Precise calculation of muon g-2 based on lattice QCD

Taku Izubuchi (RBC\&UKQCD collaboration)

RIKEN BNL
Research Center

Collaborators / Machines

Tom Blum (Connecticut)
Peter Boyle (Edinburgh)
Norman Christ (Columbia)
Vera Guelpers (Southampton)
Masashi Hayakawa (Nagoya)
James Harrison (Southampton)
Mattia Bruno (BNL/Cern)

Christoph Lehner (BNL)
Kim Maltman (York)
Chulwoo Jung (BNL)
Andreas Jüttner (Southampton)
Luchang Jin (Connecticut / RBRC)
Antonin Portelli (Edinburgh)
Aaron Meyer (BNL)

Part of related calculation are done by resources from USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

Reference

- g-2 HVP Phys. Rev. Lett. 121 (2018) 022003
- g-2 Hadronic Light-by-Light (HLbL) Phys. Rev. D96 (2017) 034515 Phys. Rev. Lett. 118 (2017) 022005
- Tau input for g -2 PoS Lattice 2018 (2018) 135

muon anomalous magnetic moment

BNL g-2 till 2004: ~ 3.7σ larger than SM prediction

Contribution	Value $\times 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11658471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	$\mathbf{2 . 6}$
Total SM prediction	11659181.5	4.9
BNL E821 result	11659209.1	6.3
FNAL E989/J-PARC E34 goal		$\approx \mathbf{1 . 6}$

$$
a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=27.4 \underbrace{(2.7)}_{\text {HVP }} \underbrace{(2.6)}_{\text {HLbL }} \underbrace{(0.1)}_{\text {other }} \underbrace{(6.3)}_{\text {EXP }} \times 10^{-10}
$$

FNAL E989 (began 2017-)
move storage ring from BNL
x4 more precise results, 0.14 ppm

J-PARC E34
ultra-cold muon beam
0.37 ppm then 0.1 ppm , also EDM

muon anomalous magnetic moment

BNL g-2 till 2004: ~ 3.7σ larger than SM prediction

Contribution	Value $\times 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11658471.895	0.008
EW	15.4	0.1
HVP LO	692.3	$\mathbf{4 . 2}$
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	$\mathbf{2 . 6}$
Total SM prediction	11659181.5	4.9
BNL E821 result	11659209.1	6.3
FNAL E989/J-PARC E34 goal		$\approx \mathbf{1 . 6}$

$$
a_{\mu}^{\operatorname{EXP}}-a_{\mu}^{\text {SM }}=27.4 \underbrace{(2.7)}_{\text {HVP }} \underbrace{(2.6)}_{\text {HLbL }} \underbrace{(0.1)}_{\text {other }} \underbrace{(6.3)}_{\text {EXP }} \times 10^{-10}
$$

FNAL E989 (began 2017-)
move storage ring from BNL
x4 more precise results, 0.14 ppm
J-PARC E34
ultra-cold muon beam
0.37 ppm then 0.1 ppm , also EDM
[Luchang Jin's analogy]

Precession of Mercury and GR

Amount (arc- sec/century)	Cause
5025.6	Coordinate (due to precession of equinoxes)
531.4	Gravitational tugs of the other planets
$\mathbf{0 . 0 2 5 4}$	Oblateness of the sun (quadrupole moment)
$\mathbf{4 2 . 9 8} \pm 0.04$	General relativity
5600.0	Total
5599.7	Observed

discrepancy recognized since 1859

Known physics

1915 by-then New physics GR revolution
http://worldnpa.org/abstracts/abstracts_6066.pdf precession of perihelion

Hadronic Vacuum Polarization (HVP) contribution to g-2

- From experimental e+e-inclusive hadron decay cross section $\sigma_{\text {total }}(\mathrm{s})$ in time-like $\mathrm{s}=\mathrm{q}^{2}>0$, and dispersion relation, optical theorem

$$
a_{\mu}^{\mathrm{HVP}}=\frac{1}{4 \pi^{2}} \int_{\mathrm{s}_{\mathrm{th}}}^{\infty} d s K(s) \sigma_{\mathrm{total}}(s) \quad \sim_{\text {had }}
$$

Dispersive methods 2018

[D. Nomura's talk]

- KNT18 (PRD97,114025, arXiv:1802.02995)
- DHMZ17 (Eur. Phys. J. C77:827)

