Status of neutrino event reconstruction

in the NINJA experiment

Odagawa Takahiro (Kyoto University)

2d distribution of

H. Kawahara, and Y. Suzuki for the NINJA collaboration

NINJA Experiment

Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

- Measurement of neutrino-nucleus interactions on <u>H2O</u> target in <u>1 GeV</u> energy region
 - -> Systematic uncertainty in the T2K(/HK) experiment(s)
- Very good position/angle resolution of nuclear emulsion films

Shifter, Tracker & Baby MIND

- I. Track matching b/w tracker and Baby MIND is done using beam timing information
- 2. Then, reconstruct Tracker-Baby MIND track position/angle
- 3. Track matching b/w those tracks and Shifter tracks using all position/angle and timing information
- 4. Extrapolate shifter tracks into the ECC and find matching ones

- 2p2h (2-particle 2-hole) is not well understood int. mode.
- Detection of low-p protons which
 - are hard to detect with any other experiment is necessary.

Detectors

- We placed 3 kinds of detectors in B2 floor of the J-PARC Neutrino Monitor building
- ✤ 75 kg H2O target exposed to 4.7 x 10²⁰ POT (protons on target) neutrino beam.

ECC (Emulsion Cloud Chamber)

- Alternate structure of water layers and emulsion tracking layers
- Fine segmentation
 - -> <u>short range track detection</u>

Emulsion Film:

Neutrino Interaction Candidates

- Tracks starting from inside of the ECC are searched for.
- Then, tracks attaching to the starting point are searched for (secondary hadrons from interactions).
- Two candidates were found in the pilot analysis. $\bar{\nu}_{\mu}$ (left) w/o any tracks and ν_{μ} (right) w/ one proton?

Baby MIND (MRD)

- Water: 2.3 mm Iron: 0.5 mm
- Scintillator & magnetized iron detector
- Provide muon track information with beam triggered timing

Timestamper

- To connect muon tracks in ECCs and Baby MIND, we used two kinds of timestamp detectors
 - A. Emulsion Shifter (left)
 - B. Scintillation Tracker (right)
- Provide good position/angle information of (muon) tracks

Reconstruction

Emulsion Film

• After the beam exposure,

運動量: $4.3^{+inf}_{-2.6}$ GeV/c

Future Prospects

- One out of nine ECCs scanning are now finished. -> Our first goal is to complete analysis flow with its data.
- We can provide
 - * Charged particle multiplicity w/ low momentum threshold and fine track separation
 - * Momentum & angle w/ ultimate resolution (O(um), O(mrad))
 - Particle identification using track blackness (= dE/dx) and multiple Coulomb scattering $(= p\beta)$
- More than 1000 neutrino-water interaction events are expected -> New constraint on neutrino interaction model

Machine Learning Possibility

films are developed and scanned by Hyper Track Selector in Nagoya University.

- One film consists of two gels on a plastic sheet • We reconstruct "virtual" track in plastic using "visual" tracks in gel <- Gel is not as rigid as a plastic sheet.
- Plastic tracks are connected to neighbor film tracks and one particle's track is reconstructed.

- Track seeding & reconstruction from emulsion images (Apply <u>CNN</u> to 2d binary pixel image?)
- Particle identification from track blackness and other parameters (<u>Multivariate analysis</u> of the track information?)
- Track matching b/w NINJA detectors
 - (<u>Pattern recognition</u> and select best matching tracks?)
- (Baby MIND curving track reconstruction)

Odagawa Takahiro (Kyoto University) Mail: <u>odagawa.takahiro.57w@st.kyoto-u.ac.jp</u>