
CP Violation in the Standard Model (and Beyond)∗

Yosef Nir1, †

1Department of Particle Physics and Astrophysics

Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract

This is a written version of a series of lectures aimed at graduate students in particle physics.

We explain the reasons for the interest in CP violation and in flavor physics. We describe flavor

physics and the related CP violation within the Standard Model, and explain how the B-factories

proved that the CKM (KM) mechanism dominates the flavor changing (CP violating) processes

that have been observed in meson decays. We explain the implications of CP violation and of

flavor physics for new physics, with emphasis on the “new physics flavor puzzle”.
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I. INTRODUCTION

A. What is CP (violation)?

The CP transformation combines charge conjugation C with parity P. For example, a

left-handed (LH) electron e−L transforms under CP into a right-handed (RH) positron e+R.

CP is a good symmetry if there is a basis where all the parameters of the Lagrangian are

real. We do not prove it here but provide a simple intuitive explanation of this statement.

Consider a theory with a single scalar, ϕ, and two sets of N fermions, ψiL and ψiR (i =

1, 2, ..., N). The Yukawa interactions are given by

−LYuk = YijψLiϕψRj + Y ∗
ijψRjϕ

†ψLi, (1)

where we write the two hermitian conjugate terms explicitly. The CP transformation of the

fields is defined as follows:

ϕ→ ϕ†, ψLi → ψLi, ψRi → ψRi. (2)

Therefore, a CP transformation exchanges the operators

ψLiϕψRj
CP←→ ψRjϕ

†ψLi, (3)

but leaves their coefficients, Yij and Y ∗
ij , unchanged. This means that CP is a symmetry of

LYuk if Yij = Y ∗
ij .

In practice, things are more subtle, since one can define the CP transformation in a more

general way than Eq. (2):

ϕ→ eiθϕ†, ψiL → eiθLiψiL, ψiR → eiθRiψiR, (4)

with θ, θLi, θRi convention-dependent phases. Then, there can be complex couplings, yet

CP would be a good symmetry. The correct statement is that CP is violated if, using all

freedom to redefine the phases of the fields, one cannot find any basis where all couplings

are real. We note that a theory with only gauge interactions conserves CP as the coupling

constants are real.

There are four main reasons for the interest in CP violation:
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• CP asymmetries provide some of the theoretically cleanest probes of flavor physics.

The reason for that is that CP is a good symmetry of the strong interactions. Con-

sequently, for some hadronic decays, QCD-related uncertainties cancel out in the CP

asymmetries.

• For some processes, the CP violating part is particularly suppressed within the SM,

providing sensitivity to new physics at very high scales.

• Non-perturbative effects of the strong interactions are expected to generate an electric

dipole moment (EDM) of the neutron that is some ten orders of magnitude above

the current experimental upper bound. This situation is known as “the strong CP

problem.”

• There is a cosmological puzzle related to CP violation. The baryon asymmetry of the

Universe is a CP violating observable, and it is many orders of magnitude larger than

the SM prediction. Hence, there must exist new sources of CP violation beyond the

single phase of the CKM matrix.

B. What is flavor (violation)?

The term “flavors” is used, in the jargon of particle physics, to describe mass eigenstates

of the same gauge representation (but possibly different masses), namely several fields that

are assigned the same quantum charges. Within the Standard Model, when thinking of its

unbroken SU(3)C × U(1)EM gauge group, there are four different types of particles, each

coming in three flavors:

• Up-type quarks in the (3)+2/3 representation: u, c, t;

• Down-type quarks in the (3)−1/3 representation: d, s, b;

• Charged leptons in the (1)−1 representation: e, µ, τ ;

• Neutrinos in the (1)0 representation: ν1, ν2, ν3.

The term “flavor physics” refers to interactions that distinguish between flavors. By

definition, gauge interactions, namely interactions that are related to unbroken symmetries

5



and mediated therefore by massless gauge bosons, do not distinguish among the flavors and

do not constitute part of flavor physics. Within the Standard Model, flavor-physics refers

to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within

the Standard Model, these are the nine masses of the charged fermions and the four “mixing

parameters” (three angles and one phase) that describe the interactions of the charged weak-

force carriers (W±) with quark-antiquark pairs. If one augments the Standard Model with

Majorana mass terms for the neutrinos, one should add to the list three neutrino masses

and six mixing parameters (three angles and three phases) for the W± interactions with

lepton-antilepton pairs.

The term “flavor universal” refers to interactions with couplings (or to parameters) that

are proportional to the unit matrix in flavor space. Thus, the strong and electromagnetic in-

teractions are flavor-universal. An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that

are diagonal, but not necessarily universal, in the flavor space. Within the Standard Model,

the Yukawa interactions of the Higgs boson are flavor diagonal.

The term “flavor changing” refers to processes where the initial and final flavor-numbers

(that is, the number of particles of a certain flavor minus the number of anti-particles of the

same flavor) are different. In “flavor changing charged current” (FCCC) processes, both up-

type and down-type flavors, and/or both charged lepton and neutrino flavors are involved.

Examples are (i) muon decay via µ → eν̄eνµ, (ii) K− → µ−ν̄µ (which corresponds, at the

quark level, to sū → µ−ν̄µ), and (iii) B → ψK (b → cc̄s). Within the Standard Model,

these processes are mediated by the W -bosons and occur at tree level. In “flavor changing

neutral current” (FCNC) processes, either up-type or down-type flavors but not both,

and/or either charged lepton or neutrino flavors but not both, are involved. Example are

(i) muon decay via µ → eγ, (ii) KL → µ+µ− (which corresponds, at the quark level, to

sd̄→ µ+µ−), and (iii) B → ϕK (b→ ss̄s). Within the Standard Model, these processes do

not occur at tree level, and are often highly suppressed.

Another useful term is “flavor violation”. As we explain later in these lectures, if the

Yukawa couplings had vanished, the SM would have gained a global [SU(3)]5 symmetry.

Interactions, or parameters, that break this symmetry are called flavor violating.
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Flavor physics is interesting, on one hand, as a tool for discovery and, on the other hand,

because of intrinsic puzzling features:

• Flavor physics can discover new physics or probe it before it is directly observed in

experiments. More specifically, FCNC can be affected by new degrees of freedom that

are much heavier than the energy scale of the experiment. Here are some examples

from the past:

– The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;

– The size of ∆mK led to a successful prediction of the charm mass;

– The size of ∆mB led to a successful prediction of the top mass;

– The measurement of εK led to predicting the third generation.

– The measurement of neutrino flavor transitions led to the discovery of neutrino

masses.

• CP violation is closely related to flavor physics. Within the Standard Model, there is

a single CP violating parameter, the Kobayashi-Maskawa phase δKM [2]. Baryogenesis

tells us, however, that there must exist new sources of CP violation. Measurements of

CP violation in flavor changing processes might provide evidence for such sources.

• The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply

that there exists new physics at, or below, the TeV scale. If such new physics had a

generic flavor structure, it would contribute to flavor changing neutral current (FCNC)

processes orders of magnitude above the observed rates. The question of why this does

not happen constitutes the new physics flavor puzzle.

• Most of the charged fermion flavor parameters are small and hierarchical. The Stan-

dard Model does not provide any explanation of these features. This is the Standard

Model flavor puzzle.

• The SM flavor puzzle became even deeper after neutrino masses and mixings were

measured because, so far, neither smallness nor hierarchy in these parameters have

been established. This is the neutrino flavor puzzle.

7



II. THE STANDARD MODEL

A model of elementary particles and their interactions is defined by the following ingre-

dients: (i) The symmetries of the Lagrangian and the pattern of spontaneous symmetry

breaking (SSB); (ii) The representations of fermions and scalars. The Standard Model (SM)

is defined as follows:

• The symmetry is a local

GSM = SU(3)C × SU(2)L × U(1)Y . (5)

• It is spontaneously broken by the VEV of a single Higgs scalar,

ϕ(1, 2)+1/2, (⟨ϕ0⟩ = v/
√

2), (6)

GSM → SU(3)C × U(1)EM (QEM = T3 + Y ). (7)

• There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1. (8)

A. The Lagrangian

The most general renormalizable Lagrangian with scalar and fermion fields can be de-

composed into

L = Lkin + Lψ + LYuk + Lϕ. (9)

Here Lkin describes free propagation in spacetime, as well as gauge interactions, Lψ gives

fermion mass terms, LYuk describes the Yukawa interactions, and Lϕ gives the scalar po-

tential. We now find the specific form of the Lagrangian made of the fermion fields QLi,

URi, DRi, LLi and ERi (8), and the scalar field (6), subject to the gauge symmetry (5) and

leading to the SSB of Eq. (7).

1. Lkin

The local symmetry requires the following gauge boson degrees of freedom:

Gµ
a(8, 1)0, W µ

a (1, 3)0, Bµ(1, 1)0. (10)
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The corresponding field strengths are given by

Gµν
a = ∂µGν

a − ∂νGµ
a − gsfabcG

µ
bG

ν
c ,

W µν
a = ∂µW ν

a − ∂νW µ
a − gϵabcW

µ
b W

ν
c ,

Bµν = ∂µBν − ∂νBµ. (11)

The covariant derivative is

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY, (12)

where the La’s are SU(3)C generators (the 3× 3 Gell-Mann matrices 1
2
λa for triplets, 0 for

singlets), the Tb’s are SU(2)L generators (the 2 × 2 Pauli matrices 1
2
τb for doublets, 0 for

singlets), and the Y ’s are the U(1)Y charges. Explicitly, the covariant derivatives acting on

the various scalar and fermion fields are given by

Dµϕ =
(
∂µ +

i

2
gW µ

b τb +
i

2
g′Bµ

)
ϕ,

DµQLi =
(
∂µ +

i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)
QLi,

DµURi =
(
∂µ +

i

2
gsG

µ
aλa +

2i

3
g′Bµ

)
URi,

DµDRi =
(
∂µ +

i

2
gsG

µ
aλa −

i

3
g′Bµ

)
DRi,

DµLLi =
(
∂µ +

i

2
gW µ

b τb −
i

2
g′Bµ

)
LLi,

DµERi = (∂µ − ig′Bµ)ERi. (13)

Lkin is given by

LSM
kin = −1

4
Gµν
a Gaµν −

1

4
W µν
b Wbµν −

1

4
BµνBµν

−iQLiD/QLi − iURiD/URi − iDRiD/DRi − iLLiD/LLi − iERiD/ERi

−(Dµϕ)†(Dµϕ). (14)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2. Lψ

There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms

for the fermions because they are assigned to chiral representations of the gauge symmetry.
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We cannot write Majorana mass terms for the fermions because they all have Y ̸= 0. Thus,

LSM
ψ = 0. (15)

3. LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y d

ijQLiϕDRj + Y u
ijQLiϕ̃URj + Y e

ijLLiϕERj + h.c., (16)

where ϕ̃ = iτ2ϕ
†, and the Y f are general 3 × 3 matrices of dimensionless couplings. This

part of the Lagrangian is, in general, flavor-dependent (that is, Y f ̸∝ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y e → Ŷe = UeLY
eU †

eR, (17)

to change the basis to one where Y e is diagonal and real:

Ŷ e = diag(ye, yµ, yτ ). (18)

In the basis defined in Eq. (18), we denote the components of the lepton SU(2)-doublets,

and the three lepton SU(2)-singlets, as follows:(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
; eR, µR, τR, (19)

where e, µ, τ are ordered by the size of ye,µ,τ (from smallest to largest).

Similarly, without loss of generality, we can use a bi-unitary transformation,

Y u → Ŷu = VuLY
uV †

uR, (20)

to change the basis to one where Ŷ u is diagonal and real:

Ŷ u = diag(yu, yc, yt). (21)

In the basis defined in Eq. (21), we denote the components of the quark SU(2)-doublets,

and the quark up SU(2)-singlets, as follows:(
uL

duL

)
,

(
cL

dcL

)
,

(
tL

dtL

)
; uR, cR, tR, (22)
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where u, c, t are ordered by the size of yu,c,t (from smallest to largest).

