Endcap muon trigger upgrade

and possible extensions at ATLAS

Yasuyuki HORII (Nagoya University) BI Joint Symposium, 30 Mar. 2023

Higgs Boson Observation in 2012

Chunichi, Oct. 2013

ノーベル物理学賞

必ずある

ベル物理学賞に「ヒッグス粒子」が決まり、笑顔を見せる戸本誠 な授(前列中央)と学生ら=8日夜、名古屋市千種区の名古屋大で

Nagoya's Commitment: Thin Gap Chamber (TGC)

- Multiwire proportional chamber
- Primary role in muon trigger
- Height: ~25 m
- Channels: ~320,000

2022 — 10 Years after the Discovery

Article | Open Access | Published: 04 July 2022

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

The ATLAS Collaboration

Nature607, 52–59 (2022)Cite this article14kAccesses2Citations395AltmetricMetrics

Symposium: https://home.cern/events/anniversary-discovery-higgs-boson

Higgs boson coupling observed (>5σ) for Z, W, t, b, and τ.

• Indication (2 σ) for μ — more data needed

Run 3 Started on 5 July 2022

https://atlas.cern/Updates/Press-Statement/Run3-first-collisions

Accumulation of data samples of proton-proton collisions at 13.6 TeV

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions

Next — HL-LHC

Luminosity upgrade: 2 x 10^{34} cm⁻²s⁻¹ \rightarrow 5–7.5 x 10^{34} cm⁻²s⁻¹

Start of the operation in 2029

Physics Prospect for HL-LHC (Selected)

Di-Higgs production for self-coupling measurement

- SM significance for ATLAS bbγγ + bbττ: 3.2σ (link)
- SM significance for ATLAS + CMS: 5σ (link)

$$V(h) = \frac{1}{2}m_{H}^{2}h^{2} + \lambda_{3}vh^{3} + \frac{1}{4}$$
$$\lambda_{3}^{SM} = \lambda_{4}^{SM} = \frac{m_{H}^{2}}{2}$$

Direct constraint on Higgs potential!

 $2v^2$

Technical Design Reports (TDRs)

Six TDRs (~2600 pages) approved by CERN Research Board in Apr. 2018

Inner Tracker Pixel Detector ATL-TDR-030

Tile

Calorimeter

ATL-TDR-028

300 pages

Another TDR provided and approved later for High-Granularity Timing Detector [ATL-TDR-031]

Inner Tracker Strip Detector ATL-TDR-025 556 pages

LAr Calorimeter **ATL-TDR-027 271** pages

Y. Horii: editor **M.** Corradi: main editor and 1st project leader

Muon ATL-TDR-026 408 pages

Y. Horii: editor **M. Corradi: materials**

Trigger & DAQ ATL-TDR-029 608 pages

Upgrade of the Trigger and DAQ System

Extension of the trigger latency — improved selectivity Extension of the trigger and event filter rates — more events to later stages

	LHC ATLAS	HL-LHC ATLAS		
Trigger latency	2.5 µs	l0 μs		
Trigger output	I00 kHz	I MHz		
Event filter output	l kHz	I0 kHz		

Electronics upgrades are essential for the extensions of the latency and rate

TGC Electronics for HL-LHC

All TGC electronics boards will be replaced except for the ASD boards.

All hit data will be transferred from on-detector boards (PS boards) to off-detector boards (SL boards).

Muon tracks are reconstructed in modern FPGAs on SL boards.

TGC System for HL-LHC

	Num
Detector channels	32
ASD boards	23
PS boards	14
JATHub boards	4
SL borads	4

Newly developed

PS Board — Overview

- PP ASIC receives the LVDS hit signals from the ASD boards and align the timing. Each hit is assigned to a bunch crossing.
- FPGA collects the hit data of 256 channels and transfers them to SL boards with 8 Gbps x 2 optical connections.
- FPGA controls the ASD boards and the components on the PS boards.
- ~7W (I board), ~I0 kW (all boards)

Hit data to SL boards (8 Gpbs x 2)

Hit signals from ASD boards

Pre-production started in 2021

PS Board — Challenge

products for PS boards wherever possible. Challenge: confirmation of the radiation tolerance of COTS products!

