Belle II実験における $B^0 \rightarrow \rho^+ \rho^- O$ 崩壊分岐比と縦偏極率の測定

Belle II実験

- ・重心系エネルギー10.58 GeVの電子・ 陽電子衝突型加速器実験。
- ・世界最高ルミノシティにより、最終的 には前身のBelle実験の50倍の統計を 蓄積。

→ B中間子の大量生成による B中間子崩壊の精密測定から、 新物理を探る

これまでに**424 fb**-1の ルミノシティを蓄積。

CKM行列の精密測定

CKM行列の精密測定

- ・ユニタリー三角形
 - 小林益川模型のユニタリー性を複素平面上で 表現したもの
- ユニタリー性 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ の精密検証

→B中間子混合に寄与する新物理現象を探索。

ϕ_2 測定

- 測定には $B \rightarrow \rho \rho$ や $B \rightarrow \pi \pi$ が必要。
- ・ π^{0} を2つ含む $\pi^{0}\pi^{0}, \rho^{+}\rho^{-}$ のようなモードは、 クリーンなBelle II実験でしか測定できない。

\rightarrow CKM行列精密測定には、Belle II 実験による ϕ_2 測定が不可欠。

最新のCKM行列の測定結果

(CKMfitter Group (J. Charles *et al.*), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr) 頂点の角度

5

 $Aig(B^+ o
ho^+
ho^0ig), \overline{A}ig(B^+ o
ho^+
ho^0ig)$

ϕ_2 測定

 $\phi_2 = \arg\left(\frac{-V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$ $b \rightarrow u$ tree + $B\overline{B}$ mixing \rightarrow 時間依存CP対称性の破れ $\frac{\Gamma(\bar{B}^{0} \rightarrow \rho^{+} \rho^{-}) - \Gamma(B^{0} \rightarrow \rho^{+} \rho^{-})}{\Gamma(\bar{B}^{0} \rightarrow \rho^{+} \rho^{-}) + \Gamma(B^{0} \rightarrow \rho^{+} \rho^{-})} = A \cos \Delta m_{d} \Delta t + S \sin \Delta m_{d} \Delta t$ ペンギン崩壊がなければ、 $A = 0, S = \sin 2\phi_2$ 。 ペンギン崩壊の干渉で、 $A \neq 0, S = \sin(2\phi_2 + 2\Delta\phi_2)$ アイソスピン解析 $B^+ \rightarrow \rho^+ \rho^0$ (ツリーが支配的)、 $B^0 \rightarrow \rho^0 \rho^0$ (ペンギン崩壊が支配的)、 Penguin を使って、 $\Delta \phi_2$ の効果を見積もる。 $\frac{1}{\sqrt{2}}A(B^{0} \rightarrow \rho^{\dagger} \rho^{\dagger})$

Gronau and London $B \rightarrow \rho\rho$ における振幅の関係 $\frac{1}{\sqrt{2}}A(B^0 \to \rho^+ \rho^-) - A(B^0 \to \rho^0 \rho^0) = A(B^+ \to \rho^+ \rho^0)$

 $\frac{1}{\sqrt{2}}\bar{A}(B^{0} \to \rho^{+}\rho^{-}) - \bar{A}(B^{0} \to \rho^{0}\rho^{0}) = \bar{A}(B^{+} \to \rho^{+}\rho^{0})$

Belle II実験における $B \rightarrow \rho \rho$ 解析

$B^0 o ho^+ ho^-$

- ρ^{\pm} が π^{0} に崩壊するので、Belle II でのみ解析できる。
- ①崩壊分岐比(アイソスピン解析のため)と縦偏極率(P → VV崩壊なので、 CP-Even な縦偏極とCP-Even+CP-Oddな横偏極を区別)、
 ②時間依存CP非対称度(φ₂の決定のため)を測定して、
 Belle II 実験としてφ₂を決定することを目指す
 この発表では①崩壊分岐比と縦偏極率の結果について発表する。

解析の流れ

- イベント選別条件の決定
- フィッティング
- 系統誤差の評価

イベント選別条件の最適化

B中間子を2つの $\pi^0 \ge \pi^\pm$ から再構成する。 機械学習で $q\bar{q}$ 背景事象や γ の背景事象を削減し、 差分進化で選別に使うすべての変数に対して 最適な閾値を導く。

新しい機械学習の出力をもとに選別条件を最適化 →選別性能の向上

 $e^+e^- o q \overline{q}$ 事象の抑制 γ の背景事象となるビームバックグラウンドや ハドロニックなイベントを抑制 **差分進化法** 多次元関数に対して適用可能な最適化手法。複数 のイベント選別条件(エネルギー、角度、機械学習 出力など全16項目)をすべて同時最適化

