Search for CP violation in beauty baryons at LHCb

Andrea Merli¹ on behalf of the LHCb collaboration

¹Università degli Studi di Milano and INFN Milano

WPI-next mini-workshop "Hint for New Physics in Heavy Flavor Physics" Nagoya, 16th Nov 2018

Beauty baryons at LHCb (a bit of history)

- Most precise measurement of $|V_{ub}|$ using $\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu$ decays LHCb: Nature Physics 10(2015) 1038
- First observation of pentaquark using $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays LHCb: Phys. Rev. Lett. 115, 072001 (2015)
- Observation of $\Xi_b^{\prime-}$ and $\Xi_b^{\prime*}$ in $\Xi_b^0 \pi^-$ mode LHCb: Phys. Rev. Lett. 114, 062004 (2015)
- Observation of two orbitally excited Λ_b^{*0} states

LHCb: Phys. Rev. Lett. 109, 172003 (2012)

- Mass, lifetimes and branching ratios measurements
- Search for CPV CDF: Phys. Rev. Lett. 113, 242001 And other from LHCb presented here
- At LHCb b-baryons are produced in unprecedented quantities
 - Opens a new field in flavour physics for precision measurements

Physics motivation

 W^{-}

uh

U

- CKM mechanisr amount of CPV be precisely me
- Complementary Standard Model mesons

"Sorry Doc, we had a load of Anti-Matter around 13 billion years ago, but it got lost when we moved"

PROPERTY

sharris

è

BIG BANG SCALE Same underlying short distance physics as B mesons, with different spin and QCD structure MATTER PV sources Seems to 🕻 DEGLI STUDI be a big difference.

INFN

١S

A. MERLI(UNIMI & INFN)

b-baryons production

- Production cross-section strongly depends on p_T of the hadron:
 - measurement of $f_{\Lambda_b^0}/f_d$ vs p_T of b-quark is cleaner to interpret, expected a slow dependence in this case arXiv: 1505.02771
- Large production of Λ_b^0

• A_D can be measured using "ad hoc" abundant control sample

A. M <u>LHCb</u> NFN)

Experimental approaches

Measure ΔA_{CP} difference of CP asymmetries

Measured on data

Experimental approaches

Measure CPV via \hat{T} -violating aymmetries:

- Triple products in Λ_b rest frame

$$C_{\hat{T}} = \overrightarrow{p}_{p} \cdot \left(\overrightarrow{p}_{h^{-}} \times \overrightarrow{p}_{h^{+}} \right) \propto \sin \Phi$$

$$\overline{C}_{\hat{T}} = \overrightarrow{p}_{\overline{p}} \cdot \left(\overrightarrow{p}_{h^{+}} \times \overrightarrow{p}_{h^{-}} \right) \propto \sin \overline{\Phi}$$

•
$$\hat{T}(P)$$
-odd asymmetries:

$$A_{\hat{T}} = \frac{N_{\Lambda_b^0} \left(C_{\hat{T}} > 0\right) - N_{\Lambda_b^0} \left(C_{\hat{T}} < 0\right)}{N_{\Lambda_b^0} \left(C_{\hat{T}} > 0\right) + N_{\Lambda_b^0} \left(C_{\hat{T}} < 0\right)}$$

$$\overline{A}_{\hat{T}} = \frac{N_{\overline{\Lambda}_b^0} \left(-\overline{C}_{\hat{T}} > 0\right) - N_{\overline{\Lambda}_b^0} \left(-\overline{C}_{\hat{T}} < 0\right)}{N_{\overline{\Lambda}_b^0} \left(-\overline{C}_{\hat{T}} > 0\right) + N_{\overline{\Lambda}_b^0} \left(-\overline{C}_{\hat{T}} < 0\right)}$$

• CP-violating observable:

 \hat{T} = spin and momentum reversal operator

$$a_{CP}^{\hat{T}-\text{odd}} = \frac{1}{2} \left(A_{\hat{T}} - \overline{A}_{\hat{T}} \right)$$

$$a_P^{\hat{T}-\text{odd}} = \frac{1}{2} \left(A_{\hat{T}} + \overline{A}_{\hat{T}} \right)$$

• *P*-violating observable:

