Status and Perspectives of Solid State Photo-Detectors

G.Collazuol

Department of Physics and Astronomy - University of Padova and INFN

Overview

- Focus on single photon detectors
- Recent advances by illustration of key features
- 3 examples of Cherenkov imaging detectors with SSPD

Photo-Detectors family tree

	Gas External photoem	ission	Vacuu External p	m devices hotoemission	Solid state Internal photoemission		
g a (T	as photoionization MAE, TEA,) and/or	seconda multipli	ary electron cation	hybrid photocathode +	 Photo-Diode (PD) Avalanche PD (APD) GM-APD (SPAD, SiPM) 		
m by (N	ultiplication in gas avalanche 4WPC, GEM,)	 discrete (PMT) continuous dynode (channeltron, MCP) 		- multiplication b ionization in S (HPD, HAPD, VS or or	 June Jane Jane Jane Jane Jane Jane Jane Ja		
	Anode: - multi-a - strip lin Ultra Violet TMAE, CsI TEA		inode ies RF	luminescent a (light amplifiers SMART/Quasar, X-HPD,)	odes		
RICH 2013			Visible	Bialkali K ₂ CsSb	Infra Red (IR) GaAs Multialkali NaKCsSb (1100nm)		
G.Collazuol - I	12.3	4.9	3.1 + 400	2.24 1.	$ \frac{76}{1.45} E [eV] $ $ \frac{1.45}{850} \lambda [nm] $		

GM-APD → Single Photon Avalanche Diodes

Arranging SPADs into packed matrices

Transition single SPAD \rightarrow hundreds of GM-APD cells packed in arrays is not just design... need addressing new issues:

- an additional factor enters in the photo-detection efficiency (PDE): the **fill factor** that for small cell size can be quite low
- how to control the dark rate because of
- limited space for gettering techniques
- high probability to include noisy cells in a device
- optical cross-talk among cells
- production **yield** and **uniformity** affect performances
- **electronics** (integrated, external, hybrid)

"Analog" SiPM: array of passively decoupled GM-APD

Single GM-APD gives **no information** on light intensity \rightarrow use array of GM-APDs' first proposed in the late '80-ies by Golovin and Sadygov

Pixels of the SiPM

Metal (Al) grid

SiPM

A SiPM is segmented in tiny GM-APD cells and connected in parallel trough a
decoupling resistor, which is also used
for quenching avalanches in the cells

Each element is independent and gives the same signal when fired by a photon

Σ of binary signals \rightarrow analog signal

$\textbf{Output} \propto \textbf{number incident photons}$

 \rightarrow Linear response to multi-photon pulse

SiPM development and production

Many institutes (R&D) and companies involved \rightarrow competition... but prices still far (~ x20) from asympt. production cost O(10€/cm²)

- CPTA, Moscow, Russia
- MePhi/Pulsar Enterprise, Moscow, Russia
- Zecotek, Vancouver, Canada
- Hamamatsu HPK, Hamamatsu, Japan
- FBK-AdvanSiD, Trento, Italy
- ST Microelectronics, Catania, Italy
- Amplification Technologies Orlando, USA
- SensL, Cork, Ireland
- MPI-HLL, Munich, Germany
- RMD, Boston, USA
- Philips, Aachen, Germany
- **Excelitas** tech. (formerly Perkin-Elmer)
- KETEK, Munich, Germany
- National Nano Fab Center, Korea
- Novel Device Laboratory (NDL), Bejing, China
- E2V

Excelitas

RMD CMOS SiPM

G.Collazuol - RICH 2013

Recent samples among many

ZECOTEK MAPD-3N	FBK-Advan	SiD HAN	AMATSU S10985 KETER	STMicro	pelectronics
Producer	Reference	Area (mm²)	PDE max @ 25 °C *	Dark Count Rate (Hz) @ 25°C *	Gain *
ZECOTEK	MAPD-3N	3 x 3	30% @ 480 nm	$9.10^5 - 9.10^6$	10 ⁵
FBK - AdvanSiD	ASD-SiPM4S	4 x 4	30% @ 480 nm	5.5 10 ⁷ - 9.5 10 ⁷	4.8 10 ⁶
HAMAMATSU	\$10985-50C	6 x 6	50% @ 440 nm (includes afterpulses & crosstalk)	6.10 ⁶ - 10.10 ⁶	7.5 10 ⁵
KETEK	PM3350	3 x 3	40% @ 420 nm	4.10 ⁶	2 106
STMicrolectronics	SPM35AN	3,5 x 3,5	16% @ 420 nm	7.5 10 ⁶	3.2 10 ⁶

* datasheet data

Ongoing R&D to increase the active area at KETEK, AdvanSiD, Excelitas (6 x 6 mm²) Other solution to get larger area : connection of several channels of a matrix

Discrete arrays

Producer	Device ID	Picture	Total area (mm²)	SiPM area (mm²/channel)	Nr. channels	µcell size
Hamamatsu	S11064-025P S11064-050P		18 x 16.2	3x3	16(4x4)ch	25x25 μm 50x50 μm
Hamamatsu	C11206-0404DF	S S S S S S S S S S S S S S S S S S S		3x3	64(8x8) ch	
Hamamatsu	S11834-3388DF		72x64.8	3x3	256(16x16)ch	
FBK AdvanSiD	ASD-SiPM4s-P-4x4T- 50 ASD-SiPM4s-P-4x4T- 69		8.2 x 8.2	4x4	16(4x4) ch	50x50 μm 69x69 μm
FBK AdvanSiD	SiPMtile		32.7x32.7	4x4	64(8x8) ch	
SensL	ArraySM-4P9 ArraySB-4P9 (blue sensitive)		46.3 x 47.8	3x3	144(12x12) ch (based on monolithic Array SM4)	35x35 µm