We can use yet another bi-unitary transformation,

Y d → Ŷd = VdLY
dV †

dR, (23)

to change the basis to one where Ŷ d is diagonal and real:

Ŷ d = diag(yd, ys, yb). (24)

In the basis defined in Eq. (24), we denote the components of the quark SU(2)-doublets,

and the quark down SU(2)-singlets, as follows:(
udL

dL

)
,

(
usL

sL

)
,

(
ubL

bL

)
; dR, sR, bR, (25)

where d, s, b are ordered by the size of yd,s,b (from smallest to largest).

Note that if VuL ̸= VdL, as is the general case, then the interaction basis defined by (21)

is different from the interaction basis defined by (24). In the former, Y d can be written as

a unitary matrix times a diagonal one,

Y u = Ŷ u, Y d = V Ŷ d. (26)

In the latter, Y u can be written as a unitary matrix times a diagonal one,

Y d = Ŷ d, Y u = V †Ŷ u. (27)

In either case, the matrix V is given by

V = VuLV
†
dL, (28)

where VuL and VdL are defined in Eqs. (20) and (23), respectively. Note that VuL, VuR, VdL

and VdR depend on the basis from which we start the diagonalization. The combination

V = VuLV
†
dL, however, does not. This is a hint that V is physical. Indeed, below we see that

it plays a crucial role in the charged current interactions.

4. Lϕ

The scalar potential is given by

LSM
ϕ = −µ2ϕ†ϕ− λ(ϕ†ϕ)2. (29)

Choosing µ2 < 0 and λ > 0 leads to the required spontaneous symmetry breaking. This

part of the Lagrangian is also CP conserving.
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TABLE I: The SM particles

particle spin color QEM mass [v]

W± 1 (1) ±1 1
2g

Z0 1 (1) 0 1
2

√
g2 + g′2

A0 1 (1) 0 0

g 1 (8) 0 0

h 0 (1) 0
√
2λ

e, µ, τ 1/2 (1) −1 ye,µ,τ/
√
2

νe, νµ, ντ 1/2 (1) 0 0

u, c, t 1/2 (3) +2/3 yu,c,t/
√
2

d, s, b 1/2 (3) −1/3 yd,s,b/
√
2

5. Summary

The renormalizable part of the Standard Model Lagrangian is given by

 LSM = − 1

4
Gµν
a Gaµν −

1

4
W µν
b Wbµν −

1

4
BµνBµν − (Dµϕ)†(Dµϕ)

− iQLiD/QLi − iURiD/URi − iDRiD/DRi − iLLiD/LLi − iERiD/ERi

+
(
Y u
ijQLiURj ϕ̃+ Y d

ijQLiDRj ϕ+ Y e
ijLLiERj ϕ+ h.c.

)
− λ

(
ϕ†ϕ− v2/2

)2
, (30)

where i, j = 1, 2, 3.

The only complex couplings – and therefore the only potential sources of CP violation –

are the Yukawa matrices, Y u, Y d and Y e. In the basis defined by Eq. (18) and by either

Eq. (26) or by Eq. (27), the only complex parameters – and therefore the only potential

sources of CP violation – are in the unitary matrix V .

B. The spectrum

The spectrum of the SM is presented in Table I.

All masses are proportional to the VEV of the scalar field, v. For the three massive gauge
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bosons, and for the fermions, this is expected: In the absence of spontaneous symmetry

breaking, the former would be protected by the gauge symmetry and the latter by their

chiral nature. For the Higgs boson, the situation is different, as a mass-squared term does

not violate any symmetry.

For the charged fermions, the spontaneous symmetry breaking allows their masses because

they are in vector-like representations of the SU(3)C × U(1)EM group: The LH and RH

charged lepton fields, e, µ and τ , are in the (1)−1 representation; The LH and RH up-type

quark fields, u, c and t, are in the (3)+2/3 representation; The LH and RH down-type quark

fields, d, s and b, are in the (3)−1/3 representation. On the other hand, the neutrinos remain

massless in spite of the fact that they are in the (1)0 representation of SU(3)C × U(1)EM,

which allows for Majorana masses. Such masses require a VEV carried by a scalar field in

the (1, 3)+1 representation of the SU(3)C ×SU(2)L×U(1)Y symmetry, but there is no such

field in the SM.

The experimental values of the charged fermion masses are [1] 1

me = 0.510998946(3) MeV, mµ = 105.6583745(24) MeV, mτ = 1776.86(12) MeV,

mu = 2.2+0.5
−0.4 MeV, mc = 1.275+0.025

−0.035 GeV, mt = 173.1± 0.9 GeV,

md = 4.7+0.5
−0.3 MeV, ms = 95+9

−3 MeV, mb = 4.18+0.04
−0.03 GeV. (31)

C. The interactions

Within the SM, the fermions have five types of interactions. These interactions are

summarized in Table II. In the next few subsections, we explain the entries of this Table.

1. EM and strong interactions

By construction, a local SU(3)C ×U(1)EM symmetry survives the SSB. The SM has thus

the photon and gluon massless gauge fields. All charged fermions interact with the photon:

LQED,ψ = −2e

3
uiA/ui +

e

3
diA/di + eℓiA/ℓi, (32)

where u1,2,3 = u, c, t, d1,2,3 = d, s, b and ℓ1,2,3 = e, µ, τ . We emphasize the following points:

1 See [1] for detailed explanations of the quoted quark masses. For q = u, d, s, c, b, mq are the running quark

masses in the MS scheme, with mu,d,s = mu,d,s(µ = 2 GeV) and mc,b = mc,b(µ = mc,b).
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TABLE II: The SM fermion interactions. CPV (CPC) stands for CP violating (conserving).

interaction fermions force carrier coupling flavor CP

Electromagnetic u, d, ℓ A0 eQ universal CPC

Strong u, d g gs universal CPC

NC weak all Z0 e(T3−s2WQ)
sW cW

universal CPC

CC weak ūd/ℓ̄ν W± gV/g non-universal/universal CPV/CPC

Yukawa u, d, ℓ h yq diagonal CPC

1. The photon couplings are vector-like and parity conserving.

2. The photon couplings are CP conserving.

3. Diagonality: The photon couples to e+e−, µ+µ− and τ+τ−, but not to e±µ∓, e±τ∓ or

µ±τ∓ pairs, and similarly in the up and down sectors.

4. Universality: The couplings of the photon to different generations are universal.

All colored fermions (namely, quarks) interact with the gluon:

LQCD,ψ = −gs
2
qλaG/aq, (33)

where q = u, c, t, d, s, b. We emphasize the following points:

1. The gluon couplings are vector-like and parity conserving.

2. The gluon couplings are CP conserving.

3. Diagonality: The gluon couples to t̄t, c̄c, etc., but not to t̄c or any other flavor changing

pair.

4. Universality: The couplings of the gluon to different quark generations are universal.

The universality of the photon and gluon couplings are a result of the SU(3)C × U(1)EM

gauge invariance, and thus hold in any model, and not just within the SM.
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2. Z-mediated weak interactions

All SM fermions couple to the Z-boson:

LZ,ψ =
e

sW cW

[
−
(

1

2
− s2W

)
eLiZ/eLi + s2W eRiZ/eRi +

1

2
νLαZ/νLα (34)

+
(

1

2
− 2

3
s2W

)
uLiZ/uLi −

2

3
s2W uRiZ/uRi −

(
1

2
− 1

3
s2W

)
dLiZ/dLi +

1

3
s2W dRiZ/dRi

]
.

where να = νe, νµ, ντ . We emphasize the following points:

1. The Z-boson couplings are chiral and parity violating.

2. The Z-boson couplings are CP conserving.

3. Diagonality: The Z-boson couples diagonally and, as a result of this, there are no

Z-mediated flavor changing neutral current (FCNC) processes.

4. Universality: The couplings of the Z-boson to different fermion generations are uni-

versal.

The universality is a result of a special feature of the SM: all fermions of given chirality and

given charge come from the same SU(2)L × U(1)Y representation.

As an example to experimental tests of diagonality and universality, we can take the

leptonic sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z → e+e−) = (3.363± 0.004)% , (35)

BR(Z → µ+µ−) = (3.366± 0.007)% ,

BR(Z → τ+τ−) = (3.367± 0.008)% .

beautifully confirms universality:

Γ(µ+µ−)/Γ(e+e−) = 1.0009± 0.0028,

Γ(τ+τ−)/Γ(e+e−) = 1.0019± 0.0032.

Diagonality is also tested by the following experimental searches:

BR(Z → e+µ−) < 7.5× 10−7,

BR(Z → e+τ−) < 9.8× 10−6,

BR(Z → µ+τ−) < 1.2× 10−5. (36)
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3. W -mediated weak interactions

We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the

lepton mass eigenstates, things are simple, because there exists an interaction basis that is

also a mass basis. Thus,

LW,ℓ = − g√
2

(
νeL W/

+e−L + νµL W/
+µ−

L + ντL W/
+τ−L + h.c.

)
. (37)

Eq. (37) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently,

parity is violated.

2. The W -boson couplings to leptons are CP conserving.

3. Diagonality: the charged current interactions couple each charged lepton to a single

neutrino, and each neutrino to a single charged lepton. Note that a global SU(2)

symmetry would allow off-diagonal couplings; It is the local symmetry that leads to

diagonality.

4. Universality: the couplings of the W -boson to τ ν̄τ , to µν̄µ and to eν̄e are equal. Again,

a global symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well uni-

versality works, consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ → e+νe) = (10.71± 0.16)× 10−2,

BR(W+ → µ+νµ) = (10.63± 0.15)× 10−2,

BR(W+ → τ+ντ ) = (11.38± 0.21)× 10−2. (38)

As concerns quarks, things are more complicated, since there is no interaction basis that

is also a mass basis. In the interaction basis where the down quarks are mass eigenstates

(25), the W interactions have the following form:

LW,q = − g√
2

(
udL W/

+dL + usL W/
+sL + ubL W/

+bL + h.c.
)
. (39)
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The Yukawa matrices in this basis have the form (27), and in particular, for the up sector,

we have

LuYuk = (udL usL ubL)V †Ŷ u


uR

cR

tR

 , (40)

which tells us straightforwardly how to transform to the mass basis:
uL

cL

tL

 = V


udL

usL

ubL

 . (41)

Using Eq. (41), we obtain the form of the W interactions (39) in the mass basis:

LW,q = − g√
2

(uL cL tL) V W/ +


dL

sL

bL

+ h.c.. (42)

You can easily convince yourself that we would have obtained the same form starting from

any arbitrary interaction basis. We remind you that

V = VuLV
†
dL (43)

is basis independent. The matrix V is called the CKM matrix [2, 3].

Eq. (42) reveals some important features of the model:

1. Similarly to the leptons, only left-handed quarks take part in charged-current interac-

tions and, consequently, parity is violated by these interactions.

2. The matrix V is, in general, complex. (We will analyze this point in more detail

below.) Thus, the W -boson couplings to quarks are CP violating.

3. The W couplings to the quark mass eigenstates are neither universal nor diagonal.

The universality of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we

obtain the following predictions for the W decays:

Γ(W+ → ℓ+νℓ) ∝ 1,

Γ(W+ → uidj) ∝ 3|Vij|2 (i = 1, 2; j = 1, 2, 3). (44)
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The top quark is not included because it is heavier than the W boson. Taking this fact into

account, and the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1, (45)

we obtain

Γ(W → hadrons)/Γ(W → leptons) ≈ 2. (46)

Experimentally (we use [1] BR(W → leptons) = 0.326 ± 0.003 and BR(W → hadrons) =

0.674± 0.003)

Γ(W → hadrons)/Γ(W → leptons) = 2.07± 0.02, (47)

which, taking into account radiative corrections, is in good agreement with the SM predic-

tion. The (hidden) universality within the quark sector is tested by the prediction

Γ(W → uX) = Γ(W → cX) =
1

2
Γ(W → hadrons). (48)

Experimentally (we use [1] BR(W → cX) = 0.333 ± 0.026 and BR(W → hadrons) =

0.674± 0.003),

Γ(W → cX)/Γ(W → hadrons) = 0.49± 0.04. (49)

4. Yukawa interactions

The Yukawa interactions are given by

LYuk = − h

v
(me eL eR +mµ µL µR +mτ τL τR

+mu uL uR +mc cL cR +mt tL tR +md dL dR +ms sL sR +mb bL bR + h.c.
)
.