Sensitivity to CPV

- By construction, $A_{\widehat{T}}$, $\overline{A}_{\widehat{T}}$, $a_{CP}^{\widehat{T}-\mathrm{odd}}$ and $a_{P}^{\widehat{T}-\mathrm{odd}}$ are insensitive to
 - ✓ particle/antiparticle production asymmetries
 - ✓ detector-induced charge asymmetries
 - → reduced systematic uncertainties
- Complementary approach to ΔA_{CP} analysis

$$a_{CP}^{\hat{T}-\text{odd}} \propto \cos\left(\delta_{even} - \delta_{odd}\right) \sin\left(\phi_{even} - \phi_{odd}\right)$$

not sensitive if $\delta_{even} - \delta_{odd} = \pi/2$ or $3\pi/2$

amplitudes

T-even

Î-odd

 A_1

 A_2

 δ : strong phase

φ: weak phase

amplitudes

Sensitive to potential new physics effects

 $A_{CP} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$ not sensitive if $\delta_1 - \delta_2 = 0$ or π

W. Bensalem, A. Datta, and D. London, New physics effects on triple product correlations in Λ_b decays, Phys. Rev. D66 (2002) 094004, arXiv:hep-ph/0208054

Search for CPV in $\Lambda^{(0)}_{\mu} \rightarrow p \overline{\pi}^{\dagger} \pi^{\dagger} \pi^{\dagger} \pi^{-}$

LHCb: Nature Physics 13, 391-396 (2017)

- Transitions governed by $b \rightarrow u d\overline{u}$ tree and $b \rightarrow du\overline{u}$ penguin amplitudes of $b \rightarrow u d \overline{u}$
- Large relative weak phase $\alpha/\phi_2 = Arg\left(\frac{V_{tb}^*V_{td}}{V_{tb}^*V_{ub}}\right)$ in SM from the CKM elements $arg\left(V_{tb}V_{td}^*/V_{ub}V_{ub}^*V_{ub}V_{ub}\right)$ in SM from the CKM elements Potential non negligible CPV effects in the SM

First evidence of CPV in baryons

Refer to backup slides for bins definition

 $\mathscr{L}_{int} = 3 \, \mathrm{fb}^{-1}$

CP symmetry p-value = 9.8x10⁻⁴

- 3.3 σ deviation
- *P* symmetry compatible at 2.2 σ

Scheme A: on dominant resonances

- Integrated results compatible with CP & P conservation
- Largely insensitive to A_P & A_D
- Low systematic uncertainties <1%
- Already triggered some theorists

 $\Lambda_{h}^{0} \rightarrow p K^{-} \pi^{+} \pi^{-}$ integrated asymmetries

$$\Lambda_b^0 \rightarrow p K^- \pi^+ \pi^-$$
 phase space measurements

 χ^2 test: consistent with P and CP symmetry

 $\Lambda_{h}^{0} \rightarrow pK^{-}K^{+}K^{-}$ integrated asymmetries

 $\rightarrow pK^{-}K^{+}K^{-}$ phase space measurements Λ_{k}^{0}

 χ^2 test: consistent with P and CP symmetry

 $\Xi_{h}^{0} \rightarrow p\pi^{+}K^{-}K^{-}$ integrated asymmetries

Search for CPV in $\Lambda_b^0 \to p K^- \mu^+ \mu^-$

- Rare transitions sensitive to new physics, with new particles contributing to loop diagrams or via new tree-level amplitudes
- Limited CPV in the SM~10⁻² (simple estimate from CKM)
- Very high muon identification efficiency -> excellent bkg rejection
- Possibility to compare baryon and meson $(B^0 \rightarrow K^* \mu^+ \mu^-)$ decays

- as systematic error

& INFN)

5.5

5.6

5.7

 $m(pK^{-}\mu^{+}\mu^{-})$ [GeV/ c^{2}]

5.8

5.5

5.4

5.6

5.7

 $m(\overline{p}K^+\mu^-\mu^+)$ [GeV/ c^2]

5.4

5.8

Search for CPV in b-baryons at LHCb

HCD

)MI & INFN)

Study of $\Xi_{p} \rightarrow phh\bar{h}h^{'-}$

• Not only Λ_{b}^{0}

LHCb: Phys. Rev. Lett. 118 (2017) 071801

- Promising modes where to search for CPV with the additional statistics Ξ_b^-
- Significant CP asymmetries have been observed in regions of phase space of $B^- \rightarrow \pi^+ \pi^- \pi^-, K^- \pi^+ \pi^-, K^+ K^- K^-, K^+ K^- \pi^-$

LHCb: Phys. RB. Lett $\pi(2\pi 3)\pi(80KPh\pi, \pi v. LK, 11K(20K), 11K(1, Kv. DD90(2014)))$

Do the equivalent b-baryon decays exhibit similar behaviour?

