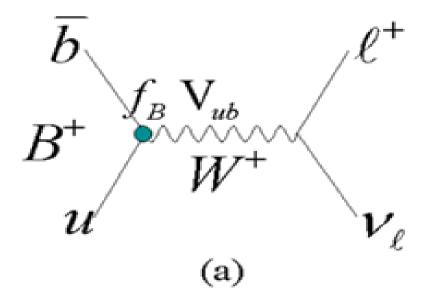

Pulely leptonic and radiative leptonic decays from the e⁺e⁻ B-factories

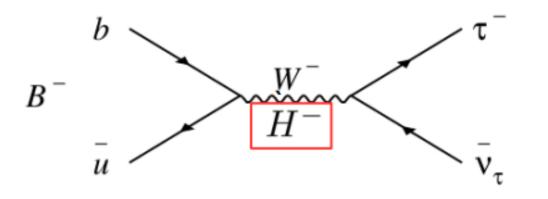
Chanseok Park Yonsei University Seoul, Korea ChanSeok.Park@yonsei.ac.kr


Contents

- B-factories
- Motivation
- Methods
- Results
- $B^+ \rightarrow \tau^+ \nu_{\tau}$
- $B^+ \rightarrow I^+ \nu_I$
- $B^{_{+}} \not \rightarrow I^{_{+}} \nu_{_{I}} \gamma$
- Summary

B-factories

Leptonic decay


SM Predictions:

 $egin{aligned} \mathcal{B}(B o e
u) &\sim 10^{-11} \ \mathcal{B}(B o \mu
u) &\sim 10^{-7} \ \mathcal{B}(B o au
u) &\sim 10^{-4} \end{aligned}$

Helicity suppressed in the SM

$$\Gamma_{SM}(B^+ \to l^+ \nu_l) = \frac{G_F^2 m_B m_l^2}{8\pi} \left(1 - \frac{m_l^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2$$

New Physics in Leptonic decay

NP contributions might interfere and modify SM branching fraction Most prominent : H[±] from 2-Higgs-Doublet-Models (2HDM) as in MSSM

2HDM Type II:
$$\Gamma(B^+ \to l^+ \nu_l) = \Gamma_{SM} \times r_H$$

 $r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$

Status

\sim			
Babar Belle	Hadronic tagging	Semileptonic tagging	Non tagging (Inclusive)
Β→τν	PRD88_031102(2013) PRL110_131801(2013)	PRD81_051101(2010) Submitted to PRD(RC) arXiv:1503.05613	
B→Iv	PRD77_091104(2008) PRD91_052016(2015)	PRD81_051101(2010)	PRD79_091101(2009) PLB647_67-73(2007)
B→Ινγ	PRD80_111105(2009) Submitted to PRD arXiv:1504.05831		

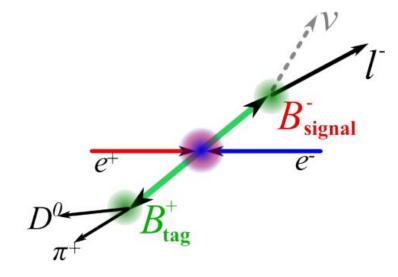
8 published Papers (+2 submitted)

Analysis methods

A B meson pair (and nothing else) is produced by $e^+e^- \rightarrow Y(4S) \rightarrow BB$ Therefore if we measure one B, we can study missing neutrinos in the other B

Variables that help signal extraction

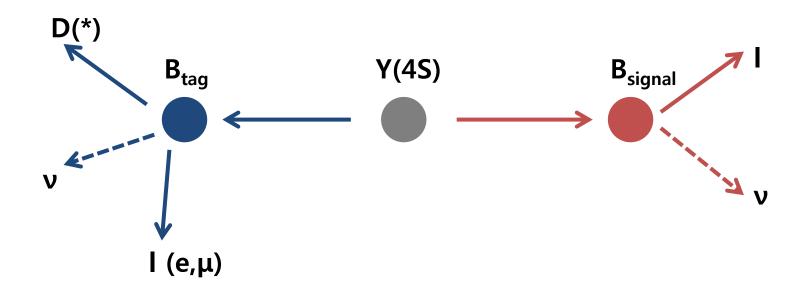
 E_{ECL}(=E_{extra}): remaining energy of ECL clusters after subtraction energy from tagside and signal-side.
 → For signal, 0 GeV peak is expected.


