Review on recent axion search and R&D toward higher mass region

A. Miyazaki CNRS/In2p3/IJCLab Université Paris-Saclay

My main business: superconducting accelerators

HIE-ISOLDE@CERN Heavy ion Linac (10MeV/u, rare isotopes)

ESS@Lund Proton Linac (2 GeV, 5MW)

LHC@CERN proton collider (14 TeV)

J

Confine electromagnetic waves inside RF resonant cavities Charged particles synchronized with RF can be accelerated

De Broglie wavelength λ_B of cold dark matter

We are moving in the galaxy halo of dark matter with speed of 220 km/s

 $\frac{v}{c} \sim 0.07\%$ *Nonrelativistic* $\lambda_B = \frac{196 \text{ MeVfm}}{mv}$

SUSY: m > 1 TeV (?)

 $\lambda_B < \frac{196 \text{ MeVfm}}{0.7 \text{ GeV}} = 0.3 \text{ fm}$

https://www.symmetrymagazine.org/article/wimps-in-the-dark-matter-wind Artwork by Sandbox Studio, Chicago with Corinne Mucha

Nuclear recoil to detect it

Lighter dark matter candidates

If $m < 10 \ \mu \mathrm{eV}$

$$\lambda_B > \frac{2 \times 10^{-7} \text{ eVm}}{0.07\% \times 10^{-5} \text{ eV}} = 28 \text{ cm}$$

This type of dark matter behaves like a *wave* in a laboratory-scale \rightarrow Strong synergy with accelerator technology What to search? (Dark photons)

- Axions: a byproduct to cancel the strong CP
- Quantum Chromodynamics (theory of strong force)

$$L_{QCD} \supset -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu a} + \frac{g_s^2}{32\pi^2} \theta G^{a}_{\mu\nu} \tilde{G}^{\mu\nu a}$$

- This term generates electric dipole moment in neutron
- Theory: $d_n \sim 4.5 \times 10^{-15} \theta$ ecm
- Experiment: $|d_n| < 2.9 \times 10^{-29}$ ecm $\rightarrow |\theta| < 0.7 \times 10^{-11} \ll 1$

Naturalness without anthropic solutions

Introduce a new global chiral U(1) field a

$$\frac{g_s^2}{32\pi^2} \left(\theta + \frac{a}{F_a}\right) G^a_{\mu\nu} \tilde{G}^{\mu\nu a} \to 0 \text{ (after SSB)}$$

SSB \rightarrow A pNG boson appears as byproduct

Various experimental searches

Source \setminus Coupling	Photons	Fermions	nEDMs
Dark matter	ADMX, CAPP, MADMAX, DM Radio,	QUAX-ae, GNOME, CASPEr-wind,	CASPEr-electric, srEDM,
Solar	CAST, IAXO		
Laboratory	ALPS (II)	ARIADNE	

Quantum state of dark matter

Thermal equilibrium

The dark matter is cooled down by interaction with other field (eg radiation) in thermal equilibrium

$$\bar{n} = \frac{1}{\exp(\hbar\omega/k_B T) - 1}$$

$$\hat{\rho}_{th} = \frac{1}{1+\bar{n}} \sum_{n=0}^{\infty} \left(\frac{\bar{n}}{1+\bar{n}}\right)^n |n\rangle \langle n$$

Thermal axion cannot explain the abundance of dark matter

WIMP

Density matric is diagonal → incoherent

Coherent state

Axion loses kinetic energy nonthermally by damped coherent oscillation in the PQ potential

 \rightarrow axion

Coherent state \rightarrow (semi-)classical waves $\hat{\mathcal{E}}(\boldsymbol{r},t) = i \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}} \left[\hat{a}e^{-i(\omega t - \boldsymbol{k}\cdot\boldsymbol{r})} - \hat{a}^{\dagger}e^{i(\omega t - \boldsymbol{k}\cdot\boldsymbol{r})} \right]$ $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle \qquad |\alpha|^2: \text{ mean } \# \text{ of photons in Poisson distribution}$ $E \equiv \langle \alpha | \hat{\mathcal{E}}(\mathbf{r}, t) | \alpha \rangle = i \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}} \left[\alpha e^{-i(\omega t - \mathbf{k} \cdot \mathbf{r})} - \alpha^* e^{+i(\omega t - \mathbf{k} \cdot \mathbf{r})} \right]$ $\rightarrow \left(\frac{\partial^2}{\partial t^2} - \nabla^2\right) E = 0$