Study of $\Xi_h^- \to ph^-h^{'-}$

LHCb: Phys. Rev. Lett. 118 (2017) 071801

Study of $\Xi_h^- \to ph^-h^{'-}$

LHCb: Phys. Rev. Lett. 118 (2017) 071801

Evidence $\frac{\mathscr{B}\left(\Xi_{b}^{-} \to pK^{-}\pi^{-}\right)}{\mathscr{B}\left(\Xi_{b}^{-} \to pK^{-}K^{-}\right)} = 0.98 \pm 0.27 \pm 0.09$

Search for CPV in $\Lambda_b^0 - \Lambda_b^0 K_s^0 p \pi^- \pi_s^0 p \pi^-$

LHCb: JHEP 04(2014)087

Large A_{CP}(pK*-)~20% predicted in SM Phys. Rev. D91(2015)11, 116007

 $\mathcal{A}_{CP} = 0.0222 \pm 0.133 \pm 0.0303 \text{ so } \Lambda_b^0 \to \Lambda_c^0 p \times (K_{SP}^0) \to \Lambda_c^0 p \to \Lambda_c$

Precision at some % is already achievable with Run2 data

 $\Lambda_b^0 \to \Lambda h^+ h^- \Lambda_h^0 \to \Lambda \phi$

A. MERLI(UNIMI & INFN)

Search for CPV in b-baryons at LHCb

CKM angle γ using Λ_h^0 decays

 Z. Phys. C - Particles and Fields (1992) 56: 129
 M⁰_b → M⁰_D, M⁰_b → M conjugate decays à la GLW

- Theory clean measurement of γ using baryons
- Small yields $BR \left(\Lambda_b^0 \to \Lambda D^0\right)^b \approx 4 \cdot 10^{-6}$, $BR \left(\Lambda_b^0 \to \Lambda \overline{D}^0\right) \sim 8 \cdot 10^{-7}$ $BR \left(\Lambda_b^0 \to \Lambda D^0\right)^b \approx 4 \cdot 10^{-6}$, $BR \left(\Lambda_b^0 \to \Lambda \overline{D}^0\right) \approx 8 \cdot 10^{-7}$
- Use $\Lambda^0_h \rightarrow D^0_{\overline{p}K} P^0_{Or} pK^-_{For}$ reco efficiency and higher BR

Towards the measurement of $\boldsymbol{\gamma}$

 $\Lambda_b^0 \rightarrow D^0 p K^-$ signal

Combinatorial

- Partially rec.

 $\Lambda_b^0 \rightarrow D^0 p \pi^-$

 $\Lambda_{\rm b}^{0} \rightarrow D^{*0} p \pi^{-}$

 $\Xi_{h}^{0} \rightarrow D^{0}pK^{-}$ signal

5800

 $\Lambda_b^0 \to D^0 p K^- = 163 \pm 18$ $\Lambda_b^0 \mathscr{D}_{int}^0 \stackrel{D^0 p}{=} K_1^- \mathfrak{fb}_{\mathcal{L}_{int}}^{\text{sigl}} = 163 \pm 18$

Phys. Rev. D 89, 032001 (2014)

- Interesting decay $\underline{m} = d = \frac{1}{2} \frac{1}{$
- Hard to estimate the impact on γ determination at present

 $D^0 \to K^- \pi^+; \ D^0_{CP} \to \pi^+ \pi^-, K^+ K^-$

80

70

60

50

40

30

20

10

0

5400

5500

5600

5700

 $M(D^0pK^-)$ [MeV/ c^2]

Candidates / (10 MeV/ c^2)

LHCb

(b)

5900

Conclusions

- LHCb opens a new window to search CPV in baryon decays. Many b-baryon decays are observed for the first time
- First evidence for CPV in baryons is found in decays with a statistical significance of 3.3σ
- CPV searches ongoing in several b-baryon decays. With additional data new b-baryons and new decays will be studied
- Next step amplitude analysis to determine source of CPV. Systematic study of CPV in baryons, angle γ
- Interesting to compare the results with mesons
 - Theoretical predictions are needed and more than welcome

