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Outline 
 
New physics search program at the LHC 
 
•  Status of Standard Model measurements 
•  Precision SM with indirect sensitivity to BSM 
•  New Physics searches: 

•  Searches for Exotics and Supersymmetry 
•  Selection of results showing excesses….that may be 

compatible with excesses in flavour physics 

•  Summary 
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The ATLAS and CMS experiments 

•  Solenoidal magnetic 
field (2T) in the central 
region – momentum 
measurement

•  Energy meas. down to 
~1o to the beamline

•  Good coverage 
permits 
reconstruction of 
missing 
transverse 
momentum 
through object 
reconstruction

•  High resolution 
silicon detectors

•  Granular EM and 
Had calorimetry 

•  Independent muon 
spectrometer 
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Data Samples – Run 2 
Exceptional LHC performance in 2016 
following 13 TeV commissioning in 2015 
(2015: 4.2 fb-1 delivered, 3.9 fb-1 collected) 

Collected by end of 2016 ~36 fb-1 

4 

Run 2: 
Expect  
~140 fb-1 



Data Samples – Run 2 
Exceptional LHC performance in 2015-2018 
Improved luminosity and recording efficiency 
throughout the run. 
 
Integrated ~150 fb-1 at end of Run2 pp collisions 
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LHC: More than nominal Luminosity 
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LHC design:        L = 1.0 x 1034 cm-2 s-1 

Achieved (2016): L = 1.4 x 1034 cm-2 s-1 
Achieved (2018): L = 2.1 x 1034 cm-2 s-1 
 

More lumi makes for a more challenging  
environment to extract results of interest 



Measuring	the	Standard	Model	with	ever	increasing	accuracy	
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Standard	Model	-	Backgrounds	to	new	physics	searches	
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1 TeV gluino 

2 TeV gluino 

* 

* 



Top	physics	–	hints	for	new	physics	in	heavy	flavor	
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Top	physics	–	Spin	correlations	

•  Top quarks decay before fragmentation 
–  Spin information is preserved 

•  Hadron colliders: top quarks are produced un-polarized, but 
–  New physics (NP) could induce a polarization 

•  e.g. NP causing forward-backward ttbar asymmetry leads è 
more left-handed tops 

–  Correlation between top and anti-top spin can be extracted 
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Top	physics	–	Spin	correlations	

•  Measured spin correlation can change 

 
•  Spin correlation: Test the full chain from production to decay! 
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Analysis	strategy	

•  Highest spin analysing power: leptons from top decays 
–  Use dileptonic ttbar events (eµ) 
–  Very clean samples 

•  Leverage Δϕ between the two leptons
–  No kinematic event reconstruction required

•  Unfolded differential measurements: 

–  Parton level and Particle level 
–  Both inclusive and in  
     bins of m(ttbar) 
 

Full ttbar event reconstruction  
for m(ttbar) 

Particle 

Parton 
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Unfolded	distributions	

•  Unfolded distributions compared to different MC predictions 

ATLAS-CONF-2018-027 

•  Data shows a shallower slope than prediction 

    Parton          Particle 
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Template	fit	

•  Fitting spin and no-spin hypotheses to parton level distributions 

ATLAS-CONF-2018-027 
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Template	fit	

•  Fitting spin and no-spin hypotheses to parton level distributions 

ATLAS-CONF-2018-027 

•  Spin-correlations higher than SM prediction by 3.7σ (3.2σ including theory 
uncertainties) 
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Di-lepton	resonances	

A dimuon invariant mass plot contains much of the history of our field.  
 
Could there be other objects lurking in the distribution? 
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Di-muon	resonance	

An excess of events above the background near a dimuon mass of 28 GeV is 
observed in the 8 TeV data, corresponding to local significances of 4.2 and 
2.9 standard deviations in two event categories. 

arXiv:1808.01890  
CERN-EP-2018-204 
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Di-muon	resonance	

A mild excess of data over the background in the first event category is 
observed in 13 TeV data and corresponds to a local significance of 2.0 
standard deviations, while the second category results in a deficit with a local 
significance of 1.4 standard deviations. 

arXiv:1808.01890  
CERN-EP-2018-204 
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Faking	it	
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Why	SUSY	at	all?	
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illustration by M-H Genest 

SUSY	
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SUSY, this is what we often “claim” we’re searching for… 



SUSY:	Strong,	3rd	gen	and	Electroweak	Production	
Squark and Gluino mediated light jets  

25 

3rd generation squarks EWKino and slepton production 

+ many more 

+ many  
more 



Simplified	Models	
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D. Alves et al J. Phys. G: Nucl. Part. Phys. 39 (2012) 105005 

The way in which we design, and optimize, searches at LHC….. 
 