Simulation of radiation level (Total Ionising Dose, TID) PS board: 6 Gy at HL-LHC

<u>Safety factors</u>

- SF_{sim}: safety factor for simulation uncertainty
- SF_{ldr}: safety factor for low-dose rate at actual experiment
- SF_{lot}: safety factor for lot-to-lot difference and difference in lot

	SF _{sim}		SF _{ldr}			SFlot		
TID	NIEL	SEE	TID (COTS)	TID (ASICs)	NIEL	SEE	All (COTS)	All (ASIC
1.5	2	2	1–5	1–1.5	1	1	1–4	1–2

Example: SF for FPGA TID: $1.5 \times 5 \times 4 = 30$, requirement: 180 Gy

- In order to establish a robust system, we use commercial-off-the-shelf (COTS)

PS Board — **Radiation Tests**

Total Ionising Dose (TID)

Gamma irradiation test at Nagoya Univ. (16 weeks)

Neutron irradiation test at Kobe Univ. (6 weeks)

Nagoya leaded and completed intensive radiation tests!

Non-Ionising Energy Loss (NIEL)

Single Event Upset (SEU)

SEU measurements and recovery Demo. at CERN

SL Board — Overview

Large-scale FPGA

- Xilinx XCVU13P
- Trigger and readout functions
- Control/monitor on-detector boards
- Optical transceiver
- 120 pairs of TX and RX lanes of FireFly
- Receive detector signals and transmit trigger and readout outputs

-IPMC mezzanine card

- CERN-developed IPMC
- Control/monitor power supply

-MPSoC mezzanine card

- Enclustra Mercury XU5
- Control/monitor the FPGA

Form factor: ATCA

SL Board — **Prototyping**

First prototype tested:

- Power up/down sequencing
- **Temperature monitoring**
- FPGA configuration and initial trigger firmware test
- FireFly loopback
- **MPSoC-FPGA** connection
- IMPC-Shelf manager connection
- Clock recovery for fixed latency (zero delay mode of Si5345)

Second prototype development in 2023

TWEPP 2022

Result of FireFly loopback test with <u>Xilinx IBERT</u>

9.6 Gb/s assumed max rate for SL

18.0 Gb/s as a test of board capacity

Number of error bits Number of transferred bits BER (Bit Error Ratio) =

Fast Muon Reconstruction — Design

Muon tracks reconstructed from TGC (EM) and selected with inner detectors.

Fast Muon Reconstruction — Firmware

Pattern matching — ultimate method (concept: M. Tomoto, firmware design: Y. Horii)

(1) Take coincidence and output position IDs in each of three stations: M1 (3 layers), M2 (2 layers) and M3 (2 layers)

(2)Combine position IDs on three stations and obtain segment data from FPGA UltraRAM where segment data are stored

Hit pattern list stored in UltraRAM

ID	Track segment	
M3	(position, angle)	
8	η_1, θ_1	
9	η_2 , $ heta_2$	
10	η_3, θ_3	

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ L0MuonTriggerPublicResults#Performance of trigger algorithm

Fast Muon Reconstruction — New Method (1)

The workflow shown in the following

Fast muon reconstruction developed with machine learning (CNN) implemented in FPGA

Fast Muon Reconstruction — New Method (2)²

A compact CNN developed — the structure optimised for the TGC detector, the parameters quantised, highly sparse network provided by pruning

Fast Muon Reconstruction — New Method (3)²

- Successfully implemented in XCVUI3P FPGA
- $^{\circ}$ Angular resolution similar to minimum χ^2
- Latency < 100 ns

NIMA 1045, 167546 (2023)

Possible Future Extensions

The algorithms with machine learning could extend the trigger acceptance for exotic signatures, e.g. close-by leptons, lepton jets, ...

Study ongoing...

Summary

- potential of HL-LHC.
- The TGC electronics will be replaced for larger latency and rate of the first-level trigger. All TGC data will be transferred to off-detector boards, and muon tracks are reconstructed in modern FPGAs.
- Fast muon reconstruction with a pattern matching method was developed as a baseline. Method with machine learning is under study.

