from the first principle Lattice QCD with Isospin breaking effects !

 e+e- -> hadron
 tau -> nu + hadrons
 tau inclusive decay and |Vus| arXiv:1803.07228 (to appear in PRL)
- HLbL
 - computing connected and leading disconnected diagrams :
 -> 8 % stat error in connected, 13 % stat error in leading disconnected
 - coordinate-space integral using analytic photon propagator with adaptive probability (point photon method), config-by-config conserved external current
 - Improving statistics right now.
 - Various size of Lattice ensemble / method for systematic error as well as higher disconnected diagram Comparing with Mainz group's results (for connected at heavy pion mass)
- Goal : HVP sub 1% (then 0.25%) , HLbL 10% error

Can we see the next physics Revolution (c.f GW)?

34

Simulation details [RBC/UKQCD 2015]

two gauge field ensembles generated by RBC/UKQCD collaborations

Domain wall fermions: chiral symmetry at finite a

Iwasaki Gauge action (gluons)

- pion mass $m_{\pi} = 139.2(2)$ and 139.3(3) MeV ($m_{\pi}L \lesssim 4$)
- lattice spacings a = 0.114 and 0.086 fm
- lattice scale $a^{-1} = 1.730$ and 2.359 GeV
- lattice size L/a = 48 and 64
- lattice volume $(5.476)^3$ and $(5.354)^3$ fm³

Use all-mode-average (AMA) [Blum et al 2012] and low-mode- averaging (LMA) [Giusti et al, 2004, Degrand et al 2005, Lehner 2016 for HVP] techniques for improved statistics by more than three orders of magnitudes compared to basic CG, and $\times 10$ smaller memory via multigrid-Lanczos [Lehner 2017].

Conserved current & moment method

[conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

■ [moment method, q2→0] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, q->0 limit value is directly computed via the first moment of the relative coordinate, xop - (x+y)/2, one could show $\sum_{x_{op},\mu} x_{op}$

$$\frac{\partial}{\partial q_i} \mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} = i \sum_{x,y,z,x_{\rm op}} (x_{\rm op} - (x+y)/2)_i \times \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z, \nu \end{array}\right\}}_{x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x', \sigma'} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \nu' \end{array}\right\}}_{x_{\rm snk} x_{\rm src}} \underbrace{\left\{ \begin{array}{c} y, \sigma \\ z', \tau' \end{array}\right\}}_{x_{\rm snk} x_{\rm snk} x_{$$

to directly get $F_2(0)$ without extrapolation.

Form factor :
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2 m_l} F_2(q^2)$$
 36

Current conservation & subtractions

 conservation => transverse tensor $\Pi^{\mu\nu}(q) = (\hat{q}^2 \delta^{\mu\nu} - \hat{q}^{\mu} \hat{q}^{\nu}) \Pi(\hat{q}^2)$ In infinite volume, q=0, Π_{µv}(q) = 0

For finite volume, Π_{µν}(0) is exponentially small
 (L.Jin, use also in HLbL)

$$\int_{V} dx^{4} \langle V_{\mu}(x)\mathcal{O}(0)\rangle = \int_{V} dx^{4} \,\partial_{x} \left(x \langle V_{\mu}(x)\mathcal{O}(0)\rangle\right)$$
$$= \int_{\partial V} dx^{3} \,x \langle V_{\mu}(x)\mathcal{O}(0)\rangle \propto L^{4} \exp(-ML/2) \to 0$$

- e.g. DWF L=2, 3, 5 fm $\Pi_{\mu\nu}(0) = 8(3)e-4$, 2(13)e-5, -1(5)e-8
- Subtract $\Pi_{\mu\nu}(0)$ alternates FVE, and reduce stat error "-1" subtraction trick :

$$\Pi^{\mu\nu}(q) - \Pi^{\mu\nu}(0) = \int d^4x (e^{iqx} - 1) \langle J^{\mu}(x) J^{\nu}(0) \rangle_{_{37}}$$