Channel	This work (KNT18)	DHMZ17 [78]	Difference
Data based channels $(\sqrt{s} \leq 1.8 \mathrm{GeV})$			0.29
$\pi^{0} \gamma($ data +ChPT$)$	4.58 ± 0.10	4.29 ± 0.10	-3.40
$\pi^{+} \pi^{-}($data +ChPT$)$	503.74 ± 1.96	507.14 ± 2.58	1.50
$\pi^{+} \pi^{-} \pi^{0}($ data +ChPT$)$	47.70 ± 0.89	46.20 ± 1.45	0.31
$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$	13.99 ± 0.19	13.68 ± 0.31	

Total	693.3 ± 2.5	693.1 ± 3.4	0.2

- Very small error, KNT18: 2.5×10^{-10} [0.37%] and DHMZ17 3.4×10^{-10} [0.49%]
- Good agreement for total, individual channels have a tention.
- Difference in how to combine experiments and energy bins, correlations among them

Dispersive method status

- BaBar and KLOE 2π contribution differ $\sim 10(4) \times 10^{-10}$ compared with quoted uncertainties, $\{2.5$ or 3.4$\} \times 10^{-10}$

[B. Malaescu's talk @Mainz g-2 2018]

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum $\mathrm{K}^{2}=-\mathrm{q}^{2}>0$
- Vector current 2 pt function
$a_{\mu}=\frac{g-2}{2}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right) \hat{\Pi}\left(K^{2}\right) \quad \Pi^{\mu \nu}(q)=\int d^{4} x e^{i q x}\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle$
- Low Q2, or long distance, part of Π (Q2) is relevant for g-2

Euclidean Time Momentum Representation

[Bernecker Meyer 2011 , Feng et al. 2013]
In Euclidean space-time, project verctor 2 pt to zero spacial momentum, $\vec{p}=0$:

$$
C(t)=\frac{1}{3} \sum_{x, i}\left\langle j_{i}(x) j_{i}(0)\right\rangle
$$

g-2 HVP contribution is

$$
\begin{gathered}
a_{\mu}^{H V P}=\sum_{t} w(t) C(t) \\
w(t)=2 \int_{0}^{\infty} \frac{d \omega}{\omega} f_{\mathrm{QED}}\left(\omega^{2}\right)\left[\frac{\cos \omega t-1}{\omega^{2}}+\frac{t^{2}}{2}\right] \\
\mathrm{w}(\mathrm{t}) \sim \mathrm{t}^{4}
\end{gathered}
$$

- Subtraction $\Pi(0)$ is performed. Noise/Signal $\sim e^{\left(E_{\pi \pi}-m_{\pi}\right) t}$, is improved [Lehner et al. 2015].
- Corresponding $\hat{\Pi}\left(Q^{2}\right)$ has exponentially small volume error [Portelli et al. 2016] . $w(t)$ includes the continuum QED part of the diagram

DWF light HVP [2016 Christoph Lehner]

120 conf ($a=0.11 \mathrm{fm}$), 80 conf ($a=0.086 \mathrm{fm}$) physical point $\mathrm{Nf}=2+1$ Mobius DWF $4 D$ full volume LMA with 2,000 eigen vector (of e/o preconditioned zMobius $D^{+} D$) EV compression ($1 / 10$ memory) using local coherence [C. Lehner Lat2017 Poster] In addition, 50 sloppy / conf via multi-level AMA more than $\times 1,000$ speed up compared to simple CG

disconnected quark loop contribution

- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL) 1
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit, Qu+Qd+Qs = 0
- Use low mode of quark propagator, treat it exactly (all-to-all propagator with sparse random source)
- First non-zero signal

Sensitive to m_{π}

 crucial to compute at physical mass

HVP QED+ strong IB corrections

- HVP is computed so far at Iso-symmetric quark mass, needs to compute isospin breaking corrections: Qu, Qd, mu-md $\neq 0$
- u,d,s quark mass and lattice spacing are re-tuned using \{charge, neutral\} $\times\{$ pion,kaon\} and (Omega baryon masses)
- For now, V, S, F, M are computed : assumes EM and IB of sea quark and also shift to lattice spacing is small (correction to disconnected diagram)
- Point-source method : stochastically sample pair of 2 EM vertices a la important sampling with exact photon

(a) V

(c) T
(b) S

(d) D1

(e) D2

(f) F

(g) D3

Tau input for HVP IB+QED corrections

- Could also compute the difference IB correction of
$\Delta \mathrm{a}_{\mu}=\mathrm{a}_{\mu}(\mathrm{e}+\mathrm{e}-)-\mathrm{a}_{\mu}(\tau)$