• The ATLAS experiment will be upgraded to fully exploit the physics

Backup Slides

Physics Prospect for HL-LHC (Selected)

Improved measurements of the Higgs coupling

to gauge bosons and fermions

— improved understanding of the origin of masses

Percent-level for muon — second-generation fermion

Increase of Cross Section

Run I: 7-8 TeV Run 2: 13 TeV Run 3: 13.6 TeV LHC Design: 14 TeV Channel H (ggF) HH tt ttH tttt SUSY stop (1.2–1 Z' (5–6 TeV) QBH (9.5 TeV)

Increase of cross section — large for high mass

	13.6 / 13 TeV	14 / 13.6 TeV
	7%	6%
	11%	7%
	11%	6%
	13%	7%
	19%	11%
.5 TeV)	20–30%	14–19%
	50–70%	30–40%
	250%	100%

Challenges for HL-LHC

High luminosity, high pileup (high number of proton-proton collisions per proton-bunch crossing), high radiation level

Pileup 200

Total Ionising Dose: maximum 20 MGy

ATLAS Upgrades for HL-LHC

Upgraded Trigger and DAQ System

- Single level trigger at I MHz
- Improved 10 kHz event farm

- All silicon with at least 9 layers up to $|\eta| = 4$
- Less material, finer segmentation

New Muon Chambers

- Inner barrel region with RPCs, sMDTs, and TGCs
- Improved trigger efficiency/momentum resolution and reduced fake rate

High Granularity Timing Detector (HGTD)

- Precision time reconstruction (30 ps)
 - with Low-Gain Avalanche Detectors (LGAD)
- Improved pileup separation

Electronics Upgrades

- On-detector/off-detector electronics upgrades
 - of LAr Calorimeter, Tile Calorimeter, and Muon Chambers
- 40 MHz continuous readout with finer segmentation to trigger

New Inner Tracking Detector

- Coverage increased from $|\eta| < 2.5$ to $|\eta| < 4$

• 178 m³ of silicon pixel + strip — factor of 2.7 larger than the current ATLAS • Finer segmentation — improved vertexing, tracking, jet flavour tagging, ...

n: pseudorapidity

New Muon Chambers

- by additional Resistive Plate Chambers (RPCs): 78% \rightarrow 96%
- Doublet Thin Gap Chambers (TGCs) in the endcap inner layer replaced by triplet TGCs for fake reduction.

Acceptance of the muon trigger in the barrel region improved

Monitored Drift Tube (MDT) in the barrel inner layer replaced by small-diameter MDT for free space for RPCs.

High Granularity Timing Detector

- Precision time reconstruction (30 ps) with LGAD
- Coverage: $2.4 < |\eta| < 4.0$
- Pixel size: I.3 x I.3 mm², thickness: 50 μm
- Improved pileup jet suppression

Vertex z [mm]

ηl

Cross Section and Trigger

The cross section of the Higgs boson production is only 0.0000000005 of the total cross section of the proton-proton collision...

We select interesting collisions before storage "trigger".

Trigger and DAQ Upgrade

- Level 0: I MHz, $\sim 5.2 \text{ TB/s}$, latency 10 μ s
 - LHC: 100 kHz, ~290 GB/s, latency 2.5 µs
- Event Farm: 10 kHz, ~52 GB/s
 - LHC: I kHz, ~2.9 GB/s

Trigger and DAQ Upgrade

With the upgrade of the trigger and DAQ system, trigger thresholds similar to those used at Run I can be used at HL-LHC.

Retain high acceptance for various physics processes!

TGC ASD Board

- SONY analog master slice (bipolar)
- Preamplifier gain of 0.8V/pC
- Comparator with LVDS outputs
- ENC ~ 7500 electrons at C_{input} = 150 pF
- 16 channels per board

The current ASD chips satisfy the radiation tolerance criteria for HL-LHC. No replacement planned.

TGC PP ASIC

Design process	Silterra 0.18 μ s CMOS 6M1P
Supply voltage	3.3 V (LVDS Rx, TPG Driver) 1.8 V (PLL, Delay line, CMOS input and output) Voltage tolerance : ± 10 %
# of channels	Group A (16 ch), Group B (16 ch)
Timing control resolution	< 1 ns
Timing control range	> 40 ns
Timing jitter	~40 ps (LVDS Rx), ~40 ps (Variable Delay)
Temperature range	0 ~ 80 °C
Power consumption	~20 mW (Previous design: 130 mW)

Mass production completed.

TGC Fast Muon Reconstruction — Firmware

Preliminary resource utilisation

	Logic cells	BRAM	URAM
SLR0	68%	22%	52%
SLRI	64%	36%	43%
SLR2	68%	22%	52%
SLR3	27%	10%	21%
			1