	Mon	olithic /	\rightarrow fill factor, uniformity, yieldcost				
	Producer	Device ID	Picture	Effective area (mm²)	SiPM area/channel (mm²)	Nr. channels	µcell size
G.Collazuol - RICH 2013	Hamamatsu	S10984-025P S10984-050P S10984-100P		1x4	1x1	4(1x4)ch	25x25 μm 50x50 μm 100 x 100 μm
	Hamamatsu	S10985-025C S10985-050C S10985-100C		6x6	3x3	4(2x2)ch	25x25 μm 50x50 μm 100 x 100 μm
	Hamamatsu	S11828-3344M		12 x 12	3x3	16(4x4)ch	50x50 μm
	FBK AdvanSiD	ASD-SiPM1.5s-P- 8X8A		11.6x 11.6	1.45x1.45	64(8x8)ch	50x50 µm
	FBK AdvanSiD	ASD-SiPM3S-P- 4X4A		11.8x 11.8	2.95x2.95	16(4x4)ch	50x50 µm
	SensL	Array SM-4 Array SB-4 (blue sensitive)	TIM	12×12	3x3	16(4x4)ch	35x35 µm

SPAD Arrays with electronics "integrated"

2013

RICH

ī

G.Collazuol

10

Today's fair competition: Analog vs Digital SiPM

T.Frach - Heraeus Seminar 2013

d-SiPM: $\left\{ \begin{array}{l} - \text{ for each light pulse } \rightarrow \text{ output is:} \\ \text{time-stamp and number of photons} \\ - \text{ control of individual cells} \end{array} \right.$

- O(500ns) RO dead time (upon trigger)

- Analog sum of charge pulses
- Analog output signal

· Digital data output

Key features: implementation

- GM-APD cells: custom (analog SiPM) vs CMOS (digital-SiPM)
- Quenching and Reset modes

Close up of a cell – custom process

Passive / Active quenching and recharge

Passive mode: quenching resistor

- "Quenching resistor" regulates both **quenching** and **recharge**
- Simple concept but tricky to implement (high-ohmic resistors needed)
- Allows easy implementation of summation
- **Constraints due to passive mode**: latch current level (20µA)
 - \rightarrow large charge developed before quenching
- → limited recharge current ($R_q \sim \Delta V/20\mu A$ for safe quenching → $I_r < 20\mu A$) ("long" recovery time: $\tau_r \sim Rq \times Cd$)
- Output signal compatible with that of PMTs \rightarrow re-use of readout infrastructure

Active mode: transistors to Quench and Reset

- Sense the voltage at the diode terminal
- Use transistors to actively **discharge/recharge** the diode
 - \rightarrow controlled amount of charge \rightarrow reduced after-pulsing and cross-talk
 - \rightarrow controlled (fast) recovery
- Flexibility: programmable timing possible, disabling of faulty cells
- Electronics area not active (unless 3D integ.): higher cost & lower fill factor
- Electronics exposed to radiation: hardness ?
- Fast digital signals (gate delays of ~30ps, rise/fall times ~90ps), low parasitics

Active mode → "digital" SiPM

Philips Digital SiPM APD cells & integrated electronics

• Cell area ~ $30x50\mu m^2$

• Fill Factor ~ 50%

- electronics exposed to radiation

 \rightarrow additional radiation weakness

Passive quenching + active recharge

2013

G.Collazuol - RICH

MOS-SiPM (new "analog" SiPM structure)

pulsed reset mode.

0

Key features: main parameters

Gain and Response (passive mode)

- Gain and its fluctuations
- Response non-linearity
- New Tiny cell devices

GM-APD Operation model – passive quenching

Waveform, charge spectrum and gain

Gain fluctuations (Single Electron Resp.)

$$G = \Delta V (C_q + C_d) / q_e -$$

$$\frac{\delta G}{G} = \frac{\delta V_{bd}}{V_{bd}} \oplus \frac{\delta C_{d,q}}{C_{d,q}}$$

• uniformity of cell geometry (active area and volume $\rightarrow C_{d,q}$) control at % level

SiPM gain fluctuations (intrinsic) differ in nature compared to APD where the statistical process of internal amplification shows a characteristic fluctuations

- intrinsic: local doping densities (Poisson): $\delta V_{bd} \sim O(0.1V)$ Shockley, Sol. State Ele. 2 (1961) 35
- doping, epitaxial, oxide (processing): $\delta V_{bd} \sim O(0.1V)$
- \bullet Additional δG due to fluctuations of
 - quenching time (Rq)
 - charge (after-pulses)

SES MEPhI/PULSAR APD, U=57.5V, T=-28 C

Recent improvements in V_{bd} uniformity

Engineering high electric field & depletion/drift layer profiles

Note: also improvement on T coefficient of $V_{bd} \rightarrow$ stability

2013

- RICH

G.Collazuol

Response Non-Linearity

Non-proportionality of charge output w.r.t. number of photons (i.e. response) at level of several % might show up even in quenching regime (negligible quenching time), depending on ΔV and on the intensity and duration of the light pulse.

Main sources are:

- finite number of pixels
- finite recovery time
- after-pulses, cross-talk
- drop of ∆V during the light pulse in case of large signal current on series (ballast) resistances

T.van Dam IEEE TNS 57 (2010) 2254 Detailed model to estimate non-lin. corrections

Finite number of cells is main contribution in case number of photons ~ O(number of cells) (dynamic range not adequate to application)

 \rightarrow saturation $n_{fired} = n_{all} \left(1 - e^{-\frac{1}{2}} \right)$

→ loss of energy resolution see Stoykov et al JINST 2 P06500 and Vinogradov et al IEEE NSS 2009 N28-3

Time (a.u.)