$\pi^{+} \pi^{-}, \cdots[I=1]$
isospin rotation

- I=0 to I=1 contribution from Strong IB+EM effect (left), I=1 contribution EM effects (right)

Interplay between Lattice and Experiment

- Check consistency between Lattice and R-ratio
- Short distance from Lattice, Long distance from R-ratio :
error already 0.5-1.2\% around $\mathrm{t}_{\text {lat } / \text { exp }}=2 \mathrm{fm}$

$$
a_{\mu}^{\mathrm{HVP}}=\left[\sum_{t=0}^{t_{\text {taterexp }}} w(t) C(t)\right]^{\mathrm{LAT}}+\left[\int_{t_{\text {tatetexp }}}^{\infty} d t w(t) C(t)\right]^{\operatorname{EXP}}
$$

Euclidean time correlation from $e^{+} e^{-} R(s)$ data

From $e^{+} e^{-} R(s)$ ratio, using disparsive relation, zero-spacial momentum projected Euclidean correlation function $C(t)$ is obtained

$$
\begin{aligned}
\hat{\Pi}\left(Q^{2}\right) & =Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{s\left(s+Q^{2}\right)} \quad \begin{array}{l}
\text { Lattice can compute Integral of } \\
\text { Inclusive cross sections accurately }
\end{array} \\
C^{\mathrm{R} \text {-ratio }(t)} & =\frac{1}{12 \pi^{2}} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \hat{\Pi}\left(\omega^{2}\right) e^{i \omega t}=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d s \sqrt{s} R(s) e^{-\sqrt{s} t}
\end{aligned}
$$

- $C(t)$ or $w(t) C(t)$ are directly comparable to Lattice results with the proper limits ($m_{q} \rightarrow m_{q}^{\text {phys }}, a \rightarrow 0, V \rightarrow \infty$, QED ...)
- Lattice: long distance has large statistical noise, (short distance: discretization error, removed by $a \rightarrow 0$ and/or pQCD)
- R-ratio : short distance has larger error

$\hat{\Pi}\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{s\left(s+Q^{2}\right)}$
($1 / a=1.78 \mathrm{GeV}, \quad$ Relative statistical error)

Comparison of R-ratio and Lattice [F. Jegerlehner alphaQED 2016]

- Covariance matrix among energy bin in R-ratio is not available, assumes 100% correlated

Combine R-ratio and Lattice [Christoph Lehner et al PRL18]

- Use short and long distance from R-ratio using smearing function, and mid-distance from lattice

$$
\begin{aligned}
& \Theta(t, \mu, \sigma) \equiv[1+\tanh [(t-\mu) / \sigma]] / 2 \\
& a_{\mu}=\sum_{t} w_{t} C(t) \equiv a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}} \\
& {a_{\mu}}_{\mathrm{SD}}=\sum_{t} C(t) w_{t}\left[1-\Theta\left(t, t_{0}, \Delta\right)\right], \\
& a_{\mu}^{\mathrm{W}}=\sum_{t} C(t) w_{t}\left[\Theta\left(t, t_{0}, \Delta\right)-\Theta\left(t, t_{1}, \Delta\right)\right], \\
& \partial_{\mu}^{\mathrm{LD}}=\sum_{t} C(t) w_{t} \Theta\left(t, t_{1}, \Delta\right)
\end{aligned}
$$

How does this translate to the time-like region?

Most of $\pi \pi$ peak is captured by window from $t_{0}=0.4 \mathrm{fm}$ to $t_{1}=1.5 \mathrm{fm}$, so replacing this region with lattice data reduces the dependence on BaBar versus KLOE data sets.

Continuum limit of $\mathbf{a}^{\mathbf{w}}$

Continuum limit of a_{μ}^{W} from our lattice data; below $t_{0}=0.4 \mathrm{fm}$ and $\Delta=0.15 \mathrm{fm}$

RBC/UKQCD [C. Lehner Lat17]

Continuum extrapolation is mild
c.f BMWc [K. Miura Lat17]

R-ratio + Lattice

t1 dependence is flat => a consistency between R-ratio and Lattice $\mathrm{t} 1=1.2 \mathrm{fm}$, R-ratio : Lattice $=50: 50$
$\mathrm{t} 1=1.2 \mathrm{fm}$ current error (note 100% correlation in R -ratio) is minimum