 $M_{bc}(=m_{ES})=sqrt(s/4 - p^2(B_{tag}))$: Use momentum of tagged B meson.

 m^2_{miss} : missing mass squared $p_l{}^B$: signal lepton momentum at signal B rest frame

Two independent tags are used.

- Hadronic tag
- Semileptonic tag


Hadronic tagging

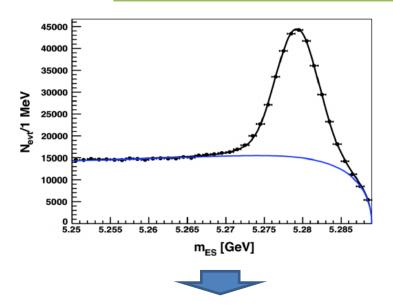
- One B meson is completely reconstructed from known b→c decays without v
- Low efficiency, High purity
- Good momentum resolution

- Belle : use 615 channels to reconstruct B⁺ meson use network output of the multivariate selection algorithm
- Babar : reconstruction channel is different for each analysis doesn't use neural network, different best B selection criteria

Semileptonic tagging

- Reconstruct B meson with D(*) meson and lepton (e,μ)
- Use large branching fraction of semileptonic decays
- Only one massless particle is missing in the reconstruction of the decay

$B^+ \rightarrow \tau^+ \nu_{\tau}$



(1) $B^+ \rightarrow \tau^+ \nu_{\tau}$: hadronic

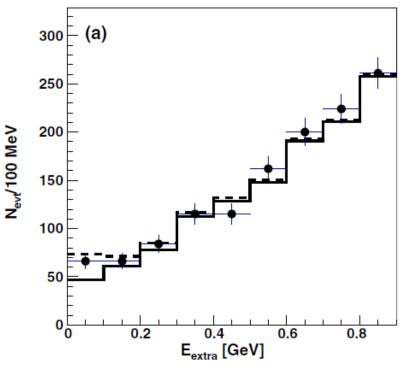
- Signal τ modes: τ → e ν ν, μ ν ν, π ν, ρ(π $π^0$) ν
- Multiple B candidate
- → Choose least $|\Delta E|$ B meson
- R2 : ratio between 2nd and 0th of Fox-Wolfram moments
- θ_{TB} : angle between thrust axis of B_{tag} and remaining
- L_P: likelihood ratio from reconstructed track momentum and missing momentum angle

$$L_P = \frac{L_S(p_{\text{trk}}^*, \cos \theta_{\text{miss}})}{(L_S(p_{\text{trk}}^*, \cos \theta_{\text{miss}}) + L_B(p_{\text{trk}}^*, \cos \theta_{\text{miss}}))}$$

PRD88_031102(2013)

Purity is estimated from the ratio of peaking events over total

(1) $B^+ \rightarrow \tau^+ \nu_{\tau}$: hadronic


leV

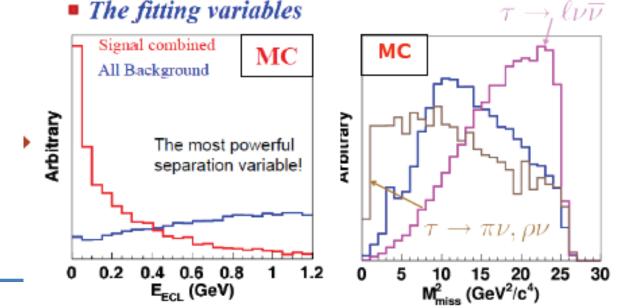
Uses 467.8M BB pairs **1D signal extraction** in excess calorimeter energy(E_{extra})

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.83^{+0.53}_{-0.49}(\text{stat}) \pm 0.24(\text{syst})) \times 10^{-4}$$

Significance : 3.8 σ

Decay mode	$\epsilon_k(imes 10^{-4})$	Signal yield	$\mathcal{B}(\times 10^{-4})$
$\tau^+ \rightarrow e^+ \nu \bar{\nu}$	2.47 ± 0.14	4.1 ± 9.1	$0.35^{+0.84}_{-0.73}$
$\tau^+ \to \mu^+ \nu \bar{\nu}$	2.45 ± 0.14	12.9 ± 9.7	$1.12^{+0.90}_{-0.78}$
$\tau^+ \to \pi^+ \nu$	0.98 ± 0.14	17.1 ± 6.2	$3.69^{+1.42}_{-1.22}$
$\tau^+ \to \rho^+ \nu$	1.35 ± 0.11	24.0 ± 10.0	$3.78^{+1.65}_{-1.45}$
Combined		62.1 ± 17.3	$1.83\substack{+0.53\\-0.49}$