Tiny cell \rightarrow better performance

Many small cell SiPM types available \rightarrow Fill Factor improving (> 50%)

- tiny cells (\rightarrow 10-15µm) \rightarrow HPK, FBK-Advansid, NDL, MPI-LL, ...
- micro cells ($\rightarrow \mu m$) \rightarrow Zecotek, AmpliticationTechn.

- RICH 2013

G.Collazuol

tiny cell MPPC (2012) by Hamamatsu

Noise sources → recent improvements

Primary noise • → dark counts

Correlated "excess" charge:

 $\rightarrow \text{After-pulsing} \bullet \text{Cross-Talk} \bullet \text{Cross-Talk} \bullet \text{``optical''}$

carriers can be trapped during an avalanche and then released triggering another avalanche

photo-generation during the avalanche discharge. Some of the photons can be absorbed in the adjacent cell possibly triggering new discharges

RICH 2013 G.Collazuol

30

Recent improvements against Dark Counts

Recent improvements against Dark Counts

DCR – comparison of recent devices

Hamamatsu most recent devices (2013) work at very low Dark Count Rate (few x 10kHz)

Note: DCR depends on Over-voltage, as well as PDE \rightarrow plotting DCR vs PDE yields fairer comparison

DCR - digital-SiPM (Philips)

Control over individual SPADs enables detailed device characterization

SPAD Dark Count Rate Distribution

- Over 90% good diodes (dark count rate close to average)
- Typical dark count rate (DCR) at 20°C and ∆V=3.3V ~150Hz / diode
- Low DCR ~1-2Hz/diode at -40°C

T.Frach at Heraeus Seminar 2013

After-Pulsing Carrier trapping and delayed release

Optical cross-talk

Carriers' luminescence (spontaneous direct relaxation in the conduction band) during the avalanche: probability 3.10^{-5} per carrier to emit photons with E> 1.14 eV

A.Lacaita et al. IEEE TED (1993)

Photons can induce avalanches in neighboring cells. Depends on distance between high-field regions

ΔV^2 dependence on over-voltage:

- carrier flux (current) during avalanche $\propto \Delta V$
- gain ∝ ∆V

N.Otte, SNIC 2006

p-

Counteract:

• optical isolation between cells

p+q

- by trenches filled with opaque material
- low over-voltage operation helps

It can be reduced to a level below % in a wide ΔV range
Correlated noise sources

...many paths for optical cross-talk A.Ferri IPRD 2013

Note:

C.Piemonte et al at IEEE NSS 2012 propose an interesting method for disentangling the various noise components (correlated and not, AP, XT, ...)

- Trenches to avoid direct and delayed cross-talk...
- buried junction to avoid out-diffusion...
- lower gain \rightarrow use tiny cells (passive quenching)
- (ie less charge) \rightarrow or active quenching devices

Recent devices from Hamamatsu (2013)

Reduced After-pulsing or Cross-Talk rates... (... not simultaneously in the same device)

K.Sato et al Vienna Conference on Instrumentation 2013

Cross talk in most recent devices

Photo-Detection Efficiency - PDE

- PDE dependence on wavelength (tuning to match application requirements)
- Recent improvements on peak PDE
- UV and VUV enhanced devices

Photo-Detection Efficiency (PDE) – 3 factors

absorption length (un

104

1E0

1E-1

1E-2

16/3

E-4

Current [mA]

Absorption

0.8

MC simulations of the current growth during an avalanche build-up process

Spinelli, IEEE TED, vol. 44, n. 11, 1997

T=50,150,...,300K

1:0

avalanche failed

30

35

length in Si

0.6

QE: carrier Photo-generation

probability for a photon to generate a carrier (in the **active region**) that reaches the high field region

- $\rightarrow \Delta V$ independent if full depletion at $V_{_{bd}}$
- P₀₁ : avalanche triggering probability

probability for a carrier traversing the high-field to **generate the avalanche**

$\rightarrow \lambda,$ T and ΔV dependent

15

Time [ps]

20

25

FF: geometrical Fill Factor

fraction of dead area due to structures between the cells, eg. guard rings, trenches

\rightarrow negligible ΔV dependence (cell edges)

ר)

Aval. Triggering Probability \rightarrow PDE shape vs λ

Tuning PDE spectrum: (matching applications)

due to Fill Factor

absolute scale differences

PDE

main

junction depth (shallow → reach trough)
junction type (p-on-n or n-on-p)

Aval. Triggering Probability \rightarrow PDE shape vs λ

Tuning PDE spectrum: (matching applications)

- structure type (shallow or reach trough)
- junction type (p-on-n or n-on-p)

Recent improvements in PDE

 → PDE peak constantly improving for many devices
 → every manufacturer shape PDE

for matching target applications

F.Wiest – AIDA 2012 at DESY

UV and VUV SiPM development

Hamamatsu VUV-enhanced MPPC

- \rightarrow removal of protection coating
- \rightarrow optimization of the parameters
 - thinner junction
 - optimized superficial layers

New windows for applications in fundamental Physics experiments

- Dark matter detection
- $\nu\text{-less}$ double beta decays
- Rare decay modes (MEG)

Timing fluctuations

1) SiPM are intrinsically very fast

Two timing components (related to avalanche developement)

- prompt \rightarrow gaussian time jitter below **100ps** (depending on ΔV , and λ)
- delayed \rightarrow non-gaussian tails up to **few ns** (depending on λ)

see G.C. at IDPASC school 2013 - Siena

2) Factors affecting practical timing measurements

 \rightarrow digital filtering for best timing \rightarrow ARC/CFD ok; ToT to be avoided (for single photon)

3) Optimization of devices for timing

- \rightarrow enhancing the fast signal component
- \rightarrow trade-off PDE vs Timing

