

Belle status and Belle II prospect for $B \to D^{(*)} \tau \nu$ and related topics

K. Matsuoka (KMI, Nagoya Univ.)

Nov. 15, 2018

WPI-next Mini-workshop
"Hints for New Physics in Heavy Flavors"

Lepton flavor universality

- In the Standard Model, the electroweak couplings between leptons and gauge bosons do not depend on the lepton flavor.
 - The difference of the branching fraction comes from the difference of the mass, i.e. helicity suppression and phase space.

$$g_e = g_\mu = g_\tau$$

Tests of lepton flavor universality

• Decays of W/Z bosons

$$-\frac{\Gamma_{\mu\mu}}{\Gamma_{\rho\rho}} \equiv \frac{\mathcal{B}(Z \to \mu^+ \mu^-)}{\mathcal{B}(Z \to e^+ e^-)}, \frac{\Gamma_{\tau\tau}}{\Gamma_{\rho\rho}} \equiv \frac{\mathcal{B}(Z \to \tau^+ \tau^-)}{\mathcal{B}(Z \to e^+ e^-)} \text{ by LEP [Phys. Rep. 427 (2006) 257]}$$

$$-R_Z \equiv \frac{\sigma_z \cdot \mathcal{B}(Z \rightarrow e^+ e^-)}{\sigma_z \cdot \mathcal{B}(Z \rightarrow \mu^+ \mu^-)}, \ R_W \equiv \frac{\sigma_W^{\pm} \cdot \mathcal{B}(W^{\pm} \rightarrow e \nu)}{\sigma_{W^{\pm}} \cdot \mathcal{B}(W^{\pm} \rightarrow \mu \nu)} \text{ by ATLAS [Phys. Rev. D85, 072004 (2012)]}$$

- $-~\mathcal{B}~(W
 ightarrow \ell
 u)~(\ell=e,\mu, au)~$ by LEP [Phys. Rep. 532 (2013) 119]
- $-\frac{\mathcal{B}(W\to e\nu)}{\mathcal{B}(W\to \mu\nu)}$ by CDF,D0, LEP, ATLAS, LHCb [JHEP 10 (2016) 030]

Decays of leptons

$$-(g_{\tau}/g_{\mu}), (g_{\tau}/g_{e}), (g_{\mu}/g_{e}) \text{ from } \Gamma(\tau \to \mu \nu \nu), \Gamma(\tau \to e \nu \nu), \Gamma(\mu \to e \nu \nu)$$

$$- \left(g_{\tau}/g_{\mu} \right)_{\pi'} \left(g_{\tau}/g_{\mu} \right)_{K} \text{from } \frac{\Gamma(\tau \to h\nu)}{\Gamma(h \to \mu\nu)'} \frac{\Gamma(\tau \to h\nu)}{\Gamma(h \to e\nu)}$$

Decays of light mesons

$$-R_{e/\mu} = \frac{\Gamma(\pi \to e \nu(\gamma))}{\Gamma(\pi \to \mu \nu(\gamma))}$$
 by PIENU [Phys. Rev. Lett. 115, 071801 (2015)]

$$-R_K = \frac{\Gamma(K \to ev)}{\Gamma(K \to \mu \nu)}$$
 by KLOE, NA62 [Phys. Lett. B719, 326 (2013)], et al.

All consistent with SM except for $B(W \to \tau \nu_{\tau})$

$B \to D^{(*)} \tau \nu$

Sensitive to new physics because the massive 3^{rd} generation b quark and τ lepton are involved.

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb} \left\{ [\bar{c} \gamma^{\mu} (1 - \gamma_5) b] [\bar{\tau} \gamma_{\mu} (1 - \gamma_5) \nu_{\tau}] \dots \text{SM } (W^{\pm}) \right.$$

$$\left. - \frac{m_b m_{\tau}}{m_B^2} \bar{c} [g_S + g_P \gamma_5] b [\bar{\tau} (1 - \gamma_5) \nu_{\tau}] \right\} \dots \text{New Physics } (H^{\pm})$$
+h. c.

