

VSiPMT Prototype Tests

Daniele Vivolo Università degli Studi di Napoli "Federico II" and INFN Napoli

Outline

- 1. Introduction
- 2. The prototypes
- 3. Experimental setup
- 4. Characterization
- 5. Conclusions

Introduction

Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

An innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope

The classical dynode chain of a PMT is replaced with a SiPM, acting as an electron multiplying detector.

An attractive solution for Cherenkov experiments

VSIPMT

Unrivalled performances optimal solution for Cherenkov experiments

Unprecedented features:

- Photon counting capability;
- Low power consumption;
- Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).

Application to atmospheric Cherenkov telescopes

An attractive solution for Cherenkov experiments

VSIPMT

Unrivalled performances optimal solution for Cherenkov experiments

Unprecedented features:

- Photon counting capability;
- Low power consumption;
- Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).

Application to atmospheric Cherenkov telescopes

An attractive solution for Cherenkov experiments

VSIPMT

Unrivalled performances optimal solution for Cherenkov experiments

Unprecedented features:

- Photon counting capability;
- Low power consumption;
- Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).

Application to under-water/under-ice neutrino telescopes

Timeline

D. Vivolo

The prototypes

p⁺nvn⁺ configuration, special non-windowed series for ε optimization. Lower voltage required (-2,5/3 kV expected).

No voltage divider: no power dissipation nor complicated circuits to reduce the dissipation Only a very simple amplifier is required (typ. < 5mW).

D. Vivolo

Experimental setup

Amplification

L-J		C4 DC50	
	200 mV/div	5.00 mV/div	-
	658.0 mV	-26.90 mV	
	-1.160 V	14.35 mV	
	-1.004 V	18.25 mV	
Δу	156 mV	∆y 3.90 mV	

→ 5 mV/div

Timebas	se -69.2.ns	Trigger	C3DC
	20.0 ns/div	Stop	-286 mV
1.00 kS	5.0 GS/s	Edge	Negative

- VSiPMT illuminated by a pulsed laser light at low intensity (407nm)
- oscilloscope triggered in synch with the laser
- Responses for multiple triggers are overlaid

Excellent photon counting capabilities

D. Vivolo

Waveforms

Time stability

100.000 waveforms with low intensity laser light have been acquired every 20 min for 20 hours to study the stability in time of the following parameters:

- 1. Single photo electron response (Mean_{SPE})
- Resolution of the SPE (RMS_{SPE}/Mean_{SPE})
 3. Peak-to-Valley ratio

Time stability

100.000 waveforms with low intensity laser light have been acquired every 20 min for 20 hours to study the stability in time of the following parameters:

- 1. Single photo electron response (Mean_{SPE})
- 2. Resolution of the SPE (RMS_{SPE}/Mean_{SPE})

SPE spectra

D. hybrid laser spectra/SiPMT Prototype Tests - RICH 2013 - Shonan, Kanagawa, 03/12/2013

^{h1} 16 100000 179.9

Entries

Mean

es

Multi photon response and stability

Dark count

Efficiency

Photocathode Spectral Response

D. Vivolo

Efficiency: VSiPMT vs PMT

D. Vivolo

Efficiency

No need for high voltage stabilization.

- Reducing the SiO₂ coating layer it will be possible to reach the plateau region at even lower voltages.
- The HV implies NO power consumption (NULL current) unlike PMTs. Moreover, for PMTs the power consumption increases with the rate!

X¥^{,5}scan

D. Vivolo

TTS

- The output from the VSiPMT is fed as the stop signal via a discriminator;
- We measure the time interval between the "start" and "stop" signals.

D. Vivolo

Transit Time Spread

Afterpulses

VSiPMT Prototype Tests - RICH 2013 - Shonan, Kanagawa, 03/12/2013

AP typical amplitude/1

D. Vivolo

AP typical amplitude/2

High intensity AP time distribution

D. Vivolo

Afterpulse rate

$$R_{AP} = \frac{\sum I_{AP}}{\sum I_{MP}}$$

R_{AP}: afterpulse rate;
 I_{AP}: sum of the intensities of each afterpulse peak found in 100.000 waveforms;
 I_{MP}: sum of the intensities of the primary pulses of 100.000 waveforms;

Afterpulse rate Table summary

Threshold (pe)	Afterpulse rate
>0.50	10.41%
>0.75	9.40%
>1.00	7.34%
>2.00	2.38%
>5.00	0.23%
>10.00	0.02%

D. Vivolo

VSiPMT vs HAPD

D. Vivolo

VSIPMT VS PMT

	РМТ	VSiPMT	comparison
Efficiency	Photocathode x 1 st dynode (0,8)	Photocathode x Fill factor MPPC (→1)	≈ equivalent
Gain	10 ⁵ - 10 ⁶	10 ⁵ - 10 ⁶	≈ equivalent
Timing	nsec	fractions of nsec (no spread dynodes)	+ VSiPMT
Power Consumption	Divider Dissipation	No dissipation: just amp. G=10-20 (<5mW)	+VSiPMT
Stability H.V.	H.V. stabilization for stable gain	No H.V. stability (plateau)	+VSiPMT
Dark counts	≈ kHz @ 0.5pe	≈ 10² kHz @ 0.5pe	+PMT
Photon counting	difficult	excellent	+VSiPMT
Peak-to-valley ratio	≈ 3 (typ.)	> 60	+VSiPMT
Afterpulse	≈ 10% @ 0.5pe	≈ 10% @ 0.5pe	≈ equivalent
SPE resolution	≈ 30% (typ.)	≈ 17.8%	+VSiPMT

Conclusions and Perspectives

VSiPMT is an innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope

It has many **UNPRECEDENTED** features, such as:

- Photon counting capability;
- Low power consumption;
- Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).

making it a very attractive solution in many Cherenkov experiments