Discharge transverse size in SiPM and pulse shape simulation

Still too few studies of avalanche development in SiPM (lots about SPADs instead)

→ Interesting measurements and hybrid model of avalanche development and signal formation by R.Mirzoyan et al (*see E.Popova at IEEE NSS 2013*)

0(10)μm
 independent of over-voltage

Spot size of

Avalanche

3) mild dependence from cell size

Factors affecting timing measurements

- Additional fluctuations of signal front from non-uniformity among cells in terms of:
 - 1) electric field profile
 - 2) break-down voltage
 - 3) quenching Rq

- 5) parasitic capacitance parallel to Rq
- 4) inductive trace lines from cell to signal pad (see improvements by using Trough Silicon Vias in Hamamatsu devices → Sato et al IEEE NSS 2013)
- trailing edge shape fluctuates (after-pulses) and Pulse width depends on △V:
 - \rightarrow falling signal part not useful for timing (detrimental)
 - \rightarrow better not to use Time-over-Threshold (for single photon)
- Additional contribution from baseline fluctuations (dark pulses, afterpulses)
- Very often electronics contribution dominates

Example of Single Photon Timing Res. ("intrinsic")

NOTE: good timing performances kept up to 10MHz/mm² photon rates

Interesting comparative timing measurements: see work in progress by *Brunner etal at DIRC 2013* ! at the moment I don't think they reach the ultimate timing resolution for the SiPM samples under study

G.Collazuol

Ц

SPTR comparison - various SiPM types

G.Collazuol - RICH 2013

A.Rohzin – PhotoDet 2012

digital- SiPM timing resolution

Time Resolution

· Sensor triggered by attenuated laser pulses at first photon level

- Laser pulse width: 36ps FWHM, λ = 410nm
- Contribution to time resolution (FWHM):

SPAD: 54ps, trigger network: 110ps, TDC: 20ps

Trigger network skew currently limits the timing resolution

Optimizing signal shape for timing

It can be shown that there are 2 signal components: fast + slow (recovery) (see eg C. de La Taille at PhotoDet 2012)

 $C_{\underline{q}}^2 R_{\underline{q}}$ Tr max fast - max slow

Increasing C_q/C_d or/and R_q/R_{load} \rightarrow spike enhancement \rightarrow better timing \rightarrow slow recovery tail suppressed

 \rightarrow reduced baseline fluctuations

Among new (2013) Hamamatsu structures

- trench insulation (against cross-talk)
- metal resistor
- → enhanced and well controlled amount of "parasitic" Cq

enhanced fast pulse amplitude
 suppressed slow pulse amplit.

Old Fast Pulse Slow Pulse 10 ns • HFF • Trench Fast Pulse Slow Pulse better timing with fast component
 lower sensitivity to baseline fluctuations
 → further improve timing by using higher gain

T.Nagano et al IEEE NSS 2013

Optimizing signal shape for timing

SensL new SiPM architecture for fast timing

Figure 2: Concept schematic of the SensL fast output SiPM shown as an array of microcells connected in parallel (Courtesy of SensL [9].) Each diode symbol represents an individual p-n junction microstructure. Unlike standard SiPMs, each junction in the SensL device has a connection to a third electrode with a low capacitive coupling.

see also O'Neill et al - PhotoDet 2012

Measured SPE pulse shapes

Figure 9: Measured SPE signals from the SensL MicroFB-30035 device (3×3 mm2 area with 35 μ m microcells): fast output (red), standard output (blue), and (black) standard output connected to an external C-R shaping circuit (τ = 2 ns).

Time (ns)

Dolinsky et al – IEEE NSS 2013

Additional **Fast timing output** is shown to be equivalent to external high-pass filtering (clipping) but of more practical use (many photons applications)

For a comparison of timing performances with many photons see Y.Uchiyama et al IEEE NSS 2013

10

Hybrids → large area

- HAPD (multi-pixel / 1 pixel very large area)
- VSiPMT (prototype, 1 pixel)

APD is not suited for single photon... BUT \Rightarrow

APD biased for **low gain** M < 1/k

- fast exponential growing due to only electrons
- high number of carriers in high field region at given time:
- \rightarrow small gain fluctuations
- Timing fluctuations are small: limited only by the length of depletion region
 → time resolution limited by electronics (high Amplification for low light signals)

Hayat et al J. Lightwave Tech. 24 (2006) 755 Fox et al Rev. Sci. Instr. 70 (1999) 1951

APD biased for **high gain** M > 1/k

- hole ionization events contribute
- → increase of gain is the result of small number of large pulses due to one or more hole ionization initiated secondary avalanches (ENF)
- low number of carriers in high field region at given time and hole ionization near cathode resulting in larger pulses
- \rightarrow large gain fluctuations
- **slow buildup** and long pulse due to many carriers over long time
- → large timing fluctuations

Large Area Photo-Detectors \rightarrow H-APD

moderate "Bombardment" gain + low avalanche gain

Developements (Hamamatsu) for various Cherenkov based detectors → Belle II ARICH (baseline) see talk by S.Nishida at this Conference → Hyper-Kamiokande (option) see talk by S.Hirota at this Conference

Large Area Photo-Detectors → HAPD

Dedicated APD layout for

- kinematic E threshold
- protection against alkali
- HV insulation
- mitigate radiation effects

see talk by S.Korpar at this Conference

Single photon sensitivity

Note: expected improvement in timing resolution compared to same geometry PMT tubes (in particular for 8" and 20" devices

 \rightarrow poster by Y.Suda at this conference)

Large Area Photo-Detectors \rightarrow VSiPMT

58

Large Area Photo-Detectors → hybrids

personal comments

Advantages of SiPM vs APD in hybrids

1) high gain in SiPM \rightarrow no need for bombardment gain, just enough energy for photoelectrons to reach the active region \rightarrow threshold \sim O(2-3kV)

2) gain stability

- independent of HV stability
- SiPM gain more stable than APD
- 3) less critical HV insulation

Note: e- detection efficiency is mainly limited by Fill Factor of SiPM

- \rightarrow can keep over-voltage lower than usual for SiPM
- → VSiPMT might work at quite low noise O(10kHz), not MHZ ! (might need a bit of bombardment gain \rightarrow compromise ?)