- The axion coherent state generates a coherent photon field inside a static magnetic field
- A coherent state is an eigenstate of the electric field operator

 \rightarrow Expectation value of the electric field follows Maxwell equation

 \rightarrow Dark matter axion search is a matter of classical microwave sensing

Classical electrodynamics is the mean to hunt axions

Courtesy: Gray Rybka, PATRAS2022

Standard quantum limit of coherent state

Semi-classical: Parametric Amplifier (in ADMX)

- Nonlinear optics (Kerr effect) for frequency mixing
- No real electron/hole current

 \rightarrow Free from the noise source of transistors

 \rightarrow One can reach $k_B T_{SQL} = h\nu$ by cooling down

arXiv:2010.00169

Another use of JPA: Squeezed state (not in ADMX)

$$\widehat{H} = \left(\widehat{a}^{\dagger}\widehat{a} + \frac{1}{2}\right)\hbar\omega + \hbar\left(\frac{E^{*}}{2}\widehat{a}^{2} + \frac{E}{2}\widehat{a}^{\dagger 2}\right)$$

Nonlinear term added by parametric oscillation

HAYSTAC (Yale University + Berkley)

Courtesy: Michael Jewell, "Updated Results from HAYSTAC's Quantum-Enhanced Search for Dark Matter Axions"

Issue of high-frequency resonators for dark matter search An RF cavity (ADMX-type) becomes $V \sim f^{-3}$ An over-sized cavity cancels the signal Dark matter Dark Photon mode mode matter mode Photon mode

Signal: $\propto VQ$ The signal is lost by higher frequency The dark matter is cold \rightarrow De Broglie wavelength is long

Spatial integral is cancelled!

 \rightarrow We needed an idea to keep the resonator size huge with high frequency without having phase shifts

Three ideas toward heavier axion dark matter

Multiple small cavities

ADMX-EFR @ US CAST-CAPP @ CERN

ORGAN @ Australia ADMX-Orpheus @ US MADMAX @ DESY

MADMAX (DESY)

- Enhance the coherent microwave signal generated on the dielectric surface
- Dipole magnet

Courtesy: Antonios Gardikiotis, "Advances in searching for galactic axions with a Dielectric Haloscope"

One technical challenge of dielectric-disk haloscope

Resonant cavity search including plasma haloscope

$$P_{S} = (1.0 \times 10^{-22} \text{ W}) \times \left(\frac{V}{136 \text{L}}\right) \left(\frac{B}{6.8 \text{T}}\right)^{2} \left(\frac{C}{0.4}\right) \left(\frac{g_{a\gamma}}{0.97}\right)^{2} \left(\frac{\rho}{0.45 \text{ GeV/cm}^{3}}\right) \left(\frac{f}{650 \text{ MHz}}\right) \left(\frac{Q}{50000}\right)$$

Dish antenna

Wider A!

In-situ measurement observable

higher Q!

$$P_{S} = (8.27 \times 10^{-26} \text{ W}) \times \left(\frac{A}{10 \text{ m}^{2}}\right) \left(\frac{B}{10 \text{ T}}\right)^{2} \left(\frac{g_{a\gamma}}{3.92 \times 10^{-16} \text{ GeV}^{-1}}\right)^{2} \left(\frac{\rho}{0.3 \text{ GeV/cm}^{3}}\right) \left(\frac{1 \text{ }\mu\text{eV}}{m_{a}}\right)^{2}$$

??

Fixed by mechanical design

Dielectric-disk haloscope:

Higher
$$\beta$$
!
 $P_S = (2.2 \times 10^{-27} \text{ W}) \times \left(\frac{A}{1 \text{ m}^2}\right) \beta^2 \left(\frac{B}{10 \text{ T}}\right)^2 C_{a\gamma}^2$ How to measure β

 \rightarrow Cavity-based search may be simpler to just measure Q

Axion-plasmon mixing in a cavity

$$egin{aligned} \epsilon oldsymbol{
abla} \cdot oldsymbol{ ext{E}} &=
ho - g_{a\gamma} oldsymbol{ ext{B}}_{ ext{e}} \cdot oldsymbol{
abla} \,, \ oldsymbol{
abla} imes oldsymbol{ ext{H}} - \dot{oldsymbol{ ext{E}}} &= oldsymbol{ ext{J}} + g_{a\gamma} oldsymbol{ ext{B}}_{ ext{e}} \dot{a} \,, \ \ddot{a} - oldsymbol{
abla}^2 a + m_a^2 a &= g_{a\gamma} oldsymbol{ ext{E}} \cdot oldsymbol{ ext{B}}_{ ext{e}} \,, \end{aligned}$$