Flavor-dependent coupling to the fermions

$$\begin{split} \frac{\mathrm{d}\Gamma(B^- \to D^0 \ell^- \bar{\nu})}{\mathrm{d}w} &= \frac{G_F^2 m_D^3}{48 \pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |V_{cb}|^2 |\mathcal{G}(w)|^2 \\ \frac{\mathrm{d}\Gamma(B^- \to D^{*0} \ell^- \bar{\nu})}{\mathrm{d}w} &= \frac{G_F^2 m_{D^*}^3}{4 \pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 |V_{cb}|^2 \chi(w) |\mathcal{F}(w)|^2 \\ &\qquad \qquad \text{Sizable uncertainties on } |V_{cb}| \text{ and the form factors} \end{split}$$

Hint of new physics in $b \to c\ell\nu$ tree decays

$$R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}$$

Useful observable to probe new physics since the uncertainties on $|V_{cb}|$ and the form factors as well as the experimental systematics cancel out

$$R(J/\Psi) = \frac{\Gamma(B_c \to J/\Psi \tau \nu)}{\Gamma(B_c \to J/\Psi \mu \nu)}$$

Deviation also in

$$R(K^{(*)}) = \frac{\Gamma(B \to K^{(*)}\mu\mu)}{\Gamma(B \to K^{(*)}ee)}$$
... $b \to s\ell\ell$ penguin decays

D^* and τ polarizations in $B \to D^* \tau \nu$

Observable which could distinguish the type of new physics: Longitudinal polarizations

•
$$P_{\tau}(D^*) = \frac{\Gamma^+(D^*) - \Gamma^-(D^*)}{\Gamma^+(D^*) + \Gamma^-(D^*)}$$
 $\Gamma^{\pm}(D^*)$: decay rate with τ helicity $\lambda_{\tau} = \pm \frac{1}{2}$

•
$$F_L^{D^*} = \frac{\Gamma(D_L^*)}{\Gamma(D_L^*) + \Gamma(D_T^*)}$$

 $\Gamma(D_{L(T)}^*)$: decay rate of longitudinally (transversely) polarized D^*

New physics scenarios [Phys. Rev. D 87, 034028 (2013)]

Belle measured R(D), $R(D^*)$ and $P_{\tau}(D^*)$, and is still active in producing new results.

The Belle experiment

• Collected 772 x 10^6 $B\bar{B}$ events at KEKB factory (1998-2010), asymmetric e^+e^- collider at $\sqrt{s}=10.58$ GeV, in Japan.

 $-e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ (very clean and well-known initial state)

Hermetic spectrometer capable of

- Tracking and momentum meas. of charged tracks
- Vertex meas.
- Particle ID
- γ energy meas.

$B \to D^{(*)} \tau \nu$ reconstruction in Belle

- Not a rare decay
 - In SM, $\mathcal{B}(B^+ \to \overline{D}{}^0\tau^+\nu_{\tau}) = 0.66\%$ and $\mathcal{B}(B^+ \to \overline{D}{}^{*0}\tau^+\nu_{\tau}) = 1.23\%$
- but reconstruction of τ is challenging due to multiple neutrinos and need a high statistics..
 - → Need full reconstruction of the event
 - Suppress non- $B\bar{B}$ bkgd. and misreconstructed events
 - → quite low efficiency

Reconstruct one of the B's decaying

- 1. Hadronically ($\varepsilon_{\rm sig} \approx 0.2\%$)
- 2. Semileptonically ($\varepsilon_{\rm sig} \approx 0.5\%$)
- 3. Inclusively ($\varepsilon_{
 m sig} pprox$ a few %)

Select the other B of the signal decay with

- a $D^{(*)}$
- a charged daughter of au
 - 1. Leptonic τ decay
 - 2. Hadronic τ decay

Previous results on R(D) and $R(D^*)$

Only two (direct) measurements with hadronic tag $\rightarrow R(D)$ with semileptonic tag will be added.