Note: VSiPM timing resolution expected to be better than same area Vacuum PMTs (limited mainly by fluctuations in photo-electron time of flight, and in NEA emission time lag)

Challenges common to all hybrids

- 1) use of photo-cathode \rightarrow PDE, timing, ...cost
- 2) need high vacuum, cathode activation, protection against alkali
- 3) troubles with electronics in vacuum

Examples of Cherenkov detectors based on SiPM

- \rightarrow FACT: cherenkov telescope based on SiPM
- \rightarrow Proximity focusing RICH with SiPM (Krizan et al)
- → Proximity focusing RICH with d-SIPM (FARICH)

FACT: First G-APD Cherenkov Telescope

FACT: First G-APD Cherenkov Telescope

→ A.Biland at this Conference

1) single photon detection even in presence of background at high rate \rightarrow thanks to fast sampling electronics

2) long term stability of detector response, thanks to

 \rightarrow long term stability of SiPM behaviour (dependences on parameters)

 \rightarrow feedback correction of Vbias \rightarrow keep constant over-voltage against

1) $V_{\text{breakdown}}$ changing with Temperature

2) V drop across series resistors in HV bias circuit, changing with photon flux (full moon/new moon \rightarrow very different "baseline" current levels drawn from bias supply)

stability check 1)

Average gain of all pixels vs average sensor temperature

Impressive demonstration of

stability check 2) Average light-pulser amplitude vs average current

Proximity focusing RICH with SiPM readout

 light collectors and (adjusting the pad size to the ring thickness) Baseline photo-detector for BelleII Endcap PID system is H-APD. Tests with SiPMs as option

P.Krizan, S.Korpar et al

Proximity focusing RICH with SiPM readout

Array of SiPMs: Hamamatsu MPPC S11834-3388DFA novel type of a multi-pixel Photon Counter (MPPC)

- •8x8 SiPM array, with 5x5 mm2 SiPM channels
- •Active area 3x3 mm2
- •Cell size: 50 µm
- •Rather low dark count rate (~100 kHz/mm2)
- •Operating voltage: $(70 \pm 1) V$

Optimization of light guides geometry

(truncated pyramids) \rightarrow max acceptance

Quartz light concentrator

- Material: quartz (n = 1.48)
- Pyramids glued (n = 1.52) on a 1mm thick quartz plane plate
- Dimensions a=3mm d=3mm
 - $\rightarrow \sim 91\%$ acceptance (simulation)

Most recent tests (2013) courtesy of P.Krizan et al

Detector Module Measured gain: $\sim 3.5 \times 10^5$ @ 72.8 V

Proximity focusing RICH with SiPM readout

Further plans

2013

RICH

G.Collazuol

• no showstop !

- New electronics: EASIROC ASIC and FPGA-TDC
- Eliminate rim and assemble modules to measure the whole Cherenkov ring

FARICH: Focusing Aerogel RICH with d-SiPM

Pixels in module packing density ~70%

S.Kononov Vienna Conference on Instrumentation 2013

2013

RICH

ī.

G.Collazuol

 \rightarrow E.A.Kravchenko at this Conference

FARICH test beam at CERN T10

Test conditions

- Positive polarity e⁺, μ⁺, π⁺, K⁺, p
- Momentum: I 6 GeV/c
- Trigger: a pair of sc. counters 1.5x1.5 cm² in coincidence separated by ~3 m
- No external tracking, particle ID, precise timing of trigger
- Hardware hit selection in a programmable time window to fit in data bandwidth

Pixel hit map

hits.yindex:hits.xindex

Event by Event ring fit

Hit selection and ring fit:

- Reject central hits
- Select hits in 4 ns time window
- More than 3 selected hits per event
- 4 parameters fitted: X_{center}, Y_{center}, R, t₀

Timing resolution for Cherenkov hits

FARICH: Particle separation

~4% crosstalk probability between pixels of one die \rightarrow ring radius resolution deterioration

68

together with sensors)

Conclusions: Analog vs Digital SiPM

Digital SiPM good features

- can turn off noisier micro-cells
- reduced after-pulsing (less charge)
- triggering at known photon level
- sophisticated triggering and time pickoff architecture
- inherently digital readout

In addition to Philips D-SiPM see other dSiPM by → Charbon et al at IEEE NSS 2013

→ Stoppa et al at IEEE NSS 2013

Digital SiPM most critical features

- scaled CMOS process has typically worse noise characteristics
 → mitigated by hottest single cells
- Fill Factor limited by area of silicon die used for digital circuits ... unless exploiting 3D technology → see Tetrault, Fontaine et al at IEEE NSS 2013
- lower PDE due also to lower QE \rightarrow can be further optimized
- Additional radiation damages to integrated electronics \rightarrow tests to be done

Conclusions and outlook

Avalanche photo-diode:

- Internal multiplication: S/N improved \rightarrow still >5 p.e. detectable
- Gain limited by the excess noise due to avalanche multiplication noise
- Practical use for single photon only in Hybrid photo-detectors (H-APD)