HVP results

- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Checking finite volume and discretization error as well as Isospin V effects

Example error budget from RBC/UKQCD 2018 (Fred’s alphaQED17 results used for window result)

Window $t=[0.4,1 \mathrm{fm}]$		Pure Lattice
$\overline{a_{\mu}}$ ud, conn, isospin	$202.9(1.4)_{\mathrm{S}}(0.2)_{\mathrm{C}}(0.1)_{\mathrm{V}}(0.2)_{\mathrm{A}}(0.2)_{\mathrm{Z}}$	$649.7(14.2)_{\mathrm{S}}(2.8)_{\mathrm{C}}(3.7)_{\mathrm{V}}(1.5)_{\mathrm{A}}(0.4)_{\mathrm{Z}}(0.1)_{\mathrm{E} 48}(0.1)_{\mathrm{E} 64}$
$a_{\mu}{ }^{\text {s, conn, isospin }}$	$27.0(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.1)_{\mathrm{A}}(0.0)_{\mathrm{Z}}$	$53.2(0.4)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.3)_{\mathrm{A}}(0.0)_{\mathrm{Z}}$
$a_{\mu}{ }^{\mathrm{c}}$, conn, isospin	$3.0(0.0)_{\mathrm{S}}(0.1)_{\mathrm{C}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{M}}$	$14.3(0.0)_{\mathrm{S}}(0.7)_{\mathrm{C}}(0.1)_{\mathrm{Z}}(0.0)_{\mathrm{M}}$
$a_{\mu}^{\text {uds, disc, isospin }}$	$-1.0(0.1)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.0)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}$	$-11.2(3.3)_{\mathrm{S}}(0.4)_{\mathrm{V}}(2.3)_{\mathrm{L}}$
$a_{\mu}^{\text {QED, conn }}$	$0.2(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.0)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E}}$	$5.9(5.7)_{\mathrm{S}}(0.3)_{\mathrm{C}}(1.2)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.1)_{\mathrm{E}}$
$a_{\mu}^{\text {SIB }}$, disc	$-0.2(0.1)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.0)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E}}$	$-6.9(2.1)_{\mathrm{S}}(0.4)_{\mathrm{C}}(1.4)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.3)_{\mathrm{E}}$
$a_{\mu}{ }^{\text {SIB }}$	$0.1(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.2)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E} 48}$	$10.6(4.3)_{\mathrm{S}}(0.6)_{\mathrm{C}}(6.6)_{\mathrm{V}}(0.1)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.3)_{\mathrm{E} 48}$
$a_{\mu}^{\text {udsc, isospin }}$	$231.9(1.4)_{\mathrm{S}}(0.2)_{\mathrm{C}}(0.1)_{\mathrm{V}}(0.3)_{\mathrm{A}}(0.2)_{\mathrm{Z}}(0.0)_{\mathrm{M}}$	$\begin{aligned} & 705.9(14.6)_{\mathrm{S}}(2.9)_{\mathrm{C}}(3.7)_{\mathrm{V}}(1.8)_{\mathrm{A}}(0.4)_{\mathrm{Z}}(2.3)_{\mathrm{L}}(0.1)_{\mathrm{E} 48} \\ & \quad(0.1)_{\mathrm{E} 64}(0.0)_{\mathrm{M}} \end{aligned}$
$\begin{aligned} & a_{\mu}^{\mathrm{QED}, \mathrm{SIB}} \\ & a_{\mu}^{\mathrm{R}-\text { ratio }} \end{aligned}$	$\frac{0.1(0.3)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.2)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E}}(0.0)_{\mathrm{E} 48}}{460.4(0.7)_{\mathrm{RST}}(2.1)_{\mathrm{RSY}}}$	$9.5(7.4)_{\mathrm{S}}(0.7)_{\mathrm{C}}(6.9)_{\mathrm{V}}(0.1)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.7)_{\mathrm{E}}(1.3)_{\mathrm{E} 48}$
a_{μ}	$\begin{aligned} & 692.5(1.4)_{\mathrm{S}}(0.2)_{\mathrm{C}}(0.2)_{\mathrm{V}}(0.3)_{\mathrm{A}}(0.2)_{\mathrm{Z}}(0.0)_{\mathrm{E}}(0.0)_{\mathrm{E} 48} \\ & (0.0)_{\mathrm{b}}(0.1)_{\mathrm{c}}(0.0)_{\overline{\mathrm{S}}}(0.0)_{\overline{\mathrm{Q}}}(0.0)_{\mathrm{M}}(0.7)_{\mathrm{RST}}(2.1)_{\mathrm{RSY}} \end{aligned}$	$\begin{gathered} 715.4(16.3)_{\mathrm{S}}(3.0)_{\mathrm{C}}(7.8)_{\mathrm{V}}(1.9)_{\mathrm{A}}(0.4)_{\mathrm{Z}}(1.7)_{\mathrm{E}}(2.3)_{\mathrm{L}} \\ (1.5)_{\mathrm{E} 48}(0.1)_{\mathrm{E} 64}(0.3)_{\mathrm{b}}(0.2)_{\mathrm{c}}(1.1)_{\mathrm{S}}(0.3)_{\overline{\mathrm{Q}}}(0.0)_{\mathrm{M}} \end{gathered}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10}. The left column lists results for the window method with $t_{0}=0.4 \mathrm{fm}$ and $t_{1}=1 \mathrm{fm}$. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