$B \to D^{(*)} \tau \nu$ with semileptonic tag

• Simultaneous measurement of R(D) and $R(D^*)$

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})} = \frac{\text{signal}}{\text{normalization}}$$

$$- \text{ In the previous result}$$

$$\text{only } B^0 \bar{B}^0 \to (D^{*-}\ell^+)(D^{*+}\ell^-)$$

$$- \text{ Add } B^0 \bar{B}^0 \to (D^{(*)-}\ell^+)(D^{(*)+}\ell^-) \text{ and}$$

$$B^+B^- \to (\bar{D}^{(*)0}\ell^+)(D^{(*)0}\ell^-)$$

- Analysis with the Belle II software framework
 - To reconstruct B_{tag} we can exploit FEI (Full Event Interpretation;
 Multivariate analysis with Boosted-Decision Tree classifier)
 → higher efficiency

Close to opening the blinded signal box

Polarization measurements

Angular distribution of τ decay

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} \left[1 + \alpha P_{\tau}(D^*) \cos\theta_{\text{hel}} \right]$$

$$\alpha = \begin{cases} 1 & \text{for } \tau \to \pi \nu \\ 0.45 & \text{for } \tau \to \rho \nu \end{cases}$$

Angular distribution of D^* decay

1 $d\Gamma$ 3 $\Gamma \circ \Gamma \circ D^*$ 2 $\Gamma \circ \Gamma \circ D^*$.

$$\frac{1}{\Gamma \frac{d\Gamma}{d \cos \theta_{\text{hel}}}} = \frac{3}{4} \left[2F_L^{D^*} \cos^2 \theta_{\text{hel}} + F_T^{D^*} \sin^2 \theta_{\text{hel}} \right]$$

$$(F_L^{D^*} + F_T^{D^*} = 1)$$

W rest frame

D* rest frame

 \vec{p}_{τ} can be constrained to lie on the cone with a half apex angle $\theta_{\tau\pi}$:

$$\cos \theta_{\tau\pi} = \frac{2E_{\tau}E_{\pi} - m_{\tau}^2 - m_{\pi}^2}{2|\vec{p}_{\tau}||\vec{p}_{\pi}|}$$

Boost in an arbitrary direction on the cone to translate $\cos\theta_{\tau\pi}$ to $\cos\theta_{\rm hel}$ in the τ rest frame.

[Pros]

- All τ decays are useful.
- Not affected by cross-feeds of τ decays.
 [Cons]
- Strong dependence of acceptance on $\cos \theta_{\rm hel}$ and q^2 .

Result on $P_{\tau}(D^*)$

- Hadronic tag
- Two-body τ decays $(\tau \to \pi \nu_{\tau}, \rho \nu_{\tau})$

PRL 118, 211801 (2017)

$P_{\tau}(D^*)$ and $F_L^{D^*}$ with inclusive tag

- Select candidates for B_{sig} daughters; $D^{*+} + (\ell^- \text{ or } \pi^-)$.
 - $\bar{B}^{0} \to D^{*+}\tau^{-}\bar{\nu}_{\tau}$ $D^{*+} \to D^{0}\pi^{+}$ $D^{0} \to K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{-}\pi^{+}$ $\tau^{-} \to \ell^{-}\nu_{\tau}\bar{\nu}_{\tau}, \pi^{-}\bar{\nu}_{\tau}$
- Reconstruct B_{tag} inclusively from all the remaining particles.
 - Proper assignment of the particles without missing should lead to

$$M_{\rm tag} \equiv \sqrt{E_{\rm beam}^2 - \left| \vec{p}_{\rm tag} \right|^2} \approx M_B$$

$$\Delta E_{\rm tag} \equiv E_{\rm tag} - E_{\rm beam} \approx 0$$

- Use only $\cos \theta_{\rm hel} < 0$ for $F_L^{D^*}$ meas.
 - Strong dependence of the efficiency on $\cos\theta_{\rm hel}$ due to the slow π from D^* , which is softer at a larger $\cos\theta_{\rm hel}$.
 - Correct signal yield for the efficiency/acceptance

Signal extraction for $F_L^{D^*}$ measurement

Simultaneous extended unbinned max likelihood fit to all 9 sub-channels in the $M_{\rm tag}$ distributions for each of 3 bins of $\cos\theta_{\rm hel}$

Signal Combinatorial Peaking bkg.