最適化した条件で機械学習のトレーニングデータを選別 →選別後に残った背景事象に対して集中的に学習

機械学習によるバックグラウンドの削減

qq背景事象抑制MVA

運動量分布の形状や、衝突点からの 距離などを組み合わせてqqを識別

光子背景事象削減MVA

光子のエネルギーやシャワーの形状を組み合 わせ、ビームバックグラウンドや ハドロニックバックグラウンドを削減

最適化したセレクションの性能 Belle II Simulation

差分進化と機械学習を組み合わせる ことで性能向上。

FoM : <u>√</u> √<u>S+B</u> (S:信号事象数、B:背景事象数)

Self crossfeed: $\rho^+ \rho^-$ event の一部を間違えて再構成したもの Peaking: $\rho^+ \rho^-$ event と同じ $\pi^+ \pi^- \pi^0 \pi^0$ を持つ崩壊モード

	信号 (縦偏極)	信号 (横偏極)	Self crossfeed (縦偏極)	Self crossfeed (横偏極)	BB	qq	peaking	FoM
再構成	807.4	13.5	1745	6.9	16142.6	82122.3	841.1	2.6
事象選別 (機械学習をのぞく)	652.7	11.9	549.6	2.9	3444.9	23930	215.4	4
qq抑制機械学習	353.1	6.5	219.7	1.3	1028.3	615.1	102	8
光子選別機械学習	331.8	6.1	149.1	0.7	654.9	479.7	77.1	8.8
1事象選択	314.9	6	91.7	0.5	539.4	449.1	68.3	8.9

フィット手法

<u>フィットパラメータ</u> **目的の物理量** ① 崩壊分岐比 (*Br*) ②縦偏極率 (*f_L*) *バックグラウンド数* ① *qq̄* (*q* = udsc) ② *BB̄* ③ Peaking backgroundの数 **フィット変数 (全6変数)**

- ΔE: 再構成したエネルギーとビームエネルギーの差
- $m_{\pi^{\pm}\pi^{0}}$: ρ^{\pm} の不変質量
- T_c: qq 抑制のための機械学習モデルの出力をフィット
 しやすい形に変換したもの
- $\cos \Theta_{\rho^{\pm}}: \rho^{\pm}$ 静止系での $B^{0} \ge \pi^{\pm}$ の角度差 \rightarrow 偏極状態

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_{\rho^+} d \cos \theta_{\rho^-}} = \frac{9}{4} \left(f_L \cos^2 \theta_{\rho^+} \cos^2 \theta_{\rho^-} + (1 - f_L) \frac{1}{4} \sin^2 \theta_{\rho^+} \sin^2 \theta_{\rho^-} \right)$$

Belle II Simulation ($\int Ldt = 200.0$ fb⁻¹)

intries / 0.01 [GeV]

intries / 0.01 [GeV/c² 01 02 05 05 05

/ 0.05

フィット変数の相関

最大の相関は、 $\cos \Theta_{\rho^{\pm}}$ と ΔE の相関。 ΔE の値によって $\cos \Theta_{\rho^{\pm}}$ の形状が変化。 ($\cos \Theta_{\rho^{\pm}}$ は π^{0} の運動量と強く相関するのが 原因。)

→データをΔ*E* で6分割し、Δ*E*の値に応じて 異なる $\cos \Theta_{\rho^{\pm}}$ のフィット関数を用いて フィットする。

Belle II Simulation

0.0

 ΔE [GeV]

0.1

-0.1

モデリング

縦偏極信号のモデリング

- ΔE : Bifurcated Gaussian (左右で σ の異なるガウシアン)を2つ足し合わせる
- $m_{\pi^{\pm}\pi^{0}}$: Relativistic Breit Wigner
- *T_C*:定数
- $\cos \theta_{\rho^{\pm}}$: ヒストグラムPDF (ΔE との相関を考慮)