E_{extra} distribution for subdecay modes can see in backup slides


(2) $B^+ \rightarrow \tau^+ \nu_{\tau}$: hadronic

Signal τ modes: $\tau \rightarrow e \nu \nu$, $\mu \nu \nu$, $\pi \nu$, $\rho(\pi \pi^0) \nu \pi^0 K_L$ veto

- K_L efficiency calibration by $D^0 \not \rightarrow \phi K_{S'} \phi \not \rightarrow K_L K_S$
- K_L gives ~ 5% improvement in the expected sensitivity

2D fitting on EECL and M2miss

 $E_{\text{ECL}} = \sum$ (energies of neutral clusters, not belonging to either B_{tag} or π^0 in B_{sig}) $M_{\text{miss}}^2 = (E_{\text{CM}} - E_{B_{\text{tag}}} - E_{B_{\text{sig}}})^2 - |\vec{p}_{B_{\text{tag}}} + \vec{p}_{B_{\text{sig}}}|^2$

PRL 110, 131801(2013)

(2)
$$B^+ \rightarrow \tau^+ \nu_{\tau}$$
: hadronic

$$E_{ECL} = \sum_{main (energies)} (energies) of neutral clusters, not belonging to either B_{tag} or π^0 in B_{sig} :
 $M^2_{miss} = (E_{CM} - E_{B_{tag}} - E_{B_{sig}})^2 - |\vec{p}_{B_{tag}} + \vec{p}_{B_{sig}}|^2$

$$\int_{0}^{120} \int_{0}^{120} \int_{0}^{120$$$$

$\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau})$	$= [0.72^{+0.27}_{-0.25}(\text{stat}) \pm 0.11(\text{syst})] \times 10^{-4}$	Significance: 3.0 σ .
--	--	------------------------------

Sub-mode	$N_{\rm sig}$	$\epsilon (10^{-4})$	$\mathcal{B}(10^{-4})$
$\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$	16^{+11}_{-9}	3.0	$0.68^{+0.49}_{-0.41}$
$\tau^- o \mu^- \bar{\nu}_\mu \nu_\tau$	26^{+15}_{-14}	3.1	$1.06\substack{+0.63\\-0.58}$
$\tau^- ightarrow \pi^- \nu_{ au}$	- 0	1.8	$0.57^{+0.70}_{-0.59}$
$ au^- o \pi^- \pi^0 u_ au$	14^{+19}_{-16}	3.4	$0.52\substack{+0.72\\-0.62}$
Combined	62^{+23}_{-22}	11.2	$0.72_{-0.25}^{+0.27}$