Result on $F_L^{D^*}$ presented at CKM2018

$$F_L^{D^*} = 0.60 \pm 0.08(\text{stat}) \pm 0.035(\text{syst})$$

cf. in SM

$$-F_L^{D^*}=0.46\pm0.03$$
 [Phys. Rev. D 95, 115038 (2017)]

$$-~F_L^{D^*}=0.441\pm0.006$$
 [arXiv:1808.03565]

Consistent with SM within 20

Search for $B \to \mu \nu_{\mu}$

• In SM
$$\mathcal{B} \left(B^- \to \mu^- \bar{\nu}_\mu \right) = \frac{G_F^2 m_B m_\mu^2}{8\pi} \left(1 - \frac{m_\mu^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B = (3.80 \pm 0.31) \times 10^{-7}$$

- More precise SM prediction of $\frac{\mathcal{B}(B^- \to \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(B^- \to \mu^- \overline{\nu}_{\mu})} \operatorname{than} R(D^{(*)})$
- Untagged (inclusive) method
 - Select a muon and check that the rest of event resembles B

$$\mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu}) =$$
 $(6.46 \pm 2.22 \pm 1.60) \times 10^{-7}$
Significance: 2.4 σ
[2.9, 10.7] × 10⁻⁷ at 90% CL

Prospects for $B \to D^{(*)} \tau \nu$ at Belle II

Composition of the systematic uncertainties in each Belle analysis

	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}$
$B \to D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic B	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}$
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%
Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}$

"The Belle II Physics Book", arXiv:1808.10567

- The uncertainty due to the MC statistics is reducible.
 - MC stat affects the estimation of the reconstruction efficiency, understanding of small cross-feed components and PDFs for the fit.
- The uncertainties from $\mathcal{B}(B \to D^{**}\ell\nu_{\ell})$, D^{**} decays and hadronic B decays have to be reduced.
 - Need dedicated measurements of $B \to D^{**} \ell \nu_{\ell}$ and hadronic B decays with a large data sample.

Prospects for $B \to D^{(*)} \tau \nu$ at Belle II

• Belle 0.772 x $10^9 B \overline{B} \rightarrow Belle II ~50 x <math>10^9 B \overline{B}$ (50 ab⁻¹ in 6 yrs)

Expected precision (stat and syst)

	$5~\mathrm{ab^{-1}}$	50 ab^{-1}
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

In addition, q^2 and other distributions of kinematic observables to discriminate the new physics scenarios.

[&]quot;The Belle II Physics Book", arXiv:1808.10567

Search for $b \rightarrow s\tau^+\tau^-$ at Belle II

The anomalies seen in $R(D^{(*)}), R(J/\psi), R(K^{(*)})$ and $b \rightarrow s\mu^+\mu^-$ suggest a possibility of huge effects of lepton flavor $b \rightarrow s\tau^+\tau^-$ (FCNC penguin).

 $O(10^4)$ enhancement of the branching fractions

Summary

- The anomalies in the semileptonic B decays could be a hint for new physics.
- $R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)} \tau \nu)}{\Gamma(B \to D^{(*)} \ell \nu)}$ and the polarizations of D^* and τ in $B \to D^{(*)} \tau \nu$ are useful observable to probe new physics.
- Belle measured those observables with different tagging methods, and the following new results will come out soon:
 - -R(D) and $R(D^*)$ with semileptonic tag
 - $-P_{\tau}(D^*)$ with inclusive tag
- Belle II will also play an important role on the $B \to D^{(*)} \tau \nu$ measurements with x50 data.