 $\epsilon = 0$ gives and resonance inside a plasma

$$\mathbf{E} = -\frac{g_{a\gamma}\mathbf{B}_{e}a}{\epsilon} = -g_{a\gamma}\mathbf{B}_{e}a \left(1 - \frac{\omega_{p}^{2}}{\omega_{a}^{2} - i\omega_{a}\Gamma}\right)^{-1}$$

At the plasma frequency $\omega_p = \omega_a$

$$\omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}} \quad \text{In the Drude model}$$

Natural plasma (ionized gas, free e⁻ in metal, etc) in a cylinder

$$\mathbf{B} = \mathbf{B}_t + B_z \hat{\mathbf{z}}; \quad \mathbf{E} = \mathbf{E}_t + E_z \hat{\mathbf{z}}; \quad \mathbf{B}_e = B_e \hat{\mathbf{z}},$$

$$\left(\boldsymbol{\nabla}_t + \frac{\partial}{\partial z} \hat{\mathbf{z}} \right) \times \left(\mathbf{B}_t + B_z \hat{\mathbf{z}} \right) = -i\omega \left(\mathbf{E}_t + \boldsymbol{\epsilon}_z E_z \hat{\mathbf{z}} \right) - i\omega g_{a\gamma} a B_e \hat{\mathbf{z}} ,$$

$$\left(\boldsymbol{\nabla}_t + \frac{\partial}{\partial z} \hat{\mathbf{z}} \right) \times \left(\mathbf{E}_t + E_z \hat{\mathbf{z}} \right) = i\omega \left(\mathbf{B}_t + B_z \hat{\mathbf{z}} \right) .$$

$$\frac{\omega^2}{\omega^2 - k^2} \left(r^2 \frac{\partial^2 E_z}{\partial^2 r} + r \frac{\partial E_z}{\partial r} \right) + r^2 \omega^2 \epsilon_z E_z + r^2 \omega^2 g_{a\gamma} B_{\rm e} a = 0 \,,$$

<u>Transverse magnetic mode (TM modes) couples to axions at higher frequency</u> However, *natural* plasma is

- Not suitable in a cryogenic environment
- ω_p is not tunable to scan m_a

 \rightarrow **Artificial** plasma by metamaterial₂₁

Cavity filled with 1D wire metamaterial

Free electrons inside wires behave like 1D plasma

$$\begin{split} n_e &= n \frac{\pi r^2}{a^2} \quad ; \quad m_{eff} = \frac{e^2 \pi r^2 n}{2\pi} \log \frac{a}{r} \\ \omega_p^2 &= \frac{n_e e^2}{m_{eff}} = \frac{2\pi}{a^2 \log(a/r)} \; . \end{split}$$

For example, r = 0.5 mm, a = 5 mm gives $\omega_p/2\pi \sim 16$ GHz Free from the size of the cavity itself

Changing the spacing *a* tunes the plasma frequency

Prototype wire-filled cavities

Resonance frequency of the lowest TM mode $3.48 \text{ GHz} \rightarrow 14.4 \text{ GHz}$ With the artificial plasma by the wire metamaterial

One important lesson from ADMX

Status and Future Plans of ADMX"

mode	f₀ [GHz]	\mathbf{Q}_{0}
TE	11.347	20780
TE	11.347	20780
TE	11.359	20917
TM110	11.421	4152.6
TEM	11.502	5678.7
TEM	11.502	5293.8

The same and much severer issues in plasma haloscope

 \rightarrow Photonic bandgap to avoid parasite mode during tuning (?)