.....not just an organising principle, this is what we search for! 
 



Simplified	Models	
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Set to high 
mass (many
TeV), do not
 contribute!  

Too heavy!! 



Experiments tend to show these plots as a summary of what has been excluded. 
 
In all cases these limits are under very restricted conditions… 

What	we	usually	show….	
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Not to scale 

SRH – High Mass 
 
SRI  - Intermediate Mass 
 
SRL – Low Mass 
 
SRC – “compressed” masses 
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The general principle of the  
approach for high and  
intermediate masses is the same. 
 
At much smaller mass splitting we 
need a different approach. 

MP 

MI 

Need different cuts for different regions 

General	philosophy	
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All optimized using  
simplified models ! 

MP = Parent mass 
MI = Invisible mass 



Recursive: At each step, specify only the relevant d.o.f. related to that 
transformation ⇒ apply a Jigsaw Rule.  
Repeat procedure recursively according to particular rules defined for each 
topology (the topology relevant to each reference frame) 
Jigsaw: Each of these rules is factorizable/customizable/interchangeable 
like jigsaw puzzle pieces  

New(ish) approach to 
reconstructing open final states

Recursive	Jigsaw	Reconstruction	

The strategy is to transform observable momenta iteratively 
reference-frame to reference-frame, traveling through each of 
the reference frames relevant to the topology

Rather than obtaining one observable, get a 
complete basis of useful observables for each event 
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PJ, C. Rogan, Phys. Rev. D96 112007 (2017) 
PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) 
M. Santoni, “Probing Supersymmetry with Recursive Jigsaw Reconstruction”, PhD Thesis (2017) 
M. Santoni, JHEP 1805 058 (2018)     



Recursive	Jigsaw	Reconstruction	technique	
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PJ, C. Rogan, Phys. Rev. D96 112007 (2017) 
PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) 
M. Santoni, “Probing Supersymmetry with Recursive Jigsaw Reconstruction”, PhD Thesis Uni. Adelaide (Dec 2017) 
M. Santoni, JHEP 1805 058 (2018)     



RJR	technique	
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PJ, C. Rogan, Phys. Rev. D96 112007 (2017) 
PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) 
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RJR	technique	
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PJ, C. Rogan, Phys. Rev. D96 112007 (2017) 
PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) 
M. Santoni, “Probing Supersymmetry with Recursive Jigsaw Reconstruction”, PhD Thesis Uni. Adelaide (Dec 2017) 
M. Santoni, JHEP 1805 058 (2018)     
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SUSY	searches	with	RJR	
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PJ, C. Rogan, Phys. Rev. D96 112007 (2017) 
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Two sets of SRs based on lepton 
multiplicity. High /Intermediate /Low 

ISR Decay Tree 
Requires a system of  
jet(s) to boost the signal 

ISR and Low mass are  
designed to be orthogonal 

Electroweak	SUSY	searches	with	RJR	
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3lepton	Standard	Tree	Definitions	
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sensitive regions of phase space 
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Can leverage the behavior  
of the physics variables we  
design to target signals  
in a more natural way. 
 
Similar selection optimization 
performed for 2lepton regions 
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3lepton	ISR	Tree	Definitions	

Complementarity between the 
RISR variable and PT ISR  outlined  
in detail in:  
PJ, C. Rogan, M. Santoni,  
PRD 95 035013 (2017)  
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Control	Regions	–	3lepton	
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Control	Regions	–	2lepton	
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Validation	Regions	

Study phase space even closer 
to the SR to check variables  
are well modelled. 
All looks good. 
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41 

•  Main background contribution is from VV (3l), VV and Z+jets (2l)
•  Control and Validation Regions enriched in these processes demonstrate 

that the key backgrounds are well modeled
•  Z+jets prediction from a dedicated photon template sample 
•  We see excesses, in 4 signal regions, all targeting the low mass splitting

2l 3l 

Unblinded	results	



Results	–	2lepton	

2l 

42 

arXiv:1806.02293 



Results	–	3lepton	

3l 

43 

arXiv:1806.02293 
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The shape of the excess  
events are similar to that 
predicted from the signal 
model used to optimize 
the search.  
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Similarly, there are excess events in data compared to our prediction in the  
Low mass SRs. The upper right distribution was not used in the event selection. 
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In this region, there are  
variables where the excess 
events clearly differ in  
shape from that predicted 
by the signal model. 
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Excesses of 3.0σ, 2.0σ, 2.1σ and 1.4σ in  
the four regions targeting moderately  
compressed EWK SUSY.  
 