To see that the Higgs boson couples diagonally to the quark mass eigenstates, let us start

from an arbitrary interaction basis:

hDLY
dDR = hDL(V †

dLVdL)Y d(V †
dRVdR)DR

= h(DLV
†
dL)(VdLY

dV †
dR)(VdRDR)

= h(dL sL bL)Ŷ d(dR sR bR)T . (50)

We conclude that the Higgs couplings to the fermion mass eigenstates have the following

features:
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1. Diagonality.

2. Non-universality.

3. Proportionality to the fermion masses: the heavier the fermion, the stronger the cou-

pling. The factor of proportionality is mψ/v.

4. CP conserving.

Thus, the Higgs boson decay is dominated by the heaviest particle which can be pair-

produced in the decay. For mh ∼ 125 GeV, this is the bottom quark. Indeed, the SM

predicts the following branching ratios quoted in Table III for the leading decay modes. The

following comments are in order with regard to the predicted branching ratios:

1. From the seven branching ratios, three (b, τ, c) stand for two-body tree-level decays.

Thus, at tree level, the respective branching ratios obey BRb̄b : BRτ+τ− : BRcc̄ = 3m2
b :

m2
τ : 3m2

c . QCD radiative corrections somewhat suppress the two modes with the

quark final states (b, c) compared to one with the lepton final state (τ).

2. The WW ∗ and ZZ∗ modes stand for the three-body tree-level decays, where one of

the vector bosons is on-shell and the other off-shell.

3. The Higgs boson does not have a tree-level coupling to gluons since it carries no color

(and the gluons have no mass). The decay into final gluons proceeds via loop diagrams.

The dominant contribution comes from the top-quark loop.

4. Similarly, the Higgs decays into final two photons via loop diagrams with small

(BRγγ ∼ 0.002), but observable, rate. The dominant contributions come from the

W -boson and the top-quark loops which interfere destructively.

Experimentally, the decays into final ZZ∗, WW ∗, γγ, bb̄ and τ+τ− have been established.

D. Global symmetries

The SM has an accidental global symmetry:

GSM
global = U(1)B × U(1)e × U(1)µ × U(1)τ . (51)

This symmetry leads to various testable predictions. Here are a few examples:
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TABLE III: Higgs decays: The SM predictions for the branching ratios, and the experimental µ

values.

Mode BRSM µexperiment Comments

bb̄ 0.58 0.98± 0.20

WW ∗ 0.21 0.99± 0.15 3-body

gg 0.09 loop

τ+τ− 0.06 1.09± 0.23

ZZ∗ 0.03 1.17± 0.23 3-body

cc̄ 0.03

γγ 0.002 1.14± 0.14 loop

• The proton must not decay, e.g. p→ e+π0 is forbidden.

• FCNC decays of charged leptons must not occur, e.g. µ→ eγ is forbidden.

• Neutrinos are massless, mν = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed,

implying that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms.

Two examples are the following:

• At dimension five,
zνij
Λ
LiLjϕϕ terms break U(1)e × U(1)µ × U(1)τ .

• At dimension six,
yijkl
Λ2 QiQjQkLl terms break U(1)B.

Thus, given that mν ̸= 0, we learn that the SM is, at best, a good low energy effective field

theory.

In the absence of the Yukawa matrices, LYuk = 0, the SM would gain [U(3)]5 global

symmetry:

GSM
global(Y

u,d,e = 0) = SU(3)3q × SU(3)2ℓ × U(1)5, (52)

where

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D,

20



SU(3)2ℓ = SU(3)L × SU(3)E,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E. (53)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number

(L) and hypercharge (Y ), which are respected by the Yukawa interactions. The two remain-

ing U(1) groups can be identified with the PQ symmetry whereby the Higgs and DR, ER

fields have opposite charges, and with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor

symmetry SU(3)3q × SU(3)2ℓ , under which

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (54)

where the Vi are unitary matrices. The Yukawa interactions (16) break the global symmetry

into the subgroup of Eq. (51). (Of course, the gauged U(1)Y also remains a good symmetry.)

Thus, the transformations of Eq. (54) are not a symmetry of LSM. Instead, they correspond

to a change of the interaction basis. These observations also offer an alternative way of

defining flavor physics: it refers to interactions that break the [SU(3)]5 symmetry (54).

Thus, the term “flavor violation” is often used to describe processes or parameters that

break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the global SU(3)3q

symmetry (but are neutral under U(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q
, Y d ∼ (3, 1, 3̄)SU(3)3q

, (55)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2ℓ symmetry (but

are neutral under U(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2
ℓ
. (56)

The spurion formalism is convenient for several purposes: parameter counting (see below),

identification of flavor suppression factors (see Section VII), and the idea of minimal flavor

violation (see Section VII B).

E. Counting parameters

How many independent parameters are there in LqYuk? The two Yukawa matrices, Y u and

Y d, are 3 × 3 and complex. Consequently, there are 18 real and 18 imaginary parameters

21



in these matrices. Not all of them are, however, physical. The pattern of Gglobal breaking

means that there is freedom to remove 9 real and 17 imaginary parameters (the number of

parameters in three 3× 3 unitary matrices minus the phase related to U(1)B). For example,

we can use the unitary transformations QL → VQQL, UR → VUUR and DR → VDDR, to

lead to the following interaction basis:

Y d = Ŷd, Y u = V †Ŷu, (57)

where Ŷd,u are diagonal and real,

Ŷd = diag(yd, ys, yb), Ŷu = diag(yu, yc, yt), (58)

while V is a unitary matrix that depends on three real angles and one complex phase. We

conclude that there are 10 quark flavor parameters: 9 real ones and a single phase. In the

mass basis, we identify the nine real parameters as six quark masses and three mixing angles,

while the single phase is δKM.

How many independent parameters are there in LℓYuk? The Yukawa matrix Y e is 3×3 and

complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There

is, however, freedom to remove 6 real and 9 imaginary parameters (the number of parameters

in two 3 × 3 unitary matrices minus the phases related to [U(1)]3). For example, we can

use the unitary transformations LL → VLLL and ER → VEER, to lead to the following

interaction basis:

Y e = Ŷe = diag(ye, yµ, yτ ), (59)

where ye,µ,τ are real. We conclude that there are 3 real lepton flavor parameters. In the mass

basis, we identify these parameters as the three charged lepton masses. We must, however,

modify the model when we take into account the evidence for neutrino masses.

F. The strong CP problem

The counting of parameters described above is done at the classical level. Usually, when

quantizing a system, the number of parameters is not changed. Yet, there are exceptions

that are related to non-Abelian gauge groups. In the SM it turns out that there is one

more renormalizable parameter that is unphysical at the classical level but is physical at the
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quantum level. This parameter is called θQCD:

LθQCD
=
θQCD

32π2
ϵµνρσG

µν
a G

ρσ
a . (60)

This term violates P and CP. In particular, it leads to an electric dipole moment (EDM) of

the neutron dn. The experimental upper bound on the EDM of the neutron,

dn < 2.9× 10−26 e cm, (61)

implies that, θQCD ∼< 10−9, that is it is very small. The problem of why θQCD is so small is

known as the strong CP problem. We do not discuss it any further here.

III. THE CKM MATRIX

Among the SM interactions, the W -mediated interactions are the only ones that are not

diagonal. Consequently, all flavor changing processes depend on the CKM parameters. The

fact that there are only four independent CKM parameters, while the number of measured

flavor changing processes is much larger, allows for stringent tests of the CKM mechanism

for flavor changing processes and of the KM mechanism of CP violation.

A. Parametrization of the CKM matrix

The CKM matrix V is a 3× 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in defining V in that we can permute between the various generations.

This freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e.

(u1, u2, u3)→ (u, c, t) and (d1, d2, d3)→ (d, s, b). The elements of V are written as follows:

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (62)

(ii) There is further freedom in the phase structure of V . This means that the number

of physical parameters in V is smaller than the number of parameters in a general unitary

3 × 3 matrix which is nine (three real angles and six phases). Let us define Pq (q = u, d)

to be diagonal unitary (phase) matrices. Then, if instead of using VqL and VqR for the

rotations (20) and (23) to the mass basis we use ṼqL and ṼqR, defined by ṼqL = PqVqL and
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ṼqR = PqVqR, we still maintain a legitimate mass basis since Mdiag
q remains unchanged by

such transformations. However, V does change:

V → PuV P
∗
d . (63)

This freedom is fixed by demanding that V has the minimal number of phases. In the three

generation case V has a single phase. (There are five phase differences between the elements

of Pu and Pd and, therefore, five of the six phases in the CKM matrix can be removed.)

This is the Kobayashi-Maskawa phase δKM which is the single source of CP violation in the

quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters

can be made manifest by choosing a specific parametrization. The standard choice is [4]

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (64)

where cij ≡ cos θij and sij ≡ sin θij. The θij’s are the three real mixing parameters while δ

is the Kobayashi-Maskawa phase. The experimental central values of the four parameters

are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, δ = 74o. (65)

As we will later see, experiments imply a hierarchy in the size of the CKM entries:

|Vub|, |Vtd| ≪ |Vcb|, |Vts| ≪ |Vus|, |Vcd| ≪ |Vud|, |Vcs|, |Vtb|. (66)

Consequently, it is convenient to choose an approximate expression where this hierarchy

is manifest. This is the Wolfenstein parametrization, where the four mixing parameters

are (λ,A, ρ, η) with λ = |Vus| ≈ 0.23 playing the role of an expansion parameter and η

representing the CP violating phase [5, 6]:

V =


1− 1

2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ+ 1
2
A2λ5[1− 2(ρ+ iη)] 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1− 2(ρ+ iη)] 1− 1

2
A2λ4

 . (67)

The experimental ranges for the four parameters are given by

λ = 0.2251± 0.0005, (68)

A = 0.81± 0.03,

ρ = +0.160± 0.007,

η = +0.350± 0.006.
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FIG. 1: Graphical representation of the unitarity constraint VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a

triangle in the complex plane.

B. Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix

leads to various relations among the matrix elements, e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (69)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (70)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (71)

Each of these three relations requires the sum of three complex quantities to vanish and so

can be geometrically represented in the complex plane as a triangle. These are “the unitarity

triangles”, though the term “unitarity triangle” is usually reserved for the relation (71) only.

The unitarity triangle related to Eq. (71) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (71) by (a) choosing a phase convention

such that (VcdV
∗
cb) is real, and (b) dividing the lengths of all sides by |VcdV ∗

cb|. Step (a) aligns

one side of the triangle with the real axis, and step (b) makes the length of this side 1.

The form of the triangle is unchanged. Two vertices of the rescaled unitarity triangle are

thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the

Wolfenstein parameters (ρ, η). The area of the rescaled unitarity triangle is |η|/2.

Depicting the rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex

sides are

Ru ≡
∣∣∣∣VudVubVcdVcb

∣∣∣∣ =
√
ρ2 + η2, Rt ≡

∣∣∣∣VtdVtbVcdVcb

∣∣∣∣ =
√

(1− ρ)2 + η2. (72)
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TABLE IV: FCCC processes and CKM entries. The values of the parameters are taken from Ref.

[9].

Process CKM

u→ dℓ+ν |Vud| = 0.97420± 0.00021

s→ uℓ−ν̄ |Vus| = 0.2243± 0.0005

c→ dℓ+ν or νµ + d→ c+ µ− |Vcd| = 0.218± 0.004

c→ sℓ+ν or cs̄→ ℓ+ν |Vcs| = 0.997± 0.017

b→ cℓ−ν̄ |Vcb| = 0.0422± 0.0008

b→ uℓ−ν̄ |Vub| = 0.0039± 0.0004

pp→ tX |Vtb| = 1.02± 0.03

b→ scū and b→ suc̄ γ = 73± 5o

The three angles of the unitarity triangle are defined as follows [7, 8]:

α ≡ arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV ∗
cb

]
. (73)

They are physical quantities and can be independently measured by CP asymmetries in B

decays. It is also useful to define the two small angles of the unitarity triangles (70,69):

βs ≡ arg

[
−VtsV

∗
tb

VcsV ∗
cb

]
, βK ≡ arg

[
− VcsV

∗
cd

VusV ∗
ud

]
. (74)

In terms of the Wolfenstein parameter λ, the angles α, β, γ = O(1), βs = O(λ2) and

βK = O(λ4).

