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Abstract

In recent years, machine learning(ML) has begun to be used to find out small signal of
gravitational wave(GW) from noisy data and to estimate physical parameters of it. The
approach is an alternative to using templates, by which the parameters are estimated
by matching with theoretical models. George and Huerta (2018) demonstrated the ML
method for GW from binary black holes. It is important to explore the possibility of
detection and estimation for different types of GW signals. We consider the possibility
of detection and parameter estimation for GW burst by ML. Since the wave forms, e. g.,
driven by magnetar giant flares, are uncertain at present, we model them and explore
the ability of the ML approach. We use the same algorithms based by convolution
neural network used in binary black hole merger by George and Huerta (2018). In this
poster, we discuss accuracy of detection and how much error we can estimate

parameters.



Content and Summary
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| GW signal from binary black holes
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Finding exponentially damped burst signal
Our ML program is sensitive to burst time.
Resultant decay time is not reliable (at present).

We further improve our program.
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Introduction

Sensitivity curve of LIGO

R

IVTZ)

19

—
-
-

10-%

L AL

10 100 10°

Frequency [Hz)

B P Abbott et a/ 2016 Class. Quantum Grav. 33 134001

Previous works

ex.
« George & Huerta (2018)
Detection of GW from binary black hole(BBH)

Parameter estimation for masses of

two black holes

« Fan etal (2018)
Detection of GW from BBH
Parameter estimation for luminosity distance

and position on the celestial sphere
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The GW data contain a lot of noise, and we have to find out small signals from it.

kln recent years, ML has begun to be used for detection and parameter estimation.)

\




Two examples of GW signal

| GW signal from binary black hole
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Simulation data

Two types of data sets for training and test
« “GW + Noise” * “Noise only” 5
popt =4
0

Six examples of data sets

Definition of signal to noise ratio(SNR) ~

) %df S.(f) = ASD?
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with/without signal are shown. \_
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and estimate masses of BHs?

‘ At what level of SNR Popt can the machine detect the signal
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Results of detection for BBH

Sensitivity (%)

This work

at fixed false
positive rate|0.005

25 50 75 10.0 125 15.0 17.5 200
Popt

100

80
60
40

-@- Deep Filtering —— Matched Filtering

2 - 6 8 10 12 14 16
Optimal Matched-Filter SNR

George & Huerta (2018)

An example of successful detection

Amplitude

-2 1

m; = 38.5, m, = 17.5 popt = 16
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/We confirmed our method. \
Similar behavior to previous work

Possible detection
IOOpt Z 16 hstrain Z 1.0 x 10_22 [HZ_1/2]
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Results of parameter estimation for BBH
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Our parameter estimator is bad.

One reason is different wave-form models,

but is sti

Il explored.

Difficult estimation below Popt ™~ 1

J




GW signal from burst

Detailed wave-form is
uncertain at present.

Exponential form is assumed.

h(t) = exp [—1@ _ tb)]

b

Three types of data sets
distributed in range.
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Results of detection for GW-burst signal
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Possible detection
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We include new types of signal at test, which are not included in training data.
How does ML respond?

Three types of test data sets

@ -+ “GW + noise” - “Noise only”

2) «“GW + noise” - “Noise only”

_ —e— normal @
©
- “sin-Gaussian(sG)” as “Noise only” 9

»— sin-Gaussian @
—e— triangle (3)
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bbbk o b ww s
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- “triangle wave(tri)” as “Noise only”

~N

Machine identifies “sG” and “tri” as true signals.

Recall decreased by confusing “sG” or “tri” signal.
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Results of parameter estimation for GW-burst signal

Damping time
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Summary

We used machine learning to detect signal of GW and estimate the parameters.

GW from Binary Black Hole

We confirmed the behavior to be similar to that of George & Huerta (2018).

GW signal from burst

There is possibility to detect signal with signal to noise ratio Popt 2 8.

Machine's response to unexpected coherent data-train such as sin-Gaussian
and triangle wave was “signal”.
It is important to prepare training data to extract true signal we look for.

There may be a way to label that would reduce the mean relative errors of both
damping time 7T and burst time Ty, .



Appendix: Test procedure of detection

1. Classification results

Test data | Class | Score 101 > | —— X=5.0(area = 1.000)
// X = 0.8 (area = 0.995)
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08 ; —— X =0.2 (area = 0.921)
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2. Calculating TPR & FPR with confusion matrix 4. Drawing TPR (recall) graph with fixed FPR
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