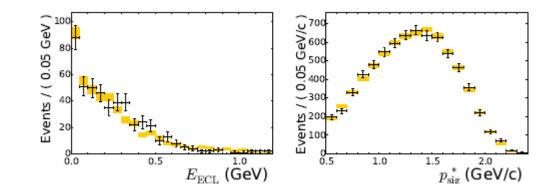
Uses full belle data sample

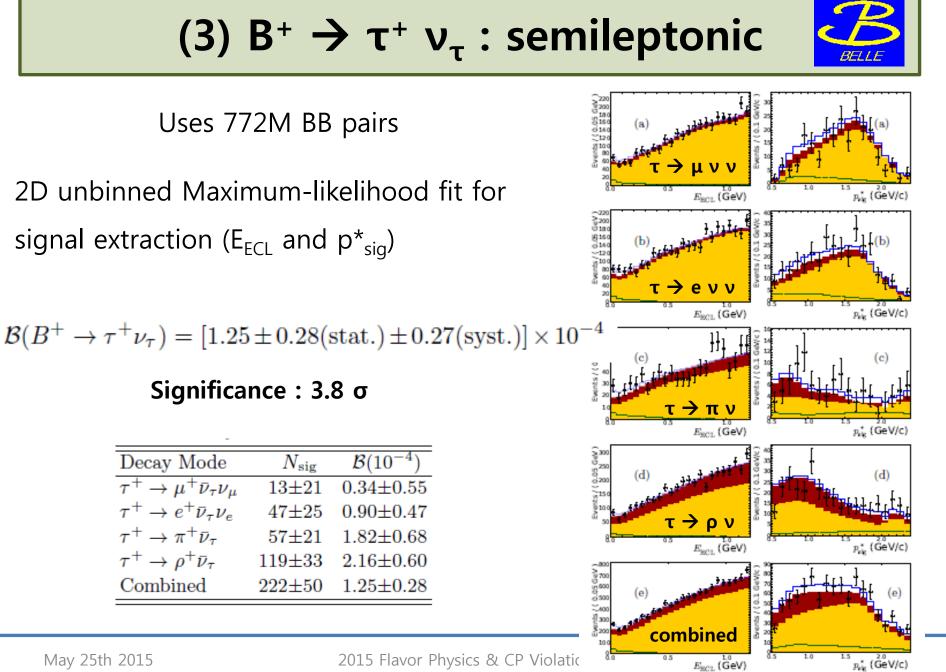
449M \rightarrow 772M BB pairs

2D signal extraction in E_{ecl} and M^2_{miss}

- Loose selection criteria are applied to maximize the efficiency.
- Multivariate selection (MVS) method based on NeuroBayes package.
- Multiple B candidate
- \rightarrow choose with maximal value of tag-side MVS output.

$$\cos \theta_{B,D^{(*)}\ell} = \frac{2E_{\text{beam}}E_{D^{(*)}\ell} - m_B^2 c^4 - m_{D^{(*)}\ell}^2 c^4}{2p_B^* p_{D^{(*)}\ell}^* c^2}$$

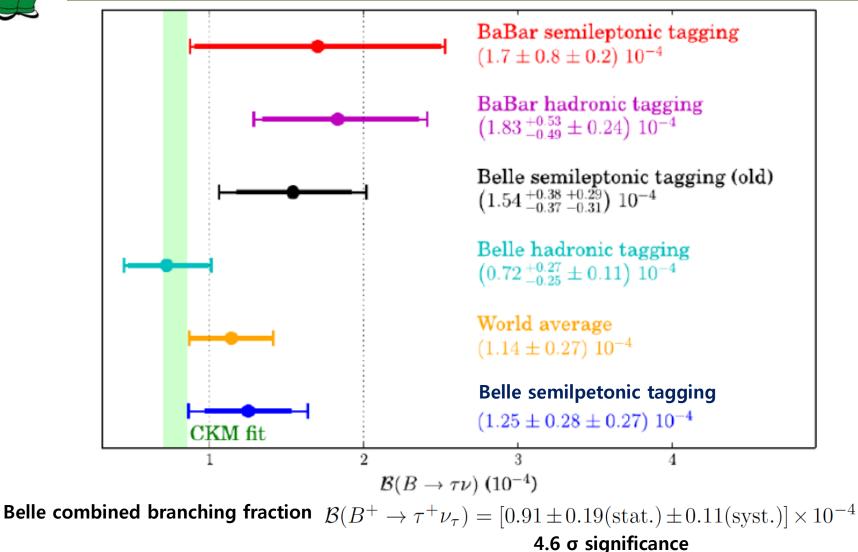

Cosine of the angle between the momentum of the B meson and the $D^{(*)}I$ system.


arXiv:1503.05613

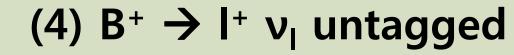
- Use $B \rightarrow D^{*0} lv$, $B \rightarrow D^0 \pi^+$ double tagged sample to check Data MC difference.
 - \rightarrow Use E_{ECL} and p_{sig}*
 - ightarrow Reconstruction efficiency is corrected by the ratio

p_{sig}* : momentum of signal-side particle in the CM

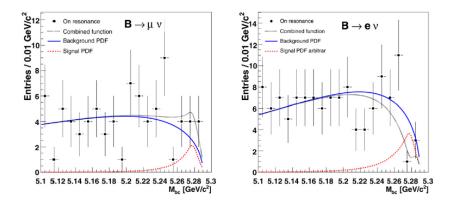
- Veto backgrounds from converted photons in the electron modes.
- 23.1×10⁻⁴ total efficiency (For details, see backup slides p.33)



2015 Flavor Physics & CP Violatic


$B^+ \rightarrow \tau^+ \nu_{\tau}$ summary

$B^+ \rightarrow I^+ \nu_I$

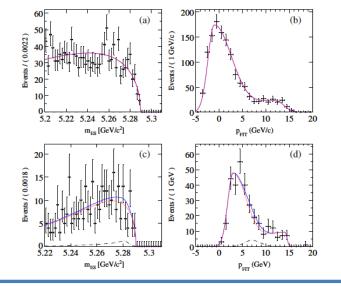

PLB647_67-73(2007)