• Challenge: parallel B-field on the large area of a metal surface

Courtesy: Le Hoang Nguyen, "Development, Calibration and Current Status of the BRASS-p Experiment" Courtesy: Stefan Knirck, "BREAD: Broadband Reflector Experiment for Axion Detection"

BRASS-p (DESY) & BREAD (Fermilab) ext M Parabolic 2 Mirror 2 $\frac{2}{2}$ Averaged horizontal field Rstrength is approx 0.9 Tesla

Courtesy: Le Hoang Nguyen, "Development, Calibration and Current Status of the BRASS-p Experiment" PATRAS2022 Courtesy: Stefan Knirck, "BREAD: Broadband Reflector Experiment for Axion Detection" PATRAS2022

PA may not be available at higher f \rightarrow single photon sensors

Superconducting single photon sensors may be a solution in the future \rightarrow Although one loses phase information, zero background at cold may be better

Conclusion

- Axion dark matter behaves like coherent waves
 - Microwave technology developed in the particle accelerator community is a mean to address axions
- The axion search around 1 GHz is going to the quantum regime
 - The classical microwave technology is approaching the standard quantum limit and quantum optics is being implemented
- To address heavier axions, several methods have been proposed
 - Multiple cavities, dielectric disks, plasma haloscope, dish antenna
 - Plasma haloscope is being demonstrated
 - Tuning and mode mixing will be the next challenge
 - Different pros and cons in each idea
- Single photon sensors may be necessary for such heavier axions

backup

Dark photon: massive extra U(1) gauge bosons Extra bosons are classic: Grand Unified theories

Axion: only 3 possible (non-gravitational) interactions with standard model particles

→ nuclear spin interacts with an oscillating electric dipole moment (EDM) in presence of effective electric field.

defines QCD axion

→ nuclear spin interacts with an effective magnetic field

Spin precession

Courtesy: Alex Sushkov "The quantum limits on magnetic resonance searches for axion-like dark matter"

[*Rev. Mod. Phys.* **93**, 015004 (2021)] " [*arXiv:2203.14923* (2022)]

Classical: amplifier based on transistors

- Amplification of microwaves (typically $> \times 100$) via electron or hole current in the transistors
- Noise sources
 - Resistance' thermal noise
 - Shot noise of currents (dominating)
- \rightarrow The effective noise temperature is always limited by a certain value
- → One cannot reach standard quantum limit by cooling down $k_B T_{SQL} = h\nu < k_B T_s$ \otimes

Implementation: Josephson Parametric Amplifier

$$L_J = \frac{L_{J0}}{\sqrt{1 - (I/I_0)^2}} = L_{J0} \left(1 + \frac{1}{2} (I/I_0)^2 + \dots \right)$$

- The nonlinearity is induced from Josephson junctions inside SQUID
- Although SQUID is a superconducting quantum device, microwave's behavior is classical (→ semi-classical)

To be dark matter axions: before or after inflation

 \rightarrow How to access heavier dark matter axions in the post inflationary scenario?

ADMX (Washington University → Fermilab)

 $\sim 5~ imes$ scan speed of current ADMX

Challenge: phase lock of all the cavities (S. Knirck)

Courtesy: Gray Rybka, "Current Status and Future Plans of ADMX"

Multiple cavities to address heavier axions

ADMX-EFR

 $m_{\rm a}c^2$ (µeV)

 \rightarrow Multiple cavity option with a recycled magnet

Cavity filled with 1D wire metamaterial

a 🔨 🖌

Changing the spacing *a* tunes the plasma frequency

Influence of cavity quality factor

- Denser wires \rightarrow Lower Q dominated by wire loss \rightarrow uniform distribution
- Higher $Q \rightarrow$ Simpler cavity like behavior

Prototype wire-filled cavities (2/2)

- ✓ Plasma-like phenomenon (cut-off) was observed
- Challenge in parasite modes
 - Mechanical tolerance, antenna design, electrical contacts of wires

- Axion search before the beginning of neutron experiments
- To do: establish tuning mechanism

Courtesy: Stefan Knirck, "BREAD: Broadband Reflector Experiment for Axion Detection"

BREAD (Fermilab) ν [THz] $\mathbf{B}_{\mathrm{ext}}$ 1000 0.0010.010.110 100 10^{-8} 10^{-9} CAST 9 $2\sqrt{2}R$ 10^{-10} Stella **Felescope** $\begin{array}{c} & 10^{-11} \\ \underline{O} \\ \underline{O$ 10^{-1} BREAD Haloscope $A_{\rm dish} = 10 \text{ m}^2$ QCD axion models $B_{\rm ext} = 10 \text{ T}$ 10^{-14} $SNR = 5, \epsilon_{sig} = 0.5$ 10 days 10^{-15} 1000 days Rin solenoid 1000 days, NEP/100 10^{-1} magnet (e.g., MRI) Innovative antenna design inspired by lighthouse mirrors 0.01 0.110100 1000 $m_a \, [\text{meV}]$