GM-APD based PM: technology of SiPM is mature

- \rightarrow many flavours of SiPM \rightarrow w/ external ("analog") or integrated electronics ("digital")
- → candidates for more and more experimental setups including Cherenkov detectors
- \rightarrow price decreasing (competition) but far from production cost of O(10\$/cm²) (analog SiPM)
- Dark noise (DC) still the most limiting factor → limited active area
 → large area hybrid detectors demonstrated feasible (VSiPM or H-GMAPD)
- Correlated excess charge (AP,CT) under control → lower gain (small cells) desirable
 ... → tiny cells (low gain) for reducing noises (DC,AP,CT)
 and mitigating radiation damage impact on performances too
 → active quenching is mitigates those issues → Digital-SiPM (MOS-SiPM might
 be the "analog" alternative)
- Low T: SiPM perform ideally in the range 100K < T < 200K
 - \rightarrow best candidates for applications (superior to PMT also for radio-purity)

Development of GM-APD: up to now development focused on multi-photon and blue light applications → plenty of room for new devices in different directions:

- ultra-fast timing specific SiPM \rightarrow relatively easy, but still missing
- position sensitive → relatively easy but still missing
- DUV/VUV sensitive devices \rightarrow can be done with Si, just started
- IR/NIR sensitive devices → possibly based on different semiconductors
- charge particle detection \rightarrow just started

Thanks for your attention

Additional material \rightarrow

Digital SiPM

- Operating frequency: 200MHz
- 2 x TDC (bin width 23ps, 9bit)
- Configurable trigger network
- Validation logic to reduce sensor dead time due to dark counts
- JTAG for configuration and scan test
- Electrical trigger input for test and TDC calibration

 \sim

201

RICH

Т

G.Collazuol

Sensor Architecture

Digital SiPM – State Machine

- 200MHz (5ns) system clock
- Variable light collection time up to 20µs
- 20ns min. dark count recovery
- dark counts => sensor dead-time
- data output parallel to the acquisition of the next event (no dead time)
- Trigger at 1, \geq 2, \geq 3 and \geq 4 photons
- Validate at ≥4 ... ≥64 photons (possible) to bypass event validation completely)

Digital SiPM – Trigger Logic

- Each sub-pixel triggers at first photon
- Sub-pixel trigger can be OR-ed or AND-ed to generate probabilistic trigger thresholds
- Higher trigger threshold decreases system dead-time at high dark count rates at the cost of time resolution

T.Frach Heraeus Seminar 2013
Digital SiPM 8x8 Array ("Module" 64 time channels 256 position channels

Radiation damage

Radiation damage: two types

- Bulk damage due to Non Ionizing Energy Loss (NIEL) ← neutrons, protons
- Surface damage due to Ionizing Energy Loss (IEL) $\leftarrow \gamma$ rays (accumulation of charge in the oxide (SiO2) and the Si/SiO2 interface)

Assumption: damage scales linearly with the amount of Non Ionizing Energy Loss (NIEL hypothesis)

2013

RICH

Т

G.Collazuol

Radiation damage: effects on SiPM

1) Increase of dark count rate due to introduction of generation centers

Increase (ΔR_{DC}) of the dark rate: $\Delta R_{DC} \sim P_{01} \ a \ \Phi_{eq} \ Vol_{eff} \ /q_{e}$ where $a \sim 3 \times 10^{-17} \ A/cm$ is a typical value of the radiation damage parameter for low E hadrons and $Vol_{eff} \sim Area_{SIPM} \times \epsilon_{geom} \times W_{epi}$

NOTE:

The effect is the same as in normal junctions:

- independent of the substrate type
- dependent on particle type and energy (NIEL)
- proportional to fluence
- 2) Increase of after-pulse rate due to introduction of trapping centers

 \rightarrow loss of single cell resolution \rightarrow no photon counting capability

Radiation damage: neutrons (0.1 -1 MeV)

2013

RTCH

(「

Radiation damage: neutrons 1 MeV E_{eq}

- No change of V_{bd} (within 50mV accuracy)
- No change of R_a (within 5% accuracy)
- $\mathbf{I}_{_{\text{dark}}}$ and DCR significantly increase

SiPMs with high cell density and fast recovery time can operate up to $3*10^{10}$ n/mm² ($\delta G < 25\%$)

Y.Musienko at SiPM workshop CERN 2011

Radiation damage effects are mitigated by using devices with: \rightarrow small cells \rightarrow smaller charge flow (smaller gain \rightarrow charge) \rightarrow thin epi-layer

FARICH: Stability -> radiation and thermal cycles

Breakage: only 4 of 36 tiles failed after 2 weeks and several thermal cycles. DPC modules and tiles was not designed to work routinely at low temperature with frequent thermal cycles. It was just a first test.

S.Kononov Vienna Conference on Instrumentation 2013

2013

- RICH

G.Collazuol

Electronics

Front-end electronics: general comments

Strong push for high speed front-end > GHz

- Essential for timing measurements
- Several configurations to get GBW > 10 GHz
- Optimum use of SiGe bipolar transiistors

Voltage sensitive front-end

- Easiest : 50Ω termination, many commercial amplifiers
- Beware of power dissipation
- Easy multi-gain (time and charge)

Current sensitive front-end

- Potentially lower noise, lower input impedance
- Largest GBW product

• In all cases, importance of reducing stray inductance

Front-end electronics: different approaches

Charge sensitive amplifier

The charge Q delivered by the detector is collected on C_F

If the maximum ∆V_{OUT} is 3V and Q is 50pC (about 300 SiPM microcells), C_F must be 16.7pF

Perspective limitations in dynamic range and die area with low voltage, deep submicron technologies

Voltage amplifier

A I-V conversion is realized by means of R_s

The value of R_s affects the signal waveform

V_{OUT} must be integrated to extract the charge information: thus a further V-I conversion is needed

see F.Corsi et al – Pixel 2008

Current buffer

R_s is the (small) input impedance of the current buffer

The output current can be easily replicated (by means of current mirrors) and further processed (e.g. integrated)