PRD79_091101(2009)

Uses 276.6M BB pairs

1D signal extraction using M_{bc} Best upper limits for $B^+ \rightarrow e^+ \nu_e$

$$\frac{\mathcal{B}(B^+ \to \mu^+ \nu_{\mu}) < 1.7 \times 10^{-6}}{\mathcal{B}(B^+ \to e^+ \nu_e) < 9.8 \times 10^{-7}} \quad (90\% \text{ C.L.})$$



Uses 468M BB pairs

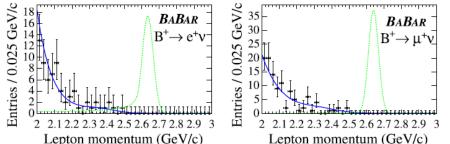
2D signal extraction using m_{ES} p_{FIT}

Best upper limits for
$$B^+ \rightarrow \mu^+ \nu_\mu$$

$$\frac{\mathcal{B}\left(B^+ \to \mu^+ \nu_{\mu}\right) < 1.0 \times 10^{-6}}{\mathcal{B}\left(B^+ \to e^+ \nu_e\right) < 1.9 \times 10^{-6}}$$

(5) $B^+ \rightarrow I^+ \nu_I$ tagged

PRD77_091104(2008)

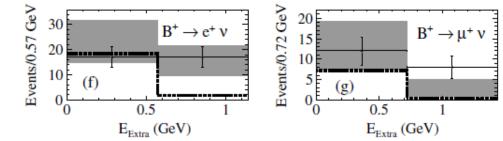

PRD81_051101(2010)

Hadronic tagging

Uses 378M BB pairs

1D signal extraction using signal lepton momentum at signal B frame

 $\mathcal{B}(B^+ \to e^+ \nu) < 5.2 \times 10^{-6}$ $\mathcal{B}(B^+ \to \mu^+ \nu) < 5.6 \times 10^{-6}$

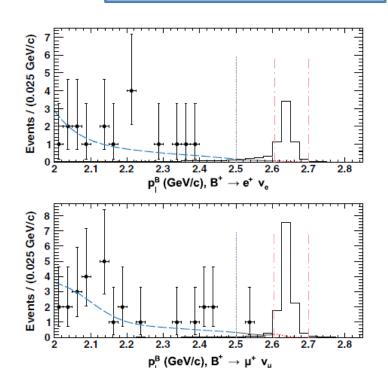


Semileptonic tagging

Uses 458.9M BB pairs

1D signal extraction using E_{Extra}

$$\begin{aligned} \mathcal{B}(B^+ \to e^+ \nu_e) &< 0.8 \times 10^{-5} \\ \mathcal{B}(B^+ \to \mu^+ \nu_\mu) &< 1.1 \times 10^{-5} \end{aligned}$$


(5) $B^+ \rightarrow I^+ \nu_I$ tagged

- p₁^B: Signal lepton momentum in B_{sig} rest frame
- Signal extraction by p_I^B (counting)
- U.L. calculated using Feldman-Cousins method
- most stringent limits obtained with the hadronic tagging method

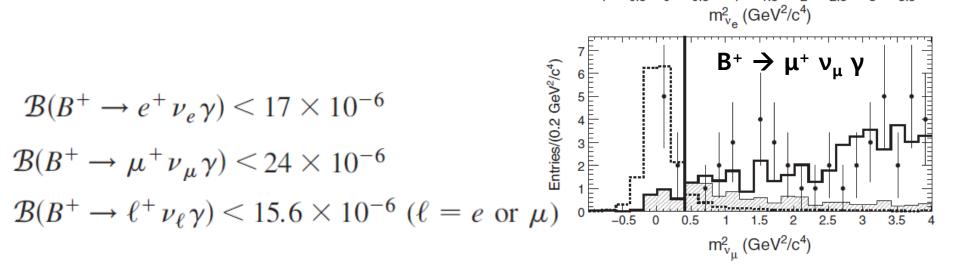
 $\begin{array}{l} \mathcal{B}(B^+ \rightarrow \mu^+ \nu_u) < 2.7 \times 10^{-6} \\ \mathcal{B}(B^+ \rightarrow e^+ \nu_e) < 3.5 \times 10^{-6} \end{array}$