C. The CKM matrix from tree level processes

The absolute values of seven entries and, in addition, one phase of the CKM matrix are

extracted from tree level processes, see Table IV.

These eight measurements already over-constrain the four Wolfenstein parameters, but

the CKM mechanism passes this test successfully. The ranges that are consistent with all

tree level measurements are the following:

λ = 0.2245± 0.0005, A = 0.84± 0.02, ρ = +0.14± 0.04, η = +0.37± 0.03. (75)

26



The λ and A parameters are very well determined. The main effort in CKM measurements

is thus aimed at further improving our knowledge of ρ and η. The present status of our

knowledge is best seen in a plot of the various constraints and the final allowed region in the

ρ − η plane. This is shown in Fig. 2. The present status of our knowledge of the absolute

values of the various entries in the CKM matrix can be summarized as follows:

|V | =


0.97434± 0.00012 0.22506± 0.00050 (3.57± 0.15)× 10−3

0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013

(8.75± 0.33)× 10−3 0.0403± 0.0013 0.99915± 0.00005

 . (76)

D. CP violation

In this section we prove that CP violation in a two generation SM is impossible. In

contrast, in a three generation SM, CP is violated in general. This CP violation requires,

however, a long list of necessary conditions on the SM flavor parameters.

1. SM2: CP conserving

Consider a two generation Standard Model, SM2. This model is similar to the one defined

in Section II, which in this section will be referred to as SM3, except that there are two,

rather than three fermion generations. Many features of SM2 are similar to SM3, but there

is one important difference: CP is a good symmetry of SM2, but not of SM3. To see how

this difference comes about, let us examine the accidental symmetries of SM2. We follow

here the line of analysis of SM3 in Section II E.

If we set the Yukawa couplings to zero, LSM2
Yuk = 0, SM2 gains an accidental global sym-

metry:

Gglobal
SM2 (Y u,d,e = 0) = U(2)Q × U(2)U × U(2)D × U(2)L × U(2)E, (77)

where the two generations of each gauge representation are a doublet of the corresponding

U(2). The Yukawa couplings break this symmetry into the subgroup

Gglobal
SM2 = U(1)B × U(1)e × U(1)µ. (78)

A-priori, the Yukawa terms depend on three 2 × 2 complex matrices, namely 12R + 12I

parameters. The global symmetry breaking, [U(2)]5 → [U(1)]3, implies that we can remove

5× (1R+3I)−3I = 5R+12I parameters. Thus the number of physical flavor parameters is 7
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real parameters and no imaginary parameter. The real parameters can be identified as two

charged lepton masses, four quark masses, and the single real mixing angle, sin θc = |Vus|.

The important conclusion for our purposes is that all imaginary couplings can be removed

from SM2, and CP is an accidental symmetry of the model.

2. SM3: Not necessarily CP violating

A-priori, CP is not necessarily violated in SM3. If two quarks of the same charge had

equal masses, one mixing angle and the phase could be removed from V . This can be written

as a condition on the quark mass differences. CP violation requires

(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d) ̸= 0. (79)

Likewise, if the value of any of the three mixing angles were 0 or π/2, then the phase can

be removed. Finally, CP would not be violated if the value of the single phase were 0 or π.

These last eight conditions are elegantly incorporated into one, parametrization-independent

condition. To find this condition, note that the unitarity of the CKM matrix, V V † = 1,

requires that for any choice of i, j, k, l = 1, 2, 3,

Im[VijVklV
∗
ilV

∗
kj] = J

3∑
m,n=1

ϵikmϵjln. (80)

In terms of the explicit parameterizations given in Eqs. (64) and (67), we have

J = c12c23c
2
13s12s23s13 sin δ ≈ λ6A2η. (81)

The conditions on the mixing parameters are summarized by

J ̸= 0. (82)

The quantity J is called the Jarlskog invariant [10] and is of much interest in the study of

CP violation from the CKM matrix. The maximum value that J could assume in principle

is 1/(6
√

3) ≈ 0.1, but it is found to be [9]

J = (3.18± 0.15)× 10−5. (83)

It is interesting to note that the areas of all six unitarity triangles are the same, and equal

J/2.
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TABLE V: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating

sd ∆mK/mK = 7.0× 10−15 ϵK = 2.3× 10−3

cu ∆mD/mD = 8.7× 10−15 AΓ/yCP ∼< 0.2

bd ∆mB/mB = 6.3× 10−14 SψK = +0.70± 0.02

bs ∆mBs/mBs = 2.1× 10−12 Sψϕ = −0.04± 0.06

The fourteen conditions incorporated in Eqs. (79) and (82) can all be written as a single

requirement on the quark mass matrices in the interaction basis:

XCP ≡ Im
{

det
[
MdM

†
d ,MuM

†
u

]}
̸= 0 ⇔ CP violation. (84)

This is a convention independent condition.

IV. FLAVOR CHANGING NEUTRAL CURRENT (FCNC) PROCESSES

A very useful class of FCNC is that of neutral meson mixing. Nature provides us with

four pairs of neutral mesons: K0 − K0, B0 − B0, B0
s − B0

s, and D0 − D0. Mixing in this

context refers to a transition such as K0 → K0 (s̄d→ d̄s).2 The experimental results for CP

conserving and CP violating observables related to neutral meson mixing (mass splittings

and CP asymmetries in tree level decays, respectively) are given in Table V.

Our aim in the following subsections is to explain the suppression factors that affect

FCNC and the special role of CP violation within the SM.

A. Loop suppression

The W -boson cannot mediate FCNC processes at tree level, since it couples to up-down

pairs, or to neutrino-charged lepton pairs. Obviously, only neutral bosons can mediate

FCNC at tree level. The SM has four neutral bosons: the gluon, the photon, the Z-boson

2 These transitions involve four-quark operators. When calculating the matrix elements of these operators

between meson-antimeson states, approximate symmetries of QCD are of no help. Instead, one uses lattice

calculations to relate, for example, the B0 → B0 transition to the corresponding quark process, b̄d→ d̄b.
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and the Higgs-boson. As concerns the massless gauge bosons, the gluon and the photon,

their couplings are flavor-universal and, in particular, flavor-diagonal. This is guaranteed

by gauge invariance. The universality of the kinetic terms in the canonical basis requires

universality of the gauge couplings related to the unbroken symmetries. Hence neither the

gluon nor the photon can mediate flavor changing processes at tree level. The situation

concerning the Z-boson and the Higgs-boson is more complicated. In fact, the diagonality

of their tree-level couplings is a consequence of special features of the SM, and can be violated

with new physics.

The Z-boson, similarly to the W -boson, does not correspond to an unbroken gauge

symmetry (as manifest in the fact that it is massive). Hence, there is no fundamental

symmetry principle that forbids flavor changing couplings. Yet, as mentioned in Section

II C 2, in the SM this does not happen. The key point is the following. For each sector of

mass eigenstates, characterized by spin, SU(3)C representation and U(1)EM charge, there

are two possibilities:

1. All mass eigenstates in this sector originate from interaction eigenstates in the same

SU(2)L × U(1)Y representation.

2. The mass eigenstates in this sector mix interaction eigenstates of different SU(2)L ×

U(1)Y representations (but, of course, with the same T3 + Y ).

Let us examine the Z couplings in the interaction basis in the subspace of all states that

mix within a given sector of mass eigenstates:

1. In the first class, the Z couplings in this subspace are universal, namely they are

proportional to the unit matrix (times T3−Q sin2 θW of the relevant interaction eigen-

states). The rotation to the mass basis maintains the universality: VfM ×1×V †
fM = 1

(f = u, d, e; M = L,R).

2. In the second class, the Z couplings are only “block-universal”. In each sub-block i

of mi interaction eigenstates that have the same (T3)i, they are proportional to the

mi × mi unit matrix, but the overall factor of (T3)i − Q sin2 θW is different between

the sub-blocks. In this case, the rotation to the mass basis, VfM × diag{[(T3)1 −

Qs2W ]1m1 , [(T3)2 −Qs2W ]1m2 , . . .} × V
†
fM , does not maintain the universality, nor even

the diagonality.
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The special feature of the SM fermions is that they belong to the first class: All fermion

mass eigenstates in a given SU(3)C ×U(1)EM representation come from the same SU(3)C ×

SU(2)L×U(1)Y representation.3 For example, all the left-handed up quark mass eigenstates,

which are in the (3)+2/3 representation, come from interaction eigenstates in the (3, 2)+1/6

representation. This is the reason that the SM predicts universal Z couplings to fermions.

If, for example, Nature had left-handed quarks also in the (3, 1)+2/3 representation, then the

Z couplings in the left-handed up sector would be non-universal and the Z could mediate

FCNC.

The Yukawa couplings of the Higgs boson are not universal. In fact, in the interaction

basis, they are given by completely general 3 × 3 matrices. Yet, as explained in Section

II C 4, in the fermion mass basis they are diagonal. The reason is that the fermion mass

matrix is proportional to the corresponding Yukawa matrix. Consequently, the mass matrix

and the Yukawa matrix are simultaneously diagonalized. The special features of the SM in

this regard are the following:

1. All the SM fermions are chiral, and therefore there are no bare mass terms.

2. The scalar sector has a single Higgs doublet.

In contrast, either of the following possible extensions would lead to flavor changing Higgs

couplings:

1. There are quarks or leptons in vector-like representations, and thus there are bare

mass terms.

2. There is more than one SU(2)L-doublet scalar.

We conclude that within the SM, all FCNC processes are loop suppressed. However, in

extensions of the SM, FCNC can appear at the tree level, mediated by the Z boson or by

the Higgs boson or by new massive bosons.

3 This is not true for the SM bosons. The vector boson mass eigenstates in the (1)0 representation come

from interaction eigenstates in the (1, 3)0 and (1, 1)0 representations (W3 and B, respectively).
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B. CKM suppression

Obviously, all flavor changing processes are proportional to off-diagonal entries in the

CKM matrix. A quick look at the absolute values of the off-diagonal entries of the CKM

matrix (76) reveals that they are small. A rough estimate of the CKM suppression can be

acquired by counting powers of λ in the Wolfenstein parametrization (67): |Vus| and |Vcd|

are suppressed by λ, |Vcb| and |Vts| by λ2, |Vub| and |Vtd| by λ3.

For example, the amplitude for b→ sγ decay comes from penguin diagrams, dominated

by the intermediate top quark, and suppressed by |VtbVts| ∼ λ2. As another example, the

B0−B0 mixing amplitude comes from box diagrams, dominated by intermediate top quarks,

and suppressed by |VtbVtd|2 ∼ λ6.

C. GIM suppression

If all quarks in a given sector were degenerate, then there would be no flavor changing W -

couplings. A consequence of this fact is that FCNC in the down (up) sector are proportional

to mass-squared differences between the quarks of the up (down) sector. For FCNC processes

that involve only quarks of the first two generations, this leads to a strong suppression

factor related to the light quark masses, and known as Glashow-Iliopoulos-Maiani (GIM)

suppression [11].

Let us take as an example ∆mK , the mass splitting between the two neutral K-mesons.