For the pure lattice number the dominant errors are (S) statistics, (V) finite-volume errors, and (C) the continuum limit extrapolation uncertainty.
For the window method there are additional R -ratio systematic (RSY) and R-ratio statistical (RST) errors.

Hadronic Light-by-Light (HLbL) contributions

HLbL from Models

- Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9-12) x 10^{-10} with $25-40 \%$ uncertainty

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=28.8(6.3)_{\exp }(4.9)_{\mathrm{SM}} \times 10^{-10} \quad[3.6 \sigma]
$$

F. Jegerlehner, x 10^{11}

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	0 ± 10	-19 ± 19	-19 ± 13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7 ± 11.1	-	-	2.3	21 ± 3
total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	105 ± 26	116 ± 39

Coordinate space Point photon method

[Luchang Jin et all. , PRD93, 014503 (2016)]

- Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected :
disconnected problem in Lattice QED+QCD -> connected problem with analytic photon
- QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x, y, z and $x_{o p}$ is summed over space-time exactly

- Short separations, $\operatorname{Min}[|x-z|,|y-z|,|x-y|]<R \sim O(0.5) f m$, which has a large contribution due to confinement, are summed for all pairs
- longer separations, Min $[|x-z|,|y-z|,|x-y|]>=R$, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

Dramatic Improvement! Luchang Jin

$a=0.11 \mathrm{fm}, 24^{3} \times 64(2.7 \mathrm{fm})^{3}$,
$\mathrm{m}_{\pi}=329 \mathrm{MeV}, \quad \mathrm{m}_{\mu}=\sim 190 \mathrm{MeV}, \mathrm{e}=1$

$$
\begin{array}{r}
q=2 \pi / L N_{\text {prop }}=81000 \longmapsto \vdash \\
q=0 N_{\text {prop }}=26568 \longmapsto \bigcirc
\end{array}
$$

SU(3) hierarchies for d-HLbL

- At $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{ud}}$ limit, following type of disconnected HLbL diagrams survive $Q_{u}+Q_{d}+Q_{s}=0$
- Physical point run using similar techniques to c-HLbL.
- other diagrams suppressed by $O\left(m_{s}-m_{u d}\right) / 3$ and $O\left(\left(m_{s}-m_{u d}\right)^{2}\right)$

140 MeV Pion, connected and disconnected LbL results

[Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005]

- left: connected, right : leading disconnected

- Using AMA with 2,000 zMobius low modes, AMA
(statistical error only)

$$
r=|x-y|
$$

$$
\begin{array}{ll}
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{cHLbL}} & =(0.0926 \pm 0.0077) \times\left(\frac{\alpha}{\pi}\right)^{3}=(11.60 \pm 0.96) \times 10^{-10} \\
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{dHLbL}} & =(-0.0498 \pm 0.0064) \times\left(\frac{\alpha}{\pi}\right)^{3}=(-6.25 \pm 0.80) \times 10^{-10} \\
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{HLbL}} & =(0.0427 \pm 0.0108) \times\left(\frac{\alpha}{\pi}\right)^{3}=(5.35 \pm 1.35) \times 10^{-10}
\end{array}
$$

Lattice 2017 Updates from PRL (2017)

- Discretization error
\rightarrow a scaling study for $1 / \mathrm{a}=2.7,1.4,1.0 \mathrm{GeV}$ at physical quark mass for both connected and disconnected is being finalized
- Finite volume

QED_L (photon/lepton in a box) [08 Hayakawa Uno]
Infinite Volume and continuum lepton + photon diagrams

?