The circuit is inherently fast

The current mode of operation enhances the dynamic range, since it does not suffer from voltage limitations due to deep submicron implementation

ASICs for SiPM signal readout (QDC/TDC)

W.Kucewicz "Review of ASIC developments for SiPM signal readout" - talk at CERN 11-2-2011

Chip Name	Measured quantity	Application	Input configuration	Technology	
		ILC Analog	-		
FLC_SiPM	Pulse charge	HCAL	Current input	СМО5 0,8 <i>µ</i> m	
		ATLAS			
MAROC	Pulse charge, trigger	luminometer	Current input	SiGe 0,35 μm	
	Pulse charge, trigger,				
SPIROC	time	ILC HCAL	Current input	SiGe 0,35 μm	
			Differential		
NINO	Trigger, pulse width	ALICE TOF	input	CMOS 0,25 µm	
	Pulse charge,		Differential		
PETA	trigger,time	PET	input	<i>C</i> MOS 0,18 <i>µ</i> m	
BASIC	Pulse height, trigger	PET	Current input	<i>C</i> MOS 0,35 µm	
SPIDER	Pulse height, trigger,				
(VATA64-HDR16)	time	SPIDER RICH	Current input		
RAPSODI	Pulse height, trigger	SNOOPER	Current input	CMOS 0,35 µm	

ASICs for SiPM signal readout (QDC/TDC)

W.Kucewicz - CERN 11-2-2011

		-						
Chip Name	# of channels	Digital output	Power supply	Area [sqr mm]	Dynamic range	Input resistance	Timing jitter	Year
FLC_SiPM	18	n	5V (0,2W)	10			-	2004
MAROC2	64	у	5 V	16	80 p <i>C</i>	50 Ω		2006
SPIROC	36	у	5 V	32				2007
NINO	8	n	(0,24W)	8	2000 pe	20 Ω	260 ps	2004
PETA	40	у	(1,2W)	25	8 bit		50 ps	2008
BASIC	32	у	3,3 V	7	70 pC	17 Ω	~120 ps	2009
SPIDER (VATA64-HDR16)	64	n		15	12 pC			2009
RAPSODI	2	у	3,3 V (0,2W)	9	100 pC	20 <u>Ω</u>	-	2008

- Only a few of the suitable for low light intensity

- Shaping stage can only remove information from the signal
- Shaping is unnecessary if FADC is "fast" enough = sampling speed 2x maximum frequency (Nyquist-Shannon)
- All operations (CFD, optimal filtering, integration) can be done digitally

Intro

Photo-detection in two steps

2. Internal charge multiplication implies

- \rightarrow better Signal/Noise ratio
- → intrinsic fluctuations in amplitude and timing (depending on the multiplication mechanism)

SiPM vs APD for single photon

- \rightarrow ENF increases with increasing gain
- → Temperature coefficient also increases with gain (... gain stability)

Devices with high multiplication noise are not good for single photon counting

Single photon counting is possible, but at **low temperature (T~77K)** and with slow electronics (and PDE~20%)

A. Dorokhov et al, JournalMod.Opt. v51 2004 p.1351

Reminder SiPM correlated noise:

1) no multiplication (excess) noise in SER

2) SER width due to intrinsic fluctuations in doping densities and non-uniformity of parameters among cells
3) Correlated noise is there, namely After-Pulsing and Cross-Talk

"excess charge factor (ECF)" but it does not prevent clean single photon

Silicon technology

Two different approaches for SPAD or GM-APD arrays

Custom technology

- control/tune shape of E field
 - \rightarrow high PDE
 - \rightarrow optimized timing resolution
 - \rightarrow low Dark Count Rate
 - \rightarrow low After-pulsing
- possible both Planar and Reach Through
 → tune spectral sensitivity
- limited integrated electronics

 (no libraries for complex functionalities and for deep-submicron features)
 - → simple integrated electronics (few large MOS)
 - \rightarrow it limits array dimensions and fill factor

Ancillary electronics (quenching/readout):

- → completely external → SiPM
- \rightarrow hybrid \rightarrow **SPAD arrays** ... complex fabrication

CMOS HV technology

- no optimization of shape of E field
 + high curvature sub-micron tech.
 - → special care for guard ring (limited range of GR possible only STI demonstrated ok)
- only Planar structures
 → UV/Blue sensitivity
- fully supported sub-micron technology with models and libraries →complex electr.
 - \rightarrow processing of large amount of data
 - \rightarrow high density \rightarrow imaging
 - \rightarrow ultra-fast timing

Ultrafast and/or imaging monolithic SPAD arrays

Silicon technology – few examples

Custom technology

SiPM "RGB" FBK – **external** electronics

substrate contact

N.Serra et al JINST 8 (2013) P03019

CMOS HV technology

integrated electronics

Stapels et al Procs. SPIE 7720 2009

Custom CMOS technology

Cammi et al Rev Sci Instr 83 (2012) 033104

The Guard Ring structure

Passive Quenching: tread-off τ_{quench} vs $\tau_{recovery}$

Passive Quenching (Resistive)⁴⁵⁰/425

- 1) common solution: poly-silicon
- 2) alternative: metal thin film
- \rightarrow higher fill factor
- \rightarrow milder T dependence

Nagano IEEE NSS-MIC 2011

- \rightarrow flat optical window \rightarrow simpler ARC
- \rightarrow fully active entrance window
 - → high fill factor (constraints only from guard ring and X-talk)
- \rightarrow diffusion barrier against minorities \rightarrow less X-talk
- \rightarrow positive T coeff. (R~ T^{+2.4})
- \rightarrow production process simplified \rightarrow cost

Ninkovic et al NIM A610 (2009) 142

30

V_{bd} vs T \rightarrow T coefficient (ΔV stability)

Breakdown Voltage

Fig. 6. Breakdown voltage as a function of temperature of the MPPC with 400 pixels.