Back-up

 $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ phase space regions

Scheme A: division based on dominant resonant structures

Phase space bin	$m(p\pi^+)$	$m(p\pi_{\rm slow}^-)$	$m(\pi^+\pi^{\rm slow}), m(\pi^+\pi^{\rm fast})$	$ \Phi $
1	(1.07, 1.23)			$(0, \frac{\pi}{2})$
2	(1.07, 1.23)			$(\frac{\pi}{2}, \overline{\pi})$
$_3$ Δ^{++}	(1.23, 1.35)			$(\overline{0}, \frac{\pi}{2})$
4	(1.23, 1.35)		р∘ реак	$(\frac{\pi}{2}, \pi)$
5	(1.35, 5.34)	(1.07, 2.00)	$m(\pi^+\pi^{\rm slow}) < 0.78 \text{ or } m(\pi^+\pi^{\rm fast}) < 0.78$	$(\bar{0}, \frac{\pi}{2})$
6	$(1.35, 5.34)^{3}$	* (1.07, 2.00)	$m(\pi^+\pi_{\rm slow}^-) < 0.78 \text{ or } m(\pi^+\pi_{\rm fast}^-) < 0.78$	$(\frac{\pi}{2}, \pi)$
7	(1.35, 5.34)	(1.07, 2.00)	$m(\pi^+\pi^{\rm slow}) > 0.78$ and $m(\pi^+\pi^{\rm fast}) > 0.78$	$(\bar{0}, \frac{\pi}{2})$
8	(1.35, 5.34)	(1.07, 2.00)	$m(\pi^+\pi^{\rm slow}) > 0.78$ and $m(\pi^+\pi^{\rm fast}) > 0.78$	$(\frac{\pi}{2}, \overline{\pi})$
9	(1.35, 5.34)	(2.00, 4.00)	$m(\pi^+\pi^{\rm slow}) < 0.78 \text{ or } m(\pi^+\pi^{\rm fast}) < 0.78$	$(\bar{0}, \frac{\pi}{2})$
10	(1.35, 5.34)	(2.00, 4.00)	$m(\pi^+\pi^{\rm slow}) < 0.78 \text{ or } m(\pi^+\pi^{\rm fast}) < 0.78$	$(\frac{\pi}{2}, \overline{\pi})$
11	(1.35, 5.34)	(2.00, 4.00)	$m(\pi^+\pi_{\rm slow}^-) > 0.78$ and $m(\pi^+\pi_{\rm fast}^-) > 0.78$	$(\bar{0}, \frac{\pi}{2})$
12	(1.35, 5.34)	(2.00, 4.00)	$m(\pi^+\pi^{\rm slow}) > 0.78$ and $m(\pi^+\pi^{\rm fast}) > 0.78$	$(\frac{\pi}{2}, \overline{\pi})$

Scheme B: based on Φ angle intervals i (i=1,2,...,12) $(\frac{i-1}{12}\pi,\frac{i}{12}\pi)$

 $\Lambda_{h}^{0} \rightarrow pK^{-}\pi^{+}\pi^{-}$ phase space regions

Scheme A: division based on dominant resonant structures

 $\Lambda_h^0 \to p K^- \pi^+ \pi^-$ phase space regions

 $\Lambda^0_{h} \rightarrow pK^-K^+K^-$ phase space regions

Scheme C: division based on dominant resonant structures

$m(K^+K^-_{\rm slow}), m(K^+K^-_{\rm fast})$ $m(pK_{\rm slow}^-)$ Region Φ $m(K^+K^-_{\rm slow}) < 1.02 \text{ or } m(K^+K^-_{\rm fast}) < 1.02$ (0.9, 2.0)1 \wedge^{*} (0.9, 2.0) $m(K^+K^-_{slow}) > 1.02$ and $m(K^+K^-_{fast}) > 1.02$ $\mathbf{2}$ $(0, \frac{\pi}{2})$ 3 $m(K^+K^-_{slow}) > 1.02 \text{ and } m(K^+K^-_{fast}) > 1.02$ (0.9, 2.0) $(\frac{\pi}{2},\pi)$ $m(K^+K^-_{\rm slow}) < 1.02 \text{ or } m(K^+K^-_{\rm fast}) < 1.02$ (2.0, 4.0) $(0, \frac{\pi}{2})$ 4 $m(K^+K^-_{\rm slow}) < 1.02 \text{ or } m(K^+K^-_{\rm fast}) < 1.02$ 5(2.0, 4.0) $\left(\frac{\pi}{2},\pi\right)$ $m(K^+K^-_{\rm slow}) > 1.02$ and $m(K^+K^-_{\rm fast}) > 1.02$ 6 (2.0, 4.0) $(0, \frac{\pi}{2})$ $m(K^+K^-_{\rm slow}) > 1.02$ and $m(K^+K^-_{\rm fast}) > 1.02$ 7(2.0, 4.0) $\left(\frac{\pi}{2},\pi\right)$

peak

Scheme D: based on Φ angle intervals i (i=1,2,...,10) $(\frac{i-1}{10}\pi, \frac{i}{10}\pi)$

 Λ_{h}^{0} $\rightarrow pK^{-}K^{+}K^{-}$ phase space regions