Mode	$\epsilon_{\rm s}$ [%]	Nobs	$N_{ m exp}^{ m bkg}$
$B^+ \rightarrow e^+ \nu_e$	0.086 ± 0.007	0	0.10 ± 0.04
$B^+ \to \mu^+ \nu_\mu$	0.102 ± 0.008	0	$0.26^{+0.09}_{-0.08}$

PRD91_052016(2015)

Radiative leptonic decay ($B^+ \rightarrow I^+ \nu_I \gamma$)

- The branching fraction determines λ_{B} , a parameter describing the quark momentum distribution in the B meson.
- photon removes helicity suppression \rightarrow can increase branching fraction


Entries/(0.2 GeV²/c⁴

-0.5

0

0.5

- Signal counting using m²_v
- Uses 465M BB pairs
- Obtain model-independent upper limit and U.L. for each form factor limits

PRD80_111105(2009)

 $B^+ \rightarrow e^+ \nu_e \gamma$

1.5

2

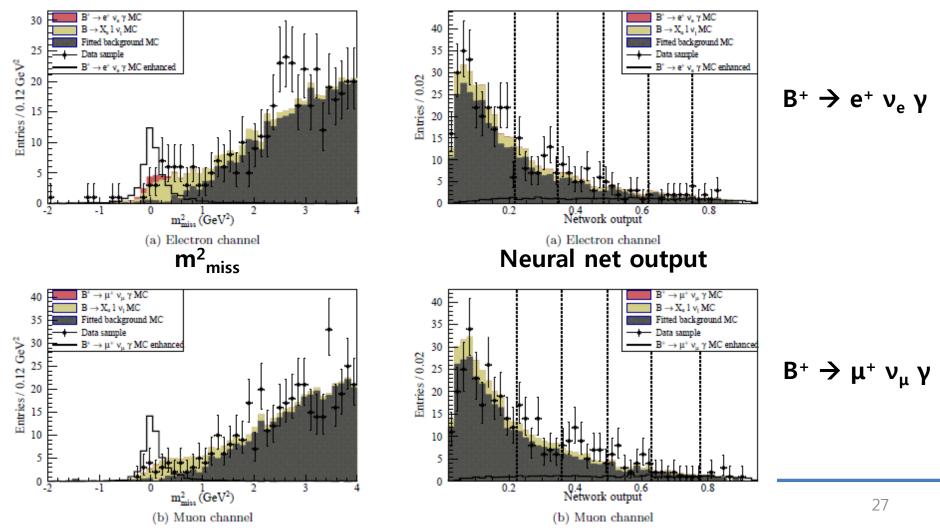
2.5

3

3.5

arXiv:1504.05831

- Uses 772M BB pairs
- 2 cases are considered ($E_v^B > 1.0 \text{ GeV}$, $E_v^B > 0.4 \text{ GeV}$)
- Signal extraction by using 2 variables


$$m_{\rm miss}^2 = (p_{B_{\rm sig}} - p_\ell - p_\gamma)^2 / c^4$$

Neural Network output

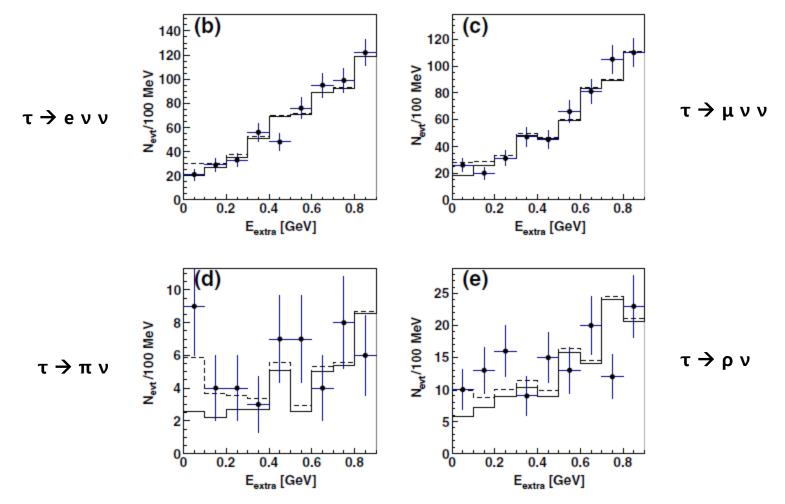
% m(π⁰) and m(η) are included in Neural network to suppress the main background (B⁺→I⁺ν_Iπ⁰, B⁺→I⁺ν_Iη) Extra energy in EM calorimeter Angle between signal γ and ν $m(\pi^0)$ with $E(\gamma_{back}) > 40$ MeV $m(\pi^0)$ without cut on $E(\gamma_{back})$ $m(\eta)$ with $E(\gamma_{back}) > 300$ MeV Angle between signal γ and I $m(\eta)$ with $E(\gamma_{back}) > 100$ MeV $m(\pi^0)$ with $E(\gamma_{back}) > 60$ MeV $m(\pi^0)$ with ECL cuts scaled by 0.6