We have ∆mK = 2|MKK̄ |, where MKK̄ corresponds to the K0 → K0 transition and comes

from box diagrams. The top contribution is CKM-suppressed compared to the contributions

from intermediate up and charm, so we consider only the latter:

MKK̄ ≃
∑

i,j=u,c

G2
Fm

2
W

16π2
⟨K0|(d̄LγµsL)2|K0⟩(VisV ∗

idVjsV
∗
jd)× F (xi, xj), (85)

where xi = m2
i /m

2
W . If we had mu = mc, the amplitude would be proportional to (VusV

∗
ud +

VcsV
∗
cd)

2, which vanishes in the two generation limit. We conclude that ∆mK ∝ (m2
c −

m2
u)/m

2
W , which is the GIM suppression factor.

For the B0 − B0 and Bs − Bs mixing amplitudes, the top-mediated contribution is not

CKM suppressed compared to the lighter generations. The mass ratio m2
t/m

2
W enhances,

rather than suppresses, the top contribution. Consequently, the MBB̄ amplitude is domi-
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nated by the top contribution:

MBB̄ ≃
G2
Fm

2
W

16π2
⟨B0|(d̄LγµbL)2|B0⟩(VtbV ∗

td)
2 × F (xt, xt) . (86)

D. CPV suppression

In some cases, CP violating (CPV) observables related to neutral meson mixing are

CKM suppressed beyond their CP conserving (CPC) counterparts. The two most relevant

examples are the suppression of ϵK , related to K0−K0 mixing, and the suppression of Sψϕ,

related to Bs −Bs mixing.

Numerically, the effect of the extra suppression is most significant in the case of CPV in

kaon mixing. The ϵK observable depends on the relative phase between the CKM combina-

tion that contributes to K0−K0 mixing, (VcdV
∗
cs)

2, and the CKM combination that is related

to K0 and K0 decays into ππ, (VudV
∗
us)

2. This phase is of order |(VtdV ∗
ts)/(VudV

∗
us)| ∼ λ4,

which explains why ϵK = O(10−3). It can also be understood by examining the s − d uni-

tarity triangle: it is of the order of the ratio between its area (representing CPV) and its

long side squared (representing CPC).

The effect of the extra suppression is also significant in the case of CPV in the Bs

system. The Sψϕ observable depends on the relative phase between the CKM combination

that contributes to Bs − Bs mixing, (VtbV
∗
ts)

2, and the CKM combination that is related to

Bs and Bs decays into ψϕ, (VcbV
∗
cs)

2. This phase is of order |(VubV ∗
us)/(VcbV

∗
cs)| ∼ λ2, which

explains why Sψϕ = O(10−2). It can also be understood by examining the b − s unitarity

triangle: it is of the order of the ratio between its area (representing CPV) and its long side

squared (representing CPC).

V. SM CALCULATIONS OF CPV

In this section we give several examples of CPV observables that are used to test the

CKM mechanism of flavor violation and to search for or constrain new flavor physics.
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A. CPV in decay: B → DK

In order to have CP violation in decay, two amplitudes with different weak and different

strong phases have to contribute. In most cases, the calculation involves large hadronic un-

certainties, as the size of an amplitude and its strong phase are inherently non-perturbative.

Yet, there are a few cases where we can use approximate symmetries of QCD or related

measurements to determine the hadronic parameters. In these cases, CP violation in de-

cay serves as a clean probe of CKM parameters. Here we discuss one of these cases: the

extraction of the phase γ from B → DK decays.

Consider the following three B → DK decay modes:

B+ → D0K+, B+ → D0K+, B+ → DCPK
+, (87)

where DCP is a state that decays into a CP eigenstate. For the sake of concreteness,

we take DCP = (K+K−)D, namely the state that is tagged by a final K+K− state with

(pK+ + pK−)2 = m2
D. In what follows, we neglect D0 − D0 mixing and CP violation in D

decays. In this case, the CP-even DCP can be written as

DCP =
1√
2

(D0 +D0). (88)

The B+ → DCPK
+ can proceed in two ways:

1. B+ → D0K+ followed by D0 → K+K−. The corresponding quark transitions are

b̄→ c̄us̄ followed by c̄→ s̄sū. The CKM factors are

(V ∗
cbVus)(VcsV

∗
us). (89)

2. B+ → D0K+ followed by D0 → K+K−. The corresponding quark transitions are

b̄→ ūcs̄ followed by c→ ss̄u. The CKM factors are

(V ∗
ubVcs)(V

∗
csVus). (90)

CP violation comes from the interference between these decay amplitudes. It is proportional

to the relative weak phase, namely

arg

(
V ∗
ubVus
V ∗
cbVcs

)
= −γ. (91)
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Let us define the following pairs of CP conjugate amplitudes:

AD0K+ ≡ A(B+ → D0K+), AD0K− ≡ A(B− → D0K−),

AD0K+ ≡ A(B+ → D0K+), AD0K− ≡ A(B− → D0K−),

ADCPK+ ≡ A(B+ → DCPK
+), ADCPK− ≡ A(B− → DCPK

−) . (92)

Given Eq. (88) we have

ADCPK+ =
AD0K+ + AD0K+√

2
, ADCPK− =

AD0K− + AD0K−√
2

. (93)

The decay amplitudes AD0K+ and AD0K+ differ in magnitude, weak phase and strong phase.

The weak phase difference is γ, see Eq. (91). We define the ratio of sizes r and the strong

phase difference δ via

AD0K+

AD0K+

= rei(δ+γ),
AD0K−

AD0K−
= rei(δ−γ). (94)

We obtain the following decay rates for the flavor-specific final states:

Γ(B+ → D0K+) = Γ(B− → D0K−) = |AD0K+ |2,

Γ(B+ → D0K+) = Γ(B− → D0K−) = |AD0K+ |2r2, (95)

and for the CP eigenstate final states:

Γ(B+ → DCPK
+) = |ADCPK+|2 =

|AD0K+ |2

2

[
1 + r2 + 2r cos(δ + γ)

]
,

Γ(B− → DCPK
−) = |ADCPK−|2 =

|AD0K+ |2

2

[
1 + r2 + 2r cos(δ − γ)

]
. (96)

There are two points to be made here. First, since the two rates in Eq. (96) are CP

conjugates of each other we can define the CP asymmetry in decay as in Eq. (B5) with

f± = DCPK
± and we obtain, for r ≪ 1,

ADCPK = 2r sin γ sin δ. (97)

We thus demonstrated that CP violation in decay arises when we have two interfering

amplitudes with different weak and different strong phases.

The second point is that all the parameters that are necessary to extract γ, that is

|AD0K+ |, r and δ, can be determined experimentally. The flavor eigenstates D0 and D0 can

be tagged with semileptonic decays so that the two rates of Eq. (95) enable us to measure
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|AD0K+ | and r. Then, the two rates of Eq. (96) allow us to further determine δ and γ

(up to a discrete ambiguity in the phases). The crucial point is that we do not need to

calculate the size of the amplitudes and the strong phase. Instead, they are extracted from

the measurements. Thus, B → DK decays provide a theoretically clean determination of

the CP violating phase γ.

B. CPV in interference of decays with and without mixing: B → ψKS

We give here an example of the SM contribution to CP violation in the interference of

decays with and without mixing in the B → ψKS mode [12, 13]. This is often called “the

golden mode” with regard to CP violation, as its theoretical calculation is uniquely clean of

hadronic uncertainties. In fact, the CP asymmetry can be translated into a value of sin 2β

[β is defined in Eq. (73)], with a theoretical uncertainty smaller than one percent.

For the neutral B meson system, |ΓBB̄/MBB̄| ≪ 1 holds. Rewriting Eq. (98) as

MBB̄ ≃
G2
Fm

2
W

12π2
mBm

2
W (BBf

2
B)S(xt)(VtbV

∗
td)

2, (98)

we obtain
M∗

BB̄

|MBB̄|
=
V ∗
tbVtd
VtbV ∗

td

. (99)

The KS meson is the CP-even kaon state. For the sake of concreteness, we take KS =

(π+π−)K , namely the state that is tagged by a final π+π− state with (pπ+ + pπ−)2 = m2
K .

Thus,

• B0 → ψKS proceeds via B0 → ψK0 followed by K0 → π+π−. The corresponding

quark transitions are b̄→ c̄cs̄, followed by s̄→ ūud̄. The CKM factors are

(V ∗
cbVcs)(V

∗
usVud). (100)

• B0 → ψKS proceeds via B0 → ψK0 followed by K0 → π+π−. The corresponding

quark transitions are b→ cc̄s, followed by s→ uūd. The CKM factors are

(VcbV
∗
cs)(VusV

∗
ud). (101)

We further use the fact that the s− d unitarity triangle is very squashed and thus

V ∗
usVud ≈ −V ∗

csVcd. (102)
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We obtain:
AψKS

AψKS

= −VcbV
∗
cd

V ∗
cbVcd

. (103)

Combining Eq. (99) and Eq. (103), we obtain

λB→ψKS
=

M∗
BB̄

|MBB̄|
AψKS

AψKS

= −e−2iβ =⇒ Im(λB→ψKS
) = sin 2β. (104)

This result demonstrates the power of CP asymmetries in measuring CKM parameters.

The experimental measurement of Im(λψKS
) translates directly into the value of a CKM

parameter, β, with very little hadronic parameters. A crucial role is played by the CP

symmetry of the strong interactions. The size and the strong phase of the amplitude AψK

cannot be calculated, but they are the same in the CP conjugate amplitudes AψKS
and AψKS

and therefore cancel out when their ratio is taken.

A related example is that of the Bs → ψϕ. The analysis goes along similar lines to that

of B → ψK. We obtain

λBs→ψϕ =
M∗

BsB̄s

|MBsB̄s
|
Aψϕ
Aψϕ

= −e−2iβs =⇒ Im(λBs→ψϕ) = sin 2βs. (105)

with βs the equivalent of β in the b− s unitarity triangle, see Eq. (74).

C. CPV in mixing: K → ππ and K → πℓν

CPV was discovered in neutral kaon decays. We consider the following two CP asym-

metries: The δL asymmetry in the K → πℓν decays, defined in Eq. (B10), and the Amass
ππ

asymmetry in the K → ππ decays, defined in Eq. (B14). (To leading order, the result is the

same for f = π+π− and f = π0π0 final state, so we do not distinguish between them.)

CP violation in the K → ππ and K → πℓν decays has two features that allow to

circumvent most of the hadronic uncertainties in its analysis:

• CP violation in mixing and in the interference of mixing and decays is small, of

O(10−3).

• CP violation in decays is negligibly small, of O(10−6) for K → ππ and even smaller

for K → πℓν.

Neglecting CP violation in decay, we can write

λππ = −|q/p|eiϕ. (106)
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Note that sinϕ ̸= 0 signifies CPV in the interference of decays with and without mixing,

while |q/p| ̸= 1 signifies CPV in mixing. One defines a CP violating ϵK via

ϵK ≡
1 + λππ
1− λππ

. (107)

Given the smallness of CPV, we can approximate

Re(ϵK) ≈ 1

2
(1− |q/p|), Im(ϵK) ≈ −1

2
tanϕ. (108)

Thus, Im(ϵK) signifies CPV in the interference of decays with and without mixing, while

Re(ϵK) signifies CPV in mixing.

There are two important measurements that probe ϵK :

1. CPV in the K → πℓν decays, defined in Eq. (B10), provides a measurement ofRe(ϵK):

δL = 2Re(ϵK) ≈ (1− |q/p|). (109)

2. CPV in KL → ππ, defined Eq. (B14) with f = ππ, provides a measurement of |ϵK |:

Amass
ππ = |ϵK |2 ≈

tan2 ϕ+ (1− |q/p|)2

4
. (110)

Combining δL and Amass
ππ enables one to determine the magnitude and phase of ϵK . The data

gives

|ϵK | = 2.23× 10−3, arg(ϵK) = 43.5o. (111)

In order to calculate ϵK we then need to calculate |q/p| or ϕ. Both of them involve

hadronic uncertainties, and here we explain how the SM prediction forRe(ϵK) = 1
2
(1−|q/p|)

is obtained. What we need to calculate is ΓKK̄ . To overcome the large hadronic uncertainties

in such a calculation, we use the experimental result that ∆ΓK/∆mK ≈ −2. Furthermore,

given that the relevant CP violating effects are experimentally determined to be small, we

have ∆ΓK/∆mK ≃ |ΓKK̄/MKK̄ |. With these two ingredients and in the phase convention

where ΓKK̄ is real, we obtain

Re(ϵ) ≈ Im(MKK̄)

4∆mK

. (112)

Thus we need to calculate Im(MKK̄).