他成分も同様にモデリングした。

Belle II Simulation

縦偏極信号のモデリング

ΔEとの相関を考慮

	Longitudinal signal	Self-crossfeed (Longitudinal signal)	Transverse signal	Self-crossfeed (Transverse signal)	BB	qq
ΔE	Bifurcated Gaussian ×2	Bifurcated Gaussian ×1	Bifurcated Gaussian ×2	Bifurcated Gaussian ×1	2次式	2次式
$m_{\pi^{\pm}\pi^{0}}$	Breit-Wigner	Breit-Wigner +一次式	Breit-Wigner	Breit-Wigner +一次式	Breit-Wigner +一次式	Breit-Wigner +一次式
T _C	定数	1次式	1次式	1次式	exp(ax+bx^2)	1次式
$\cos \Theta_{ ho^{\pm}}$	テンプレート	テンプレート	テンプレート	テンプレート	テンプレート	テンプレート
↑ 関数を用いてそれぞれの成分を表現した。						

$cos\Theta_{\rho^{\pm}}$ のモデリングのData-MCの一致度の評価

 $\cos \Theta_H : \rho^{\pm}$ 静止系での $B^0 \ge \pi^{\pm}$ の角度 差 → 偏極状態を見分ける

サイドバンド領域 (5.26 < *M_{bc}* < 5.274 GeV) でcos Θ_ρ±の評価を行う。

系統誤差の評価方法 それぞれの成分($q\bar{q}$, $B\bar{B}$,signal)を Data-MCの比で重み付けをして 擬似データを生成し、重み付け していないPDFでフィットし、 $Br \, arphi_L$ に生じるバイアスを 計算する。

データとシミュレーションの違いを理解した。 $B^0 o
ho^+
ho^-$ の信号領域の解析へ進む

 $Br = (2.67 \pm 0.28 (Stat.) \pm 0.28 (Syst.)) \times 10^{-5}$ $f_L = 0.956 \pm 0.035 (Stat.) \pm 0.033 (Syst.)$

PDG2022の値と誤差の範囲で一致。崩壊分岐比に関して、統計誤差と 系統誤差の合計でBaBar実験の結果と同程度

統計誤差と同程度の系統誤差に抑えられている。主要な系統誤差は将来的には削減可能。

まとめ

- ・CKM行列の精密測定は新物理探索において強力であり、 Belle II 実験で $B \rightarrow \rho\rho$ を用いた ϕ_2 の測定を目指す。
- ・ $B^{0} \rightarrow \rho^{+}\rho^{-}$ の測定を行い、以下の結果を得た $Br = (2.67 \pm 0.28 (Stat.) \pm 0.28 (Syst.)) \times 10^{-5}$ $f_{L} = 0.956 \pm 0.035 (Stat.) \pm 0.033 (Syst.)$

Belle II 実験において、 $B^0 \rightarrow \rho^+ \rho^-$ の崩壊分岐比、縦偏極率測定を 完成させた。今後、時間依存CP非対称度を測定し、Belle II 実験として の ϕ_2 測定を行う。

18 /17

フィットパラメータの相関

 $B^{0} \rightarrow \rho^{+}\pi^{-}\pi^{0}$ と $N_{B^{0}\rightarrow\pi^{+}\pi^{-}\pi^{0}\pi^{0}}$ や、 $q\bar{q}, B\bar{B}$ は、 比較的フィット変数の分布が近いことで、 識別が難しい。 しかし、崩壊分岐比・縦偏極率は相関の影響をそこ まで受けていない。

	フィット結果
Br	$(2.67 \pm 0.28) \times 10^{-5}$
f_L	0.956 ± 0.035
N _{qq}	249 <u>+</u> 30
N _{BB}	514^{+39}_{-38}
$N_B^{0} \rightarrow \rho^+ \pi^- \pi^0$	139^{+63}_{-60}
$N_B{}^0\rightarrow\pi^+\pi^-\pi^0\pi^0$	-99^{+33}_{-31}
$\overline{N_{B^0 \to a_1^0 \pi^0}}$	-8^{+19}_{-17}

Peaking Background

	TA	ABLE II: Summary of	f efficiencie	es and branching frac	tion (BF) of peaking backgroun
			Efficiency	BF (PDG)	BF (DECAY_BELLE2.DEC)
[_	$B^0 \to \pi^+\pi^-\pi^0\pi^0$	0.42%	$< 3.1 imes 10^{-3}$	$1.0 imes 10^{-5}$
$2\pi^{\pm}2\pi^{0}$ Final states (Same as signal)		$B^0 \to a_1^0 \pi^0$	1.40%	$< 1.1 \times 10^{-3}$	$1.0 imes 10^{-6}$
		$B^0 \to a_1^\pm \pi^\mp$	0.22%	$(2.6 \pm 0.5) imes 10^{-5}$	$2.6 imes 10^{-5}$
$1\pi^{\pm}2\pi^{0} + 1K^{\mp}$		$B^0 \to \rho^\pm \pi^\mp \pi^0$	1.16%	-	$1.0 imes 10^{-5}$
Final states	_	$B^0 \to K^*(892)^\pm \rho^\mp$	0.28%	$(1.03 \pm 0.26) \times 10^{-5}$	$1.03 imes 10^{-5}$
ightarrow Can be background		$B^0 \to K_0^{*\pm}(1430) \rho^{\mp}$	0.13%	$(2.8 \pm 1.2) \times 10^{-5}$	$2.8 imes10^{-5}$
due to mis-ID of $K\pi$					