signal extraction by extended unbinned 1D max. likelihood fit to the m_{miss}^2 distribution in six bins of the neural net output.

- No hint of signals, and we set upper limits
- Most stringent upper limits in all modes!

$$\begin{aligned} \mathcal{B}(B^+ \to e^+ \nu_e \gamma) &< 6.1 \times 10^{-6} \\ \mathcal{B}(B^+ \to \mu^+ \nu_\mu \gamma) &< 3.4 \times 10^{-6} \\ \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma) &< 3.5 \times 10^{-6} \end{aligned}$$

Summary


 B-factories have studied purely leptonic and radiative leptonic decay with a goal of searching for new physics beyond SM.

- Semileptonic tagging $B^+ \rightarrow \tau^+ \nu_{\tau}$ searches at Belle has 3.8 σ significance
- Radiative leptonic decay searches at Belle gives most stringent upper limit of branching fraction.
- e⁺e⁻ B-factory experiments has an advantage for these studies and these will remain important subjects in the Belle-II.

BACKUP

(1) $B^+ \rightarrow \tau^+ \nu_{\tau}$: hadronic

	$\tau^+ o \mu^+ \nu_\tau \bar{\nu}_\mu$	$\tau^+ \rightarrow e^+ \nu_\tau \bar{\nu}_e$	$\tau^+ \to \pi^+ \nu_{\tau}$	$\tau^+ \to \rho^+ \nu_{\tau}$
$p^*_{\ell_{ ext{tag}}}$		$ ho_{\ell_{ ext{tag}}}^*$	> 0.3 GeV	
$p^*_{ m sig}$		$p_{\ell_{\rm sig}}^*$	> 0.3 GeV	
$ ho^*_{D^{(*)}_{ ext{tag}}}$		$ ho_{D_{ ext{tag}}^{(st)}}^{*}$	< 2.5 GeV	
dr _{sig}		dr	< 2 cm	
dz_{sig}		dz	< 4 cm	
$\mathcal{N}_{ ext{tag}}$	$\mathcal{N}_{\rm tag} > 0.0066$	$\mathcal{N}_{\mathrm{tag}} > 0.0075$	$\mathcal{N}_{\mathrm{tag}} > 0.02$	$\mathcal{N}_{\mathrm{tag}} > 0.009$
· ·	$1.7 < \cos heta_{B,D^{(\star)}\ell} < 1$	$-1.9 < \cos\theta_{B,D^{(\star)}\ell} < 1$	$-1.3 < \cos \theta_{B,D^{(\star)}\ell} <$	1 $-2.6 < \cos \theta_{B,D^{(*)}\ell} < 1$
$\operatorname{PID}_{\pi/K,\operatorname{sig}}$			$\mathrm{PID}_{\pi/K,\mathrm{sig}} > 0.2$	$\mathrm{PID}_{\pi/K,\mathrm{sig}} > 0.6$
$M_{\pi^+\pi^0}$				$ M_{\pi^+\pi^0} - m_{ ho^+} <$ 0.195 GeV
$\mathcal{N}_{\mathrm{cs}}$	$\mathcal{N}_{\rm cs} > -0.5$	$\mathcal{N}_{\rm cs} > -0.5$	$\mathcal{N}_{\rm cs} > 0.75$	$\mathcal{N}_{\mathrm{cs}} > 0$
$M_{\ell_{\mathrm{sig}}X}$		$M_{\ell_{ m sig}X} > 0.2~{ m GeV}$		
$M_{\ell_{\mathrm{tag}}X}$		$M_{\ell_{ m tag}X} > 0.2~{ m GeV}$		