Summary

- Lattice calculation for g-2 calculation is improved very rapidly
- HVP
- New methods using low mode for connected at physical quark mass,
- disconnected quark loop at physical quark mass, QED and IB studies are included
- Combining with R-ratio experiment data for cross-check and improvement => 0.4% error
- Eventually the window will be enlarged for a pure LQCD prediction (currently 2.6 \% error)
- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Checking finite volume and discretization error as well as Isospin V effects
- We could compute Inclusive hadron cross sections at Euclidean $q^{\wedge} 2$ from the first principle Lattice QCD with Isospin breaking effects ! e+e- -> hadron tau -> nu + hadrons tau inclusive decay and |Vus| arXiv:1803.07228 (to appear in PRL)
- HLbL
- computing connected and leading disconnected diagrams :
-> 8% stat error in connected, 13 \% stat error in leading disconnected
- coordinate-space integral using analytic photon propagator with adaptive probability (point photon method), config-by-config conserved external current
- Improving statistics right now.
- Various size of Lattice ensemble / method for systematic error as well as higher disconnected diagram Comparing with Mainz group's results (for connected at heavy pion mass)
- Goal : HVP sub 1\% (then 0.25\%), HLbL 10\% error

Can we see the next physics Revolution (c.f GW) ?

Simulation details [RBC/UKQCD 2015]

two gauge field ensembles generated by RBC/UKQCD collaborations

Domain wall fermions: chiral symmetry at finite a

Iwasaki Gauge action (gluons)

- pion mass $m_{\pi}=139.2(2)$ and 139.3(3) $\mathrm{MeV}\left(m_{\pi} L \lesssim 4\right)$
- lattice spacings $a=0.114$ and 0.086 fm
- lattice scale $a^{-1}=1.730$ and 2.359 GeV
- lattice size $L / a=48$ and 64
- lattice volume $(5.476)^{3}$ and $(5.354)^{3} \mathrm{fm}^{3}$

Use all-mode-average (AMA) [Blum et al 2012] and low-mode- averaging (LMA) [Giusti et al, 2004, Degrand et al 2005, Lehner 2016 for HVP] techniques for improved statistics by more than three orders of magnitudes compared to basic CG, and $\times 10$ smaller memory via multigrid-Lanczos [Lehner 2017] .

Conserved current \& moment method

- [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

- [moment method, $\mathrm{q} 2 \rightarrow 0$] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, $q->0$ limit value is directly computed via the first moment of the relative coordinate, $\mathrm{xop}-(\mathrm{x}+\mathrm{y}) / 2$, one could show

$$
\left.\frac{\partial}{\partial q_{i}} \mathcal{M}_{\nu}(\vec{q})\right|_{\vec{q}=0}=i \sum_{x, y, z, x_{\mathrm{op}}}\left(x_{\mathrm{op}}-(x+y) / 2\right)_{i} \times
$$

to directly get $F_{2}(0)$ without extrapolation.

$$
\text { Form factor: } \Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)
$$

Current conservation \& subtractions

- conservation => transverse tensor

$$
\Pi^{\mu \nu}(q)=\left(\hat{q}^{2} \delta^{\mu \nu}-\hat{q}^{\mu} \hat{q}^{\nu}\right) \Pi\left(\hat{q}^{2}\right)
$$

- In infinite volume, $\mathrm{q}=0, \Pi_{\mu \mathrm{v}}(\mathrm{q})=0$
- For finite volume, $\Pi_{\mu \mathrm{v}}(0)$ is exponentially small (L.Jin, use also in HLbL)

$$
\begin{aligned}
& \int_{V} d x^{4}\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle=\int_{V} d x^{4} \partial_{x}\left(x\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle\right) \\
= & \int_{\partial V} d x^{3} x\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle \propto L^{4} \exp (-M L / 2) \rightarrow 0
\end{aligned}
$$

- e.g. DWF L=2, 3, $5 \mathrm{fm} \quad \Pi_{\mu v}(0)=8(3) \mathrm{e}-4,2(13) \mathrm{e}-5,-1(5) \mathrm{e}-8$
- Subtract $\Pi_{\mu \mathrm{v}}(0)$ alternates FVE, and reduce stat error "-1" subtraction trick :
$\Pi^{\mu \nu}(q)-\Pi^{\mu \nu}(0)=\int d^{4} x\left(e^{i q x}-1\right)\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle$