The SM contribution to MKK̄ comes from box diagrams with intermediate up-type

quarks. In the phase convention where ΓKK̄ is real, we have

Im(MKK̄) ≃ G2
Fm

2
W

12π2
mKm

2
W (BKf

2
K)

∑
i,j=c,t

S(xi, xj)Im[(VisV
∗
idVjsV

∗
jd)]. (113)
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While, as discussed in Section IV C, |MKK̄ | is dominated by the charm quark, this is not the

case for the imaginary part. The reason is that, of the three relevant CKM combinations,

the top-related one is highly suppressed: |V ∗
tdVts| ∼ λ5 compared to |V ∗

cdVcs| ≃ λ. Thus,

∆mK is dominated by the charm quark. As concerns Im(MKK̄), however, the two relevant

CKM combinations are equal in size: Im V ∗
cdVcs

V ∗
ud
Vus

= −Im V ∗
tdVts

V ∗
ud
Vus

, and thus the intermediate

top and charm quarks give comparable contributions to ϵK .

VI. TESTING CKM

Measurements of rates, mixing, and CP asymmetries in B decays in the two B factories,

BaBar and Belle, and in the two Tevatron detectors, CDF and D0, signified a new era in our

understanding of flavor physics and CP violation. The progress has been both qualitative

and quantitative. Various basic questions concerning CP and flavor violation have received,

for the first time, answers based on experimental information. These questions include, for

example,

• Is the Kobayashi-Maskawa mechanism at work (namely, is η ̸= 0)?

• Does the KM phase dominate the observed CP violation?

• Does the CKM mechanism dominate FCNC?

As a first step, one may assume the SM and test the overall consistency of the various

measurements. However, the richness of data from the B factories allow us to go a step

further and answer these questions model independently, namely allowing new physics to

contribute to the relevant processes. We here explain the way in which this analysis proceeds.

A. Is the CKM assumption Self-consistent?

The three generation standard model has room for CP violation, through the KM phase

in the quark mixing matrix. Yet, one would like to make sure that indeed CP is violated

by the SM interactions, namely that sin δKM ̸= 0. If we establish that this is the case, we

would further like to know whether the SM contributions to CP violating observables are

dominant. More quantitatively, we would like to put an upper bound on the ratio between

the new physics and the SM contributions.
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As a first step, one can assume that flavor changing processes are fully described by the

SM, and check the consistency of the various measurements with this assumption. There

are four relevant mixing parameters, which can be taken to be the Wolfenstein parameters

λ, A, ρ and η defined in Eq. (67). The values of λ and A are known rather accurately [9]

from, respectively, K → πℓν and b→ cℓν decays:

λ = 0.2245± 0.0005, A = 0.836± 0.015. (114)

Then, one can express all the relevant observables as a function of the two remaining pa-

rameters, ρ and η, and check whether there is a range in the ρ− η plane that is consistent

with all measurements. The list of observables includes the following:

• The rates of inclusive and exclusive charmless semileptonic B decays depend on

|Vub|2 ∝ ρ2 + η2;

• The CP asymmetry in B → ψKS, SψKS
= sin 2β = 2η(1−ρ)

(1−ρ)2+η2 ;

• The rates of various B → DK decays depend on the phase γ, where eiγ = ρ+iη√
ρ2+η2

;

• The rates of various B → ππ, ρπ, ρρ decays depend on the phase α = π − β − γ;

• The ratio between the mass splittings in the neutral B and Bs systems is sensitive to

|Vtd/Vts|2 = λ2[(1− ρ)2 + η2];

• The CP violation in K → ππ decays, ϵK , depends in a complicated way on ρ and η.

The resulting constraints are shown in Fig. 2.

The consistency of the various constraints is impressive. In particular, the following

ranges for ρ and η can account for all the measurements [9]:

ρ = +0.122± 0.018, η = +0.355± 0.012. (115)

One can make then the following statements [15]:

Very likely, flavor changing processes are dominated by the Cabibbo-Kobayashi-

Maskawa mechanism and, in particular, CP violation in flavor changing processes

is dominated by the Kobayashi-Maskawa phase.

In the following subsections, we explain how we can remove the phrase “very likely” from

this statement, and how we can quantify the ft(C)KM-dominance.
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FIG. 2: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charm-

less semileptonic B decays (|Vub|), mass differences in the B0 (∆md) and Bs (∆ms) neutral meson

systems, and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and B → DK

(γ). Taken from [14].

B. SψKS

As an example of how to use CPV and FCNC in probing new physics, we take SψKS
. When

we consider extensions of the SM, we still do not expect any significant new contribution to

the tree level decay, b → cc̄s, beyond the SM W -mediated diagram. Thus, the expression

ĀψKS
/AψKS

= (VcbV
∗
cd)/(V

∗
cbVcd) remains valid, though the approximation of neglecting sub-

dominant phases can be somewhat less accurate. On the other hand,since B0−B0 mixing is

an FCNC process, MBB̄ can in principle get large and even dominant contributions from new

physics. We can parameterize the modification to the SM in terms of a complex parameter

∆d::

MBB̄ = ∆d M
SM
BB̄(ρ, η). (116)
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Thus |∆d| ̸= 1 represents a new source of flavor violation:

∆mB = |∆d| × 2|MSM
BB̄(ρ, η)|, (117)

while Im(∆d) provides a new source of CP violation, leading to the following generalization

of Eq. (104):

SψKS
= sin [2arctan (η/(1− ρ)) + arg(∆d)] , CψKS

= 0 . (118)

The experimental measurements give the following ranges [16]:

SψKS
= +0.70± 0.02, CψKS

= −0.005± 0.015 . (119)

C. Is the KM mechanism at work?

In proving that the KM mechanism is at work, we assume that charged-current tree-level

processes are dominated by the W -mediated SM diagrams (see, for example, [17]). This is a

very plausible assumption. It is difficult to construct a model where new physics competes

with the SM in FCCC processes, and does not violate the constraints from FCNC processes.

Thus we can use all tree level processes and fit them to ρ and η, as we did before. The list

of such processes includes the following:

1. Charmless semileptonic B-decays, b→ uℓν, measure Ru [see Eq. (72)].

2. B → DK decays, which go through the quark transitions b → cūs and b → uc̄s,

measure the angle γ [see Eq. (73)].

3. B → ρρ decays (and, similarly, B → ππ and B → ρπ decays) go through the quark

transition b → uūd. With an isospin analysis, one can determine the relative phase

between the tree decay amplitude and the mixing amplitude. By incorporating the

measurement of SψKS
, one can subtract the phase from the mixing amplitude, finally

providing a measurement of the angle γ [see Eq. (73)].

In addition, we can use loop processes, but then we must allow for new physics con-

tributions, in addition to the (ρ, η)-dependent SM contributions. Of course, if each such

measurement adds a separate mode-dependent parameter, then we do not gain anything by

using this information. However, there is a number of observables where the only relevant
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FIG. 3: The allowed region in the ρ− η plane, assuming that tree diagrams are dominated by the

Standard Model [14].

loop process is B0 − B0 mixing. The list includes SψKS
, ∆mB and the CP asymmetry in

semileptonic B decays:

SψKS
= sin [2arctan (η/(1− ρ)) + arg(∆d)] ,

∆mB = 2|MSM
BB̄(ρ, η)| × |∆d|,

ASL = −Re
(

ΓBB̄
MBB̄

)SM
sin[arg(∆d)]

|∆d|
+ Im

(
ΓBB̄
MBB̄

)SM
cos[arg(∆d)]

|∆d|
. (120)

As explained above, such processes involve two new parameters [see Eq. (116)]. Since

there are three relevant observables, we can further tighten the constraints in the (ρ, η)-

plane. Similarly, one can use measurements related to Bs−Bs mixing. One gains three new

observables at the cost of two new parameters (see, for example, [18]).

The results of such fit, projected on the ρ− η plane, can be seen in Fig. 3. It gives [14]

η = 0.38± 0.02. (121)

It is clear that η ̸= 0 is well established:

The Kobayashi-Maskawa mechanism of CP violation is at work.

The consistency of the experimental results (119) with the SM predictions (104) means

that the KM mechanism of CP violation dominates the observed CP violation. In the next

subsection, we make this statement more quantitative.
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D. How much can new physics contribute to B0 −B0 mixing?

All that we need to do in order to establish whether the SM dominates the observed CP

violation, and to put an upper bound on the new physics contribution to B0−B0 mixing, is

to project the results of the fit performed in the previous subsection on theRe(∆d)−Im(∆d)

plane. If we find that |Im(∆d)| ≪ 1, then the SM dominance in the observed CP violation

will be established. The constraints are shown in Fig. 4.
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FIG. 4: Constraints in the Re(∆d)− Im(∆d) plane, assuming that NP contributions to tree level

processes are negligible [14].

We obtain:

Re(∆d) = +0.94+0.18
−0.15,

Im(∆d) = −0.11+0.11
−0.05. (122)

This can be translated into the following approximate (one sigma) upper bounds:

|MNP
BB̄/M

SM
BB̄ | ∼< 0.2,

Im(MNP
BB̄/M

SM
BB̄) ∼< 0.1. (123)
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We can make the following two statements:

1. A new physics contribution to B0 − B
0
mixing amplitude that carries a

phase that is significantly different from the KM phase is constrained to

lie below the 10% level.

2. A new physics contribution to the B0−B0
mixing amplitude which is aligned

with the KM phase is constrained to lie below the 20% level.

Analogous upper bounds can be obtained for new physics contributions to the K0 −K0,

B0
s −B0

s, and D0 −D0 mixing amplitudes.

VII. THE NEW PHYSICS FLAVOR PUZZLE

A. A model independent discussion

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above

mPlanck ∼ 1019 GeV:

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales

above mseesaw ∼ 1015 GeV;

3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest

that the scale where the SM is replaced with a more fundamental theory is actually

much lower, mtop−partners,mwimp ∼< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be

added to LSM. These are terms of dimension higher than four in the fields which, therefore,

have couplings that are inversely proportional to the scale of new physics ΛNP.

The lowest dimension non-renormalizable terms are dimension-five:

−Ldim−5
Seesaw =

Zν
ij

ΛNP

LLiLLjϕϕ+ h.c.. (124)

These are the seesaw terms, leading to neutrino masses.

Exercise 1: How does the global symmetry breaking pattern (51) change when (124) is

taken into account?
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Exercise 2: What is the number of physical lepton flavor parameters in this case? Iden-

tify these parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six set

of operators:

Ldim−6
∆F=2 =

∑
i ̸=j

zij
Λ2

(QLiγµQLj)
2, (125)

where the zij are dimensionless couplings. These terms contribute to the mass splittings

between the corresponding two neutral mesons. For example, the term Ldim−6
∆B=2 ∝ (dLγµbL)2

contributes to ∆mB, the mass difference between the two neutral B-mesons. We use

MNP
BB̄ =

1

6

zdb
Λ2
mBf

2
BBB. (126)

Analogous expressions hold for the other neutral mesons. Taking into account the bounds

of Eq. (123), we obtain

|zdb|
Λ2

<
2.3× 10−6

TeV2 ,
Im(zdb)

Λ2
<

1.1× 10−6

TeV2 . (127)

A more detailed list of the bounds derived from the ∆F = 2 observables in Table V is

given in Table VI. The bounds refer to two representative sets of dimension-six operators: (i)

left-left operators, that are also present in the SM, and (ii) operators with different chirality,

where the bounds are strongest because of larger hadronic matrix elements.

We note that, as explained above, for the K and Bs meson mixing, the bounds from CPV

observables are significantly stronger than those from CPC observables. In fact, the bound

from ϵK is the strongest bound of all.