BELLE

Final State	$e^+\nu_e\bar{\nu}_\tau$	$\mu^+ u_\mu ar u_ au$	$\pi^+ \bar{ u}_{ au}$	$\pi^+\pi^0\bar{\nu}_{ au}$
$e^+\nu_e\bar{\nu}_{\tau}$		0.1 ± 0.0	0.2 ± 0.0	0.1 ± 0.0
$\mu^+ \nu_\mu \bar{\nu}_\tau$	0.1 ± 0.0	4.7 ± 0.1	0.6 ± 0.0	0.2 ± 0.0
$\pi^+ \bar{\nu}_{\tau}$	0	0.1 ± 0.0	1.6 ± 0.0	0.5 ± 0.0
$\pi^+\pi^0 \bar{\nu}_{\tau}$	0	0.1 ± 0.0	1.4 ± 0.0	4.9 ± 0.1
$\pi^+\pi^0\pi^0\bar{ u}_{ au}$	0	0	0.2 ± 0.0	1.3 ± 0.0
Other	0	0	0.1 ± 0.0	0.2 ± 0.0
All	6.8 ± 0.1	5.1 ± 0.1	4.0 ± 0.0	7.2 ± 0.1
Total		23.1	± 0.1	

Row : Generated Column : Reconstructed Off-diagonal : cross-feeds BELLE

TABLE III. List of systematic uncertainties.

Source	Relative Uncertainty (%)
Continuum description	14.1
Signal reconstruction efficiency	0.6
Background branching fractions	3.1
Efficiency calibration	12.6
τ decay branching fractions	0.2
Histogram PDF shapes	8.5
Best candidate selection	0.4
Charged track reconstruction	0.4
π^0 reconstruction	1.1
Particle identification	0.5
Charged track veto	1.9
Number of $B\bar{B}$ pairs	1.4
Total	21.2

Most stringent upper limits !!

	Nominal analysis with $E_{\gamma}^{\rm sig} > 1 {\rm GeV}$						
		MC expectation Data measurement					
Mode	Yield	Significance (σ)	$\mathcal B$ limit (10^{-6})	Yield	\mathcal{B} (10^{-6})	Significance (σ)	${\cal B}$ limit (10^{-6})
$B^+ ightarrow e^+ \nu_e \gamma$	$8.0\pm4.5{}^{+1.0}_{-1.3}$	2.1	< 7.5	$6.1^{+4.9+1.0}_{-3.9-1.3}$	$3.8^{+3.0+0.7}_{-2.4-0.9}$	1.7	< 6.1
$B^+ \to \mu^+ \nu_\mu \gamma$	$8.7 \pm 4.6 \ ^{+1.0}_{-1.5}$	2.2	< 6.9	$0.9^{+3.6+1.0}_{-2.6-1.5}$	$0.6^{+2.1+0.7}_{-1.5-1.1}$	0.4	< 3.4
$B^+ \to \ell^+ \nu_\ell \gamma$	$16.5\pm6.5~^{+1.6}_{-2.2}$	2.9	< 4.8	$6.6^{+5.7+1.6}_{-4.7-2.2}$	$2.0^{+1.7+0.6}_{-1.4-0.7}$	1.4	< 3.5

	Secondary analysis with $E_{\gamma}^{\rm sig} > 400 {\rm MeV}$						
	MC expectation Data measurement						
Mode	YieldSignificance (σ) \mathcal{B} limit (10 ⁻⁶)Yield \mathcal{B} (10 ⁻⁶)Significance (σ) \mathcal{B} limit					$\mathcal B$ limit (10^{-6})	
$B^+ \to e^+ \nu_e \gamma$	$12.4 \pm 6.2 \ ^{+1.8}_{-2.3}$	2.1	< 6.8	$11.9^{+7.0+1.8}_{-6.0-2.3}$	$4.9^{+2.9+0.8}_{-2.5-1.0}$	2.0	< 9.3
$B^+ \to \mu^+ \nu_\mu \gamma$	$11.9\pm6.0{}^{+1.7}_{-2.1}$	2.2	< 6.2	$-0.1^{+5.2+1.7}_{-4.1-2.1}$	-	-	< 4.3
$B^+ \to \ell^+ \nu_\ell \gamma$	$24.9\pm8.7~^{+3.0}_{-3.5}$	2.9	< 4.3	$11.3^{+8.4}_{-7.4}{}^{+3.0}_{-3.5}$	$2.3^{+1.7+0.7}_{-1.5-0.8}$	1.4	< 5.1