Number of the peaking background in the fit

<u>Measured</u> \rightarrow Fixed, Systematics will be calculated by changing $Br \pm 1\sigma$ <u>Not Measured</u> \rightarrow Floated in our fit Expected number of the peaking background (200fb⁻¹) $B^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0 : 6.3$ $B^0 \rightarrow a_1^0 \pi^0 : 2.2$ $B^0 \rightarrow a_1^+ \pi^- : 5.6$ $B^0 \rightarrow \rho^+ \pi^- \pi^0 : 18.9$ $B^0 \rightarrow K^{*+} \rho^- : 9.0$ $B^0 \rightarrow K_0^{*+} \rho^- : 9.1$ Expected number of the signal events

N _{long} :	268.1
N _{trans}	:5.4

データとシミュレーションの比較

Target and decay mode

CSMVA: $B^0 \to D^{*-} (\to \overline{D}^0 (\to K^+ \pi^-) \pi^-) \pi^+ \pi^0$ efficiency: $D^0 \to K^- \pi^+ \pi^0$ and $D^0 \to D^- \pi^+$ including PhotonMVA

Shift of ΔE and $m_{\rho}: B^{-} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+}\pi^{0})\rho^{-}$ Angular mismodelings $(\cos\theta_{\rho}): B^{0} \rightarrow \rho^{+}\rho^{-}$ sideband region **Selection**

Same as for $B^0 \to \rho^+ \rho^-$ Binary K-ID > 0.6 1.835 GeV < M_{D^0} < 1.895 GeV 1.855 GeV < $M_{D^{\pm}}$ < 1.885 GeV

 $A(B^{0} \rightarrow \rho^{\dagger} \rho^{\dagger})$

 ϕ_2 測定

 $b \rightarrow u \text{ tree} + B\overline{B} \text{ mixing} \rightarrow 時間依存CP対称性の破れ$ $<math>\frac{\Gamma(\overline{B}^{0} \rightarrow \rho^{+} \rho^{-}) - \Gamma(B^{0} \rightarrow \rho^{+} \rho^{-})}{\Gamma(\overline{B}^{0} \rightarrow \rho^{+} \rho^{-}) + \Gamma(B^{0} \rightarrow \rho^{+} \rho^{-})} = C \cos \Delta m_{d} \Delta t - S \sin \Delta m_{d} \Delta t$ ペンギン崩壊がなければ、 $S = \sin 2\phi_{2}$ だが、ペンギン 崩壊の存在により、

 $C \neq 0, S = \sin(2\phi_2 + 2\Delta\phi_2)$ アイソスピン解析

 $Aig(B^+ o
ho^+
ho^0ig), \overline{A}ig(B^+ o
ho^+
ho^0ig)$

 $B^+ \rightarrow \rho^+ \rho^0$ (ツリーが支配的)、 $B^0 \rightarrow \rho^0 \rho^0$ (ペンギン崩壊 が支配的)、を使って、 $\Delta \phi_2$ の効果を見積もる。

 $\begin{array}{c} A \\ \hline B \\ \hline B \\ \hline B \\ \hline C \\ \hline C$

シミュレーションに対するフィット結果

Geant 4 で生成したシミュレーション データにフィットして 得られた結果が入力とよく一致する

フィット結果と入力とのずれ。モデリングに使用した シミュレーションデータの一部に対してフィットしたため、deviationが小さい。

フィットモデルの検証と補正

ずれの大きさ→ フィットに使用するPDFに反映 ずれの統計誤差→系統誤差に反映

MODELING

Longitudinal Signal

Self crossfeed (Longitudinal)

Transverse Signal

Self crossfeed (Transverse)

qq

ΒĒ

 $B^0 \rightarrow \rho^+ \pi^- \pi^0$

 $B^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

 $B^0 \rightarrow a_1^+ \pi^-$

 $B^0 \rightarrow a_1^0 \pi^0$

 $B^0 \rightarrow K^{*+} \rho^-$

 $B^0 \to K_0^{*+} \rho^-$