This is the largest excess seen in an ATLAS  
search for Supersymmetry 

Statistical	interpretation	

To remain as conservative as possible, and to avoid model  
dependent statements, we do not combine the significances 
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The four signal regions with excesses were  
studied in terms of their flavour  
composition – looks as expected. 
MANY other cross-checks performed. 
 

Improved limits at high mass compared  
to previous analysis…...with weaker  
limits at low mass due to excesses  
observed.  
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Statistical	interpretation	



Analysis with the best reach  
in Electroweak searches with
 intermediate W/Z bosons. 

Largest excess (≥ 3σ) in any SUSY search! 
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Statistical	interpretation	



ATLAS	–	4	lepton	

Hints in some EWK SUSY channels would suggest we
 should see excesses in similar phase space. 
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arXiv:1804.03602, Phys. Rev. D 98, 032009 (2018) 
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New	Physics	interpretation	

2.3σ deviation from SM in 4lepton  
EWKino search in region sensitive to  
≈200GeV 
 
Still to be updated with 4x more data!    
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New	Physics	interpretation	-	GAMBIT	

* GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool, Eur. Phys. J. C 77 (2017) 784, [arXiv:1705.07908]. 

arXiv:1809:02097 

GAMBIT collaboration performed a global electroweak fit using available collider and direct DM constraints   
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New	Physics	interpretation	 Carena et al, arXiv:1809:11082 

Reproduced ATLAS excesses, they show  
consistency with muon g-2 and DM direct 
detection results. 
 
The benchmark parameter point found is 
very similar to the GAMBIT result. 



Summary 

•  The search for new physics at the LHC continues, but: 
•  There are a few ≈3σ excesses in the data. 

•  With the invention of powerful new methods we’re seeing that 
analyses can be designed to be sensitive to events that were 
previous inaccessible - exciting for future searches. 

•  Results from recent GAMBIT work, and other interesting 
pheno studies, show hints of tension between LHC results 
and SM prediction, may agree with flavour anomalies. 

•  150 fb-1 of Run2 promises a bounty of new results!!! 
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CHEP 2019 – Computing in High-Energy 
and Nuclear Physics Conference 
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Electroweak	SUSY	searches	with	RJR	
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HOWTO	search	for	SUSY	
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SM has a snowman’s chance in hell 

Inspired by Moritz Backes 
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Why	SUSY	at	all?	



SM has a snowman’s chance in hell 

Inspired by Moritz Backes 

UNLIKELY!!!!!!! 
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Results	–	ISR	Signal	Regions	

We see different yields in data compared to our prediction in the ISR SRs, 
most prominently in the 3 lepton region (lower plots). 
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Missing Transverse Momentum 

??

Infer presence of weakly 
interacting particles in 
LHC events by looking for 
missing transverse 
energy…..may be 
composed of one or more 
objects, which may differ

We can learn more by using other information in an event to 
contextualize the missing transverse momentum ⇒                                  
multiple weakly interacting particles?

????
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Preselection	for	the	2lepton	Standard	tree	

The different shapes of these variables in the signal models as compared to the
 major backgrounds can be used in a more targeted way. 
 
The interplay between the variables is also key – if we require one ratio to be  
large (for instance) it may make it increasingly hard for a complementary  
variable to have background events looking like signal events 
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Preselection	for	the	2lepton	ISR	tree	
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Similarly, where we require initial-state radiation, we need complementary 
variables to tease out sensitivity to a signal 
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Preselection	for	the	3lepton	Standard	and	ISR	trees	
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3 lepton selection is a  
similar story! 
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Excesses of 3.0, 2.0, 
2.1 and 1.4 σ in the 
3L ISR, 2L ISR, 3L 
low mass and 2L low 
mass respectively 

Exclusions for high mass reach 
600 GeV and low mass points 
cannot be excluded due to 
excesses  

Largely unique selection 
of events compared to 
earlier analysis on same 
dataset 
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Excesses of 3.0, 2.0, 
2.1 and 1.4 σ in the 
3L ISR, 2L ISR, 3L 
low mass and 2L low 
mass respectively 

Exclusions for high mass reach 
600 GeV and low mass points 
cannot be excluded due to 
excesses  

Largely unique selection 
of events compared to 
earlier analysis on same 
dataset 



Overlap	Plots	in	2l	and	3l	searches	



Recursive Jigsaw Reconstruction 
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Reconstruct approx. of masses and decay angles in resonant final states (e.g. H->WW)  

Measure mass splitting and energies,  
extracting a basis for dileptonic ttbar  
and sparticle pair production 
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