2013

G.Collazuol - RICH

Note: How to improve stability & over-voltage range ?

Engineering high electric field & depletion/drift layer profiles

Improved V_{bd} temperature coefficient \rightarrow stability & ΔV range

N.Serra: "Characterization of new FBK SiPM technology for visible light detection", JINST 2013 JINST 8 P03019

2013

RICH

ı.

G.Collazuol

Dynamic range and non-linearity

- Due to finite number of cells → signal saturation
- Correction possible BUT
 → degraded resolution

$$A \approx N_{firedcells} = N_{total} \cdot (1 - e^{-\frac{N_{pho}}{N}})$$

Best working conditions: N_{photo-electrons} < N_{SiPM cells}

Additional complications:
1) need correction to N_{fired-cells} due to cross-talk and after-pulse
2) effective dynamic range depends on recovery time and time scale of signal burst

 λI

Amplitude fluctuations

finite number of pixels: constraint \rightarrow limit in resolving the number of photons

see also Musienko et al JINST 2 2007 P0600

Disentangling noise components

C.Piemonte - Scuola Nazionale Rivelatori LNL 2013

2013

RICH

ı.

G.Collazuol

Disentangling noise components

C.Piemonte - Scuola Nazionale Rivelatori LNL 2013

$\textbf{QE} \rightarrow \textbf{PDE} \text{ shape vs } \lambda$

Recent measurement: Angular response

Variation of response with incident angle:

- understood with Fresnel reflections on entrance optical windows
 - \rightarrow if multilayer optical stack and polarization effects are accounted for
- interference effects not negligible when layers width \sim wavelength
- no effects seen in correlation with over-voltage and cell size

Improving PDE by E field engineering

Latest "RGB" **FBK** devices vs older devices

 $4 \cdot 10^{6}$

500 kΩ

170 fF

5.6 ns

350 ns

104

(1) $1 \times 1 \text{ mm}^2$ SiPM, 50 μ m cell at 20°C, OV=4 V; (2) Single-cell pulse, see figure 2.

480 kHz

Trend: Higher PDE & lower DCR...

PDE vs Temperature (ΔV constant)

Metal Quenching Resistor (Hamamatsu)

Sato et al IEEE NSS 2013

 \rightarrow temperature stability of Rq

- Improves \rightarrow uniformity of Rq
 - \rightarrow Fill Factor (high trasmittance \rightarrow deposited directly on active surface)
 - \rightarrow control amount of parasitic Cq (parallel to Rq) \rightarrow timing performances

The quenching resistor value increases as environmental temperature decreases. The larger resistor makes the pulse amplitude lower and the tail longer.

Metal quenching resistor achieved 1/5 temperature dependence

polysilicon

metal

Timing
Timing jitter: prompt and delayed components

1) Prompt component: gaussian with time scale O(100ps)

Statistical fluctuations in the avalanche:

- Longitudinal build-up (minor contribution)
- Transversal propagation (main contribution)

- via multiplication assisted diffusion (dominating in few μ m thin devices) *A.Lacaita et al. APL and El.Lett.* 1990

- via photon assisted propagation (dominating in thick devices – O(100µm)) *PP.Webb, R.J. McIntyre RCA Eng. 1982 A.Lacaita et al. APL 1992*

Multiplication assisted diffusion

Photon assisted propagation

Fluctuations due to

a) impact ionization statistics

b) variance of longitudinal position
of photo-generation: finite drift
time even at saturated velocity
note: saturated ve ~ 3 vh
(n-on-p are faster in general)

 \rightarrow Jitter at minimum \rightarrow **O(10ps)** (very low threshold \rightarrow not easy)

Fluctuations in shock-wave due to
 c) variance of the transverse
 diffusion speed v_{diff}

d) variance of transverse position of photo-generation: slope of current rising front depends on transverse position

→ Jitter → **O(100ps)** (usually threshold set high)

Timing jitter: prompt and delayed components

2) delayed component: non-gaussian tails with time scale O(ns)

Carriers photo-generated in the neutral regions above/beneath the junction and reaching the electric field region by diffusion

G.Ripamonti, S.Cova Sol.State Electronics (1985)

S.Cova et al. NIST Workshop on SPD (2003)

tail lifetime: $\tau \sim L^2 / \pi^2 D \sim up$ to some ns L = effective neutral layer thickness D = diffusion coefficient

G.C. et al NIMA 581 (2007) 461

→ Neutral regions underneath the junction : timing tails for long wavelengths
 → Neutral regions in APD entrance: timing tails for short wavelengths

PDE vs timing trade off / optimization

C.H.Tan et al IEEE J.Quantum Electronics 13 (4) (2007) 906

Optimizing signal shape for timing

Pulse shape parameters

Spares

Vacuum based PD

PMT: 80 years old... still the most used sensor for low-level light detection

Features

- sensitivity from DUV to NIR
- high gain
- low noise
 - \rightarrow single photon sensitivity
 - \rightarrow large area at \sim low cost
 - → low capacitance
- imaging capabilities (large pixels)
- high frequency response
 - \rightarrow fast response
- stability

Issues

- intrinsic limit QE < 40%</p>
- broad SER
- high voltage, bulky, fragile
- influenced by B, E fields
- damaged by high-level light
- ageing (eg. He)
- radiopurity

Developement

- \rightarrow photocathodes: new materials and geometries \rightarrow high QE
- → ultra-fast, large area, imaging MCP based PMTs
- \rightarrow hybrids (eg photo-cathode + SiPM) \rightarrow narrow SER

Large Area Pico-second MCP Photo-detectors

Large Area Photo-Detectors \rightarrow HPD

Light guides

 \rightarrow two Fresnel reflections less, ~8% gain