The first lesson that we draw from these bounds on Λ is that new physics can contribute

to FCNC at a level comparable to the SM contributions even if it takes place at a scale

that is six orders of magnitude above the electroweak scale. A second lesson is that if the

new physics has a generic flavor structure, that is zij = O(1), then its scale must be above

104 − 105 TeV (or, if the leading contributions involve electroweak loops, above 103 − 104

TeV). If indeed Λ ≫ TeV , it means that we have misinterpreted the hints from the fine-

tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij. It could be that the scale of

new physics is of order TeV, but its flavor structure is far from generic. Specifically, if new

particles at the TeV scale couple to the SM fermions, then there are two ways in which

their contributions to FCNC processes, such as neutral meson mixing, can be suppressed:
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TABLE VI: Lower bounds on the scale of new physics Λ, in units of TeV, for |zij | = 1, and upper

bounds on zij , assuming Λ = 1 TeV. Taken from [19].

Operator Λ [TeV] CPC Λ [TeV] CPV |zij | Im(zij) Observables

(s̄Lγ
µdL)

2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; ϵK

(s̄RdL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; ϵK

(c̄Lγ
µuL)

2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; AΓ

(c̄RuL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; AΓ

(b̄Lγ
µdL)

2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6 ∆mB; SψK

(b̄RdL)(b̄LdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7 ∆mB; SψK

(b̄Lγ
µsL)

2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5 ∆mBs ; Sψϕ

(b̄RsL)(b̄LsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6 ∆mBs ; Sψϕ

degeneracy and alignment. Either of these principles, or a combination of both, signifies

non-generic structure.

One can use the language of effective operators also for the SM, integrating out all

particles significantly heavier than the neutral mesons (that is, the top, the Higgs and the

weak gauge bosons). Thus, the scale is ΛSM ∼ mW . Since the leading contributions to neutral

meson mixings come from box diagrams, the zij coefficients are suppressed by α2
2. To identify

the relevant flavor suppression factor, one can employ the spurion formalism. For example,

the flavor transition that is relevant to B0 − B0 mixing involves dLbL which transforms as

(8, 1, 1)SU(3)3q
. The leading contribution must then be proportional to (Y uY u†)13 ∝ y2t VtbV

∗
td.

Indeed, an explicit calculation (using VIA for the matrix element and neglecting QCD

corrections) gives4

2MBB̄

mB

≈ −α
2
2

12

f 2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (128)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[
1− 11x

4
+
x2

4
− 3x2 lnx

2(1− x)

]
. (129)

4 A detailed derivation can be found in Appendix B of [20].
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Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavor

suppression factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

Im(zSMcu ) ∼ α2
2y

2
b |VubVcb|2 ∼ 2× 10−14,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (130)

(We did not include zSMcu in the list because it requires a more detailed consideration.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed

by factors that are comparable or smaller than the SM ones. Why does that happen? This

is the new physics flavor puzzle.

The fact that the flavor structure of new physics at the TeV scale must be non-generic

means that flavor measurements are a good probe of the new physics. Perhaps the best-

studied example is that of supersymmetry. Here, the spectrum of the superpartners and

the structure of their couplings to the SM fermions will allow us to probe the mechanism of

dynamical supersymmetry breaking.

B. Minimal flavor violation (MFV)

Models of gauge mediated supersymmetry breaking (GMSB) provide a concrete example

of a large class of models that obey a simple principle called minimal flavor violation (MFV)

[21]. This principle guarantees that low energy flavor changing processes deviate only very

little from the SM predictions. The basic idea can be described as follows. The gauge inter-

actions of the SM are universal in flavor space. The only breaking of this flavor universality

comes from the three Yukawa matrices, Y u, Y d and Y e. If this remains true in the presence

of the new physics, namely Y u, Y d and Y e are the only flavor non-universal parameters,

then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions

that we presented in section II D. The Standard Model with vanishing Yukawa couplings

has a large global symmetry (52,53). In this section we concentrate only on the quarks. The

non-Abelian part of the flavor symmetry for the quarks is SU(3)3q of Eq. (53) with the three
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generations of quark fields transforming as follows:

QL(3, 1, 1), UR(1, 3, 1), DR(1, 1, 3). (131)

The Yukawa interactions,

LqYuk = QLY
dDRϕ+QLY

uURϕ̃, (132)

break this symmetry. The Yukawa couplings can thus be thought of as spurions with the

following transformation properties under SU(3)3q [see Eq. (55)]:

Y u ∼ (3, 3̄, 1), Y d ∼ (3, 1, 3̄). (133)

When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields

which transform under the flavor symmetry, and then require that all the Lagrangian terms,

constructed from the SM fields, Y d and Y u, must be (formally) invariant under the flavor

group SU(3)3q. Of course, in reality, LqYuk breaks SU(3)3q precisely because Y d,u are not fields

and do not transform under the symmetry.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be

applied in two ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension

operators, constructed from SM-fields and Y -spurions, are formally invariant under

Gglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators,

constructed from SM and the new fields, and from Y -spurions, are formally invariant

under Gglobal.

That MFV allows new physics at the TeV scale is demonstrated in Table VII. Note that

for the LL operators, MFV does not allow for new CPV phases [22].

Exercise 3: Use the spurion formalism to argue that, in MFV models, the KL → π0νν̄

decay amplitude is proportional to y2t VtdV
∗
ts.

Examples of MFV models include models of supersymmetry with gauge-mediation or

with anomaly-mediation of its breaking.
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TABLE VII: The MFV values and the experimental bounds on the coefficients of ∆F = 2 operators

Operator zij ∝ CKM+GIM |zij | < ( Λ
TeV )

2×

(s̄Lγ
µdL)

2 y4t (VtsV
∗
td)

2 10−7 9.0× 10−7

(s̄RdL)(s̄LdR) y4t ysyd(VtsV
∗
td)

2 10−14 6.9× 10−9

(c̄Lγ
µuL)

2 y4b (VcbV
∗
ub)

2 10−14 5.6× 10−7

(c̄RuL)(c̄LuR) y4bycyu(VcbV
∗
ub)

2 10−20 5.7× 10−8

(b̄Lγ
µdL)

2 y4t (VtbV
∗
td)

2 10−4 2.3× 10−6

(b̄RdL)(b̄LdR) y4t ybyd(VtbV
∗
td)

2 10−9 3.9× 10−7

(b̄Lγ
µsL)

2 y4t (VtbV
∗
ts)

2 10−3 5.0× 10−5

(b̄RsL)(b̄LsR) y4t ybys(VtbV
∗
ts)

2 10−6 8.8× 10−6

VIII. CONCLUSIONS

• Measurements of CP violating B-meson decays have established that the Kobayashi-

Maskawa mechanism is the dominant source of the observed CP violation.

• Measurements of flavor changing B-meson decays have established the the Cabibbo-

Kobayashi-Maskawa mechanism is a major player in flavor violation.

• The consistency of all these measurements with the CKM predictions sharpens the

new physics flavor puzzle: If there is new physics at, or below, the TeV scale, then its

flavor structure must be highly non-generic.

• Extensions of the SM where new particles couple to quark- and/or lepton-pairs are

constrained by flavor. If FCNC are still mediated at the loop level, and the new

couplings are O(1), then the scale of new physics must be ∼> 103 TeV. If, furthermore,

the new couplings carry phases of O(1), then the scale of new physics must be ∼> 104

TeV.

• There are two puzzles related to CP violation:

– The strong CP problem: Why is θQCD ≪ 1?

– The baryon asymmetry: Why is η ≫ 10−20?
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Precision measurements of CP asymmetries in meson decays, searches for EDMs, and the

search for CP violation in the Higgs interaction, may lead to discovery of new physics, and

perhaps also to progress on solving the CP-related puzzles.
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APPENDIX A: FORMALISM OF FLAVOR OSCILLATIONS

1. Formalism

Consider the case where initially, at t = 0, the neutral meson state is some specific

combination of P 0 and P 0:

|ψP (0)⟩ = a(0)|P 0⟩+ b(0)|P 0⟩ . (A1)

It evolves in time, and acquires components that correspond to all possible decay final states

{f1, f2, . . .}:

|ψP (t)⟩ = a(t)|P 0⟩+ b(t)|P 0⟩+ c1(t)|f1⟩+ c2(t)|f2⟩+ · · · . (A2)

Our interest lies in obtaining only a(t) and b(t). For this aim, one can use a simplified

formalism, where the full Hamiltonian, H, is replaced with a 2 × 2 effective Hamiltonian

H that is not Hermitian. The non-Hermiticity is related to the possibility of decays, which

makes the {P 0, P 0} system an open one.

Before we proceed, let us clarify a semantic issue. The effective Hamiltonian H and,

similarly, its Hermitian part M , are (combinations of) operators. What we need for our

purposes is its matrix element between specific meson states. We denote the operator by

Mij with i, j = 1, 2, and its matrix element by Mαβ with α, β = P, P̄ .
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The complex matrix H can be written in terms of Hermitian matrices M and Γ as

H = M − i

2
Γ . (A3)

The matrices M and Γ are associated with transitions via off-shell (dispersive) and on-shell

(absorptive) intermediate states, respectively. Diagonal elements of M and Γ are associated

with the flavor-conserving transitions P 0 → P 0 and P 0 → P 0. The CPT symmetry implies

that MPP = MP̄ P̄ and ΓPP = ΓP̄ P̄ . The off-diagonal elements are associated with the flavor

changing transitions P 0 ↔ P 0 and they are of significant interest for us. The phase

θP = arg(MPP̄Γ∗
PP̄ ) (A4)

is related to CP: H is CP symmetric if θP = 0.

Since H is not a diagonal matrix, the states that have well defined masses and decay

widths are not P 0 and P 0, but rather the eigenvectors of H. We denote the light and heavy

eigenstates by PL and PH with masses mH > mL. Another possible choice, which is standard

for K mesons, is to define the mass eigenstates according to their lifetimes. We denote the

short-lived and long-lived eigenstates by KS and KL with decay widths ΓS > ΓL. (The KL

meson is experimentally found to be the heavier state.)

The eigenstates of H are given by

|PL,H⟩ = p|P 0⟩ ± q|P 0⟩, (A5)

where (
q

p

)2

=
M∗

PP̄ − (i/2)Γ∗
PP̄

MPP̄ − (i/2)ΓPP̄
, |p|2 + |q|2 = 1. (A6)

(Note that the phase of q/p is convention dependent, and not a physical observable.) Since

H is not Hermitian, the eigenstates need not be orthogonal to each other, that is ⟨PH |PL⟩ =

|p|2 − |q|2 can be different from zero.

The eigenvalues of H can be written as

µH,L = mH,L +
i

2
ΓH,L, (A7)

such that the masses and decay-widths of the eigenstate are given by the real and imaginary

parts of the eigenvalues, respectively. The average mass and the average width are given by

m ≡ mH +mL

2
, Γ ≡ ΓH + ΓL

2
. (A8)
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The mass difference ∆m and the width difference ∆Γ are defined as follows:

∆m ≡ mH −mL, ∆Γ ≡ ΓH − ΓL. (A9)

Here ∆m is positive by definition, while the sign of ∆Γ is to be determined experimentally.

(Alternatively, one can use the states defined by their lifetimes to have ∆Γ ≡ ΓS − ΓL

positive by definition, in which case the sign of ∆m has to be determined experimentally.)

Solving the eigenvalue equation gives

(∆m)2 − 1

4
(∆Γ)2 = 4|MPP̄ |2 − |ΓPP̄ |2, ∆m∆Γ = 4Re(MPP̄Γ∗

PP̄ ). (A10)

The above expressions simplify for H that is CP symmetric, in which case θP = 0. As

concerns the eigenvectors, Eq. (A6) gives

|q/p| = 1 . (A11)

It follows that the mass eigenstates are also CP eigenstates, and are orthogonal to each

other, ⟨PH |PL⟩ = 0. As concerns the eigenvalues, Eq. (A10) gives

∆m = 2|MPP̄ |, |∆Γ| = 2|ΓPP̄ |. (A12)

Another limit of interest is when |ΓPP̄ | ≪ |MPP̄ |. In that case,

∆m = 2|MPP̄ |, |∆Γ| = 2|ΓPP̄ | cos θP . (A13)

It is interesting to note that for the four mesons in Nature to a very good approximation

∆m = 2|MPP̄ |. For B and Bs this is because |ΓPP̄ | ≪ |MPP̄ | while for K and D it is because

CP is conserved to a very good approximation, |θP | ≪ 1.

