STATUS AND PROSPECT OF NEUTRINO CP **VIOLATION AND BARYON NUMBER VIOLATION**

QMUL

NEUTRINO OSCILLATIONS

Create in one flavour detect in another.
 Each flavour state is a superposition of different mass states.

The relationship between these mass/flavour states is given by the PMNS (Pontecorvo, Maki, Nakagawa, Sakata) matrix.

PMNS MATRIX

Free parameters usually written in terms of three rotation angles and 1 complex phase: θ_{12} , θ_{23} , θ_{13} , δ_{c_P}

In the two-flavour approximation: P_{α}

$$P_{\alpha\beta} = \sin^2(2\theta)\sin^2\left(1.27\Delta m^2[eV^2]\frac{L[km]}{E[GeV]}\right)$$

$$\begin{array}{ll} |\Delta m_{32}^{2}| \equiv |m_{3}^{2} - m_{2}^{2}| \\ \approx 2 \times 10^{-3} \, \text{eV}^{2} \\ \nu_{\mu} \rightarrow \nu_{\mu} \\ \nu_{\mu} \rightarrow \nu_{\tau} \\ \text{Atmospherics and} \\ \log \text{ baselines} \end{array} \qquad \begin{array}{ll} |\Delta m_{31}^{2}| \approx |\Delta m_{32}^{2}| \\ \overline{\nu_{e}} \rightarrow \overline{\nu_{e}} \\ \nu_{\mu} \rightarrow \nu_{e} \\ \text{Reactor and} \\ \log \text{ baselines} \end{array} \qquad \begin{array}{ll} |\Delta m_{21}^{2}| \approx 8 \times 10^{-5} \, \text{eV}^{2} \\ \overline{\nu_{e}} \rightarrow \overline{\nu_{e}} \\ \overline{\nu_{e}} \rightarrow \overline{\nu_{e}} \\ \nu_{e} \rightarrow \nu_{\mu} + \nu_{\tau} \\ \text{Reactor and solar} \end{array} \qquad \begin{array}{ll} |\Delta m^{2}_{21}| \approx 8 \times 10^{-5} \, \text{eV}^{2} \\ \Rightarrow \Delta m^{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{1}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{1}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{1} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{2} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{2} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{2} - m^{2}_{2}| [eV^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{2} - m^{2}_{2}| [eV^{2}_{2} - m^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{2} - m^{2}_{2}| [eV^{2}_{2} - m^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2}_{2} - m^{2}_{2}| [eV^{2}_{2} - m^{2}_{2} - m^{2}_{2}| [eV^{2}_{2} - m^{2}_{2} - m^{2}_{2}] \\ \Rightarrow \Delta m^{2}_{2} = |m^{2$$

MEASURED PARAMETERS

The six parameters measurable in neutrino oscillations:

- The atmospheric mass square difference Δm^{2}_{23}
- The solar mass square difference $\Delta m_{12}^2 m_2^2 m_1^2$
- The atmospheric angle θ_{23}
- The solar angle θ_{12}
- The reactor angle θ_{13}
- The CP violating phase δ_{CP}

OPEN QUESTIONS

- What is the mass hierarchy?
- There are two possible mass splitting:
 - [Δm²₃₂] = measured in atmospheric and LBN experiments. <u>The sign is</u> <u>unknown.</u>
 - Δm_{12}^2 = measured in solar and reactor experiments
- There are two possible mass hierarchies:
 - Normal Hierarchy (m₁<m₂<m₃)
 Inverted Hierarchy (m₃<m₁<m₂)
- Enhancement or suppression depending on hierarchy.

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

OPEN QUESTIONS

Do neutrino oscillations violate CP symmetry?

θ_{23} degeneracy (how close to 45°?)

Only in an <u>appearance</u> measurement since CPT requires the disappearance probabilities to be the same

 $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$?

 Possibly relevant for understanding origin of matter-dominated Universe (Leptogenesis)

- What is the "octant" of θ_{23} ?
- What is the balance v_{μ} and v_{τ} ?
 - Or is the mixing
 - "maximal" (e.g. even split)?

LONG BASELINE NEUTRINO EXPERIMENTS

FAR Detector

LONG BASELINE NEUTRINO EXPERIMENTS

• A joint analysis working group has just started.

- Joint results will be available in the future.
- Planned LBN: Hyper-Kamiokande & DUNE (+ others)

Predicted events in the Far Detector.

FAR Detector

APPEARANCE AND DISAPPEARANCE MEASUREMENTS

T2K OVERVIEW

Jan. 20 2010 ~ May 31 2018 3.16 x10²¹ Protons On Target (POT) so far
 1.51 x10²¹ POT v-Mode + 1.65x10²¹ POT v-Mode

- $3.13 \times 10^{21} = -1.49 \times 10^{21} v + -1.63 \times 10^{21} v$ POT
- 40% of the total approved T2K statistics

CONSTRAINTS USING ND280

Analysis uses pairs of samples from 2 active target volumes **Pure scintillator**: **Carbon** (+H) **Water+ scint.: Oxygen** (+C, H) Allows separate constraints for C vs O nuclear effects

Neutrino beam

- Require 1 muon-like track
- Sub-samples with {0,1,..,n} pion-like tracks

Antineutrino beam

Require 1 muon-like track
Sub-samples based on muon charge and {0, *n*} extra tracks
(Larger 'wrong-sign' B/G in RHC mode)

Pion collection & focussing depends on Horn Current Forward Horn Current (FH): $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ Reverse Horn Current (RH): $\pi^- \rightarrow \mu^- + \overline{\nu}$

ANALYSIS FLOW

Near Detector data primarily constrains flux and cross section uncertainties

SUPER-KAMIOKANDE SAMPLES

Θ_{23} AND ΔM^2_{32} MEASUREMENT

• CL contours for $v_{\mu} \rightarrow v_{\mu}$

disappearance parameters, including reactor constraint on $\sin^2 \theta_{13}$

- Best fit points:
 - $\sin^2 \theta_{23} = 0.532$
 - $\Delta m^2_{23} = 2.452 \text{ x} 10^{-3} \text{ eV}^2$

T2K data compatible with maximal mixing

CONSTRAINT ON δ_{CP}

Preferred value around δ_{CP}=-π/2 with the best fit point of δ_{CP}=-1.885
δ_{CP} 2σ intervals:

Normal Hierarchy [-2.966, -0.628] rad
Inverted Hierarchy [-1.799, -0979] rad

CP conserving values (δ_{CP}=0 or π) disfavored at 2σ level
Need more data to reach 3σ result

FUTURE SENSITIVITIES

Proposal for extension of T2K :

- May have 3σ sensitivity to δ_{CP}≠0
 by around 2026
- 20 x10²¹ POT by 2027~2028
- Target beam power: 1.3 MW
- Increase effective statistics
 - More new SK event samples
 - 320kA horn current

Reduce sys. error ~9% → ~4%
 KEK/J-PARC Stage-1 status

Upgraded near detector ND2

CERN-SPSC-2018-001

SK-GD REFURBISHMENT

Measurement of magnetic field in the inner detector.

Works in the outer detector. The outer detector is about 2m wide..

NOVA OVERVIEW

- NuMI beam running at 700 kW design power since January 2017 (> 18 x 10¹⁸ protons per week). Collected so far:
 - 8.85 x10²⁰ POT v-Mode
 - 6.9x10²⁰ POT \overline{v} -Mode (expected 12x10²⁰ POT \overline{v} Spring2019)

NOVA EVENT SELECTION

Neutrino Interaction Topologies

NOvA Analysis Strategy

Deep-learning based Particle identification for v_e and v_μ analyses

Near-to-Far extrapolation

NOVA RESULTS

Events / 0.1 GeV

Observed

Appearance Analysis

Systematic errors: Measurements still statistically limited. The upcoming test beam program will improve the calibration and detector response systematics.

JOINT APPEARANCE AND DISAPPEARANCE

- Prefers non maximal mixing at 1.8σ
- Favours upper octant at a similar level
 Best fit:
 - Normal Hieranchy
 - Δm²₂₃ = (2.52 + 0