To study the time evolution of the neutral mesons, it is convenient to define the dimen-

sionless ratios,

x ≡ ∆m

Γ
, y ≡ ∆Γ

2Γ
, (A14)

the decay amplitudes of P 0 and its CP conjugate P 0 into a final state f ,

Af = ⟨f |H|P 0⟩, Af = ⟨f |H|P 0⟩, (A15)

and the parameter λf :

λf ≡
q

p

Af
Af

. (A16)

Our normalization is such that

Γ(P 0 → f) = |Af |2, Γ(P 0 → f) = |Af |2. (A17)
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2. Time evolution

Let us denote the time-evolved state of an initial state |P 0⟩ by |P 0(t)⟩, and of an initial

state |P 0⟩ by |P 0(t)⟩. For mass eigenstates, the time evolution is simple,

|PL,H(t)⟩ = e−imL,H t− 1
2
ΓL,H t|PL,H⟩. (A18)

But the time evolution of |P 0(t)⟩ and |P 0(t)⟩ is more complicated:

|P 0(t)⟩ = g+(t)|P 0⟩ − (q/p)g−(t)|P 0⟩ , |P 0(t)⟩ = g+(t)|P 0⟩ − (p/q)g−(t)|P 0⟩ , (A19)

where

g±(t) =
1

2

(
e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)
. (A20)

The time dependent decay rates of P 0 → f and P 0 → f are given by

dΓ[P 0(t)→ f ]/dt

e−Γt|Af |2
= (1 + |λf |2) cosh(yΓt) + (1− |λf |2) cos(xΓt)

+2Re(λf ) sinh(yΓt)− 2Im(λf ) sin(xΓt),

dΓ[P 0(t)→ f ]/dt

e−Γt|Af |2
= (1 + |λf |−2) cosh(yΓt) + (1− |λf |−2) cos(xΓt)

+2Re(λ−1
f ) sinh(yΓt)− 2Im(λ−1

f ) sin(xΓt). (A21)

We need to introduce the notion of “flavor tagging.” The flavor eigenstates P 0 and P 0

have a well defined flavor content. For example, B0 (B0) is a b̄d (bd̄) bound state. The term

flavor tagging refers to the experimental determination of whether a neutral P meson is in

a P 0 or P 0 state. Flavor tagging is provided to us by Nature, when the meson decays into

a flavor-specific final state, namely a state that can come from either P 0 or P 0 state, but

not from both. In other words, flavor specific decays refer to cases where either Af = 0 or

Af = 0. (Final states that are common to the decays of both P and P are also very useful

in flavor physics and, in particular, to the study of CP violation. They are discussed in

Section B.)

Semi-leptonic decays provide very good flavor tags. Take, for example, semileptonic b

(anti)quark decays:

b→ cµ−ν̄, b̄→ c̄µ+ν. (A22)

Thus, the charge of the lepton tells us the flavor: µ+ comes from a B0 (or B+) decay,

Aµ+νX = 0, while µ− comes from a B0 (or B−) decay, Aµ−ν̄X = 0. Of course, before the
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meson decays it could be in a superposition of B0 and a B0. The decay acts as a quantum

measurement. In the case of semileptonic decay, it acts as a measurement of flavor vs.

anti-flavor.

The oscillation formalism is simplified in the case of flavor tagged decay. Take the case

of Af = 0 and, therefore, λf = 0. We also simplify the discussion by assuming |q/p| = 1

and y = 0. We get

dΓ[P 0(t)→ f ]

dt
= e−Γt|Af |2 [1 + cos(xΓt)]

dΓ[P 0(t)→ f ]

dt
= e−Γt|Af |2 [1− cos(xΓt)] . (A23)

We see that the flavor oscillates with frequency of ∆m in the rest frame. The general case

of Eq. (A21) involves deviations from pure exponential decay which depend on both ∆m

and ∆Γ.

APPENDIX B: CP VIOLATION

CP asymmetries arise when two processes related by CP conjugation differ in their rates.

To date, CP violation has been observed (at a level higher than 5σ) in about thirty different

hadron decay modes, involving b or s decays. It has not been established in t and in c decays,

or in the leptonic sector, or in flavor diagonal processes, such as electric dipole moments.

Here we present the formalism relevant to measuring CP asymmetries in meson decays.

The experimental observation of CP violation is challenging for several reasons:

1. CP violation is related to interference. In order to have a sizable effect, we need con-

tributions from two amplitudes of similar size but significantly different CP violating

phases.

2. In order that there will be a CP asymmetry in a decay process, the presence of strong

phases (defined below) is needed. These phases might be small (or vanish) and suppress

the CP asymmetry (or make it vanish).

3. CPT implies that the total width of a particle and its anti-particle are the same.

Thus, any CP violation in one channel must be compensated by CP violation with an

opposite sign in other channels. Consequently, CP violation is suppressed in inclusive

measurements.
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4. Within the SM, CP violation arises only when all three generations are involved. With

the smallness of the CKM mixing angles, this means that either the CP asymmetries

are small, or they appear in modes with small branching ratios.

1. Notations and formalism

Our starting point is Eqs. (A21), which give the time-dependent decay rates Γ(B0(t)→ f)

and Γ(B0(t) → f). Before we proceed, we present some physics ingredients concerning the

decay amplitudes, and some further notations. We do so for the specific case of B-meson

decays, but our discussion applies to all meson decays.

Consider Af , the B → f decay amplitude, and Af , the amplitude of the CP conjugate

process, B → f . There are two types of phases that may appear in these decay amplitudes:

• CP-odd phases, also known as weak phases. They are complex parameters in any

Lagrangian term that contributes to Af , and appear in a complex conjugate form in

Af . In other words, CP violating phases change sign between Af and Af . In the SM,

these phases appear only in the couplings of the W±-bosons, hence the CP violating

phases are called “weak phases.”

• CP-even phases, also known as strong phases. Phases can appear in decay amplitudes

even when the Lagrangian parameters are all real. They arise from contributions

of intermediate on-shell states, and can be identified with the eiHt term in the time

evolution Schrödinger equation. These CP conserving phases appear with the same

sign in Af and Af . In meson decays, such rescattering is usually driven by strong

interactions, hence the CP conserving phases are called “strong phases.”

It is useful to factorize an amplitude into three parts: the magnitude |ai|, the weak phase

ϕi, and the strong phase δi. If there are two such contributions, Af = a1 + a2, we write

Af = |a1|ei(δ1+ϕ1) + |a2|ei(δ2+ϕ2), Af = |a1|ei(δ1−ϕ1) + |a2|ei(δ2−ϕ2). (B1)

It is further useful to define

ϕf ≡ ϕ2 − ϕ1, δf ≡ δ2 − δ1, rf ≡ |a2/a1|. (B2)

For neutral meson mixing, it is useful to write

MBB̄ = |MBB̄|eiϕM , ΓBB̄ = |ΓBB̄|eiϕΓ . (B3)
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Each of the phases appearing in Eqs. (B1) and (B3) is convention dependent, but combina-

tions such as δ1 − δ2, ϕ1 − ϕ2, ϕM − ϕΓ, and others, are physical.

In neutral meson decays the phenomenology of CP violation is particularly rich thanks

to the fact that meson mixing can contribute to the CP violating interference effects. One

distinguishes three types of CP violation in meson decays, depending on which amplitudes

interfere:

1. In decay: The interference is between two decay amplitudes.

2. In mixing: The interference is between the absorptive and dispersive mixing ampli-

tudes.

3. In interference of decays with and without mixing: The interference is between the

direct decay amplitude and a first-mix-then-decay amplitude.

We discuss these three types below.

2. CP violation in decay

CP violation in decay corresponds to

|Af/Af | ̸= 1. (B4)

In charged particle decays, this is the only possible contribution to the CP asymmetry:

Af ≡
Γ(B− → f−)− Γ(B+ → f+)

Γ(B− → f−) + Γ(B+ → f+)
=
|Af−/Af+|2 − 1

|Af−/Af+ |2 + 1
. (B5)

Using Eq. (B1), we obtain, for rf ≪ 1,

Af = 2rf sinϕf sin δf . (B6)

This result shows explicitly that we need two decay amplitudes, that is, rf ̸= 0, with different

weak phases, ϕf ̸= 0, π and different strong phases δf ̸= 0, π.

A few comments are in order:

1. In order to have a large CP asymmetry, we need each of the three factors in (B6) not

to be ≪ 1.
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2. A similar expression holds for the contribution of CP violation in decay in neutral

meson decays. In this case there are, however, additional contributions.

3. Another complication with regard to neutral meson decays is that it is not always

possible to tell the flavor of the decaying meson, that is, if it is B0 or B0. This can be

a problem or a virtue.

4. In general the strong phase is not calculable since it is related to QCD. This is not a

problem if the aim is just to demonstrate CP violation, but it is if we want to extract

the weak parameter ϕf . In some cases, however, the phase can be independently

measured, eliminating this particular source of theoretical uncertainty.

3. CP violation in mixing

CP violation in mixing corresponds to

|q/p| ̸= 1 . (B7)

In decays of neutral mesons into flavor specific final states (Af = 0 and, consequently,

λf = 0), and, in particular, semileptonic neutral meson decays, this is the only source of CP

violation:

ASL(t) ≡ Γ[B0(t)→ ℓ+X]− Γ[B0(t)→ ℓ−X]

Γ[B0(t)→ ℓ+X] + Γ[B0(t)→ ℓ−X]
=

1− |q/p|4

1 + |q/p|4
. (B8)

Using Eq. (A6), we obtain for |ΓBB̄/MBB̄| ≪ 1,

ASL = − |ΓBB̄/MBB̄| sin(ϕM − ϕΓ). (B9)

A few comments are in order:

1. Eq. (B8) implies that this asymmetry of time-dependent decay rates is actually time

independent.

2. The calculation of |ΓPP̄/MPP̄ | is difficult, since it depends on low-energy QCD ef-

fects. Hence, the extraction of the value of the CP violating phase ϕM − ϕΓ from a

measurement of ASL involves, in general, large uncertainties.
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CP violation in K0 − K0 mixing is measured via a semileptonic asymmetry which is

defined as follows:

δL ≡
Γ(KL → ℓ+νℓπ

−)− Γ(KL → ℓ−νℓπ
+)

Γ(KL → ℓ+νℓπ−) + Γ(KL → ℓ−νℓπ+)
=

1− |q/p|2

1 + |q/p|2
. (B10)

This asymmetry is somewhat different from the one defined in Eq. (B8), in that the decaying

meson is the neutral mass eigenstate, rather than the flavor eigenstate. Hence also the

different dependence on |q/p|.

4. CP violation in interference of decays with and without mixing

CP violation in interference of decays with and without mixing corresponds to

Im(λf )

1 + |λf |2
̸= 0. (B11)

A particular simple case is the CP asymmetry in decays into final CP eigenstates. Moreover,

a situation that is relevant in many cases is when the effects of CP violation in decay are

negligible, |AfCP
/AfCP

| ≃ 1, and the effects of CP violation in mixing are small, |q/p| ≃ 1.

In this case, λfCP
is a pure phase, |λfCP

| = 1. Further consider the case where y = 0. We

obtain the very simple result:

AfCP
(t) ≡ Γ[B0(t)→ fCP ]− Γ[B0(t)→ fCP ]

Γ[B0(t)→ fCP ] + Γ[B0(t)→ fCP ]
= Im(λfCP

) sin(∆mBt). (B12)

Using Eq. (A16), we obtain, for |ΓBB̄/MBB̄| ≪ 1,

Im(λfCP
) = Im

(
M∗

BB̄

|MBB̄|
AfCP

AfCP

)
= − sin(ϕM + 2ϕ1). (B13)

The phase ϕM is defined in Eq. (B3), while the phase ϕ1 is defined in Eq. (B1), and we

assume that a2 can be neglected.

For the case where we measure decays of mass eigenstate into final CP eigenstates, as

can be done for kaons, one can average over the oscillation terms and and obtain

Amass
f ≡ Γ(KL → f)

Γ(KS → f)
=

∣∣∣∣∣1 + λf
1− λf

∣∣∣∣∣
2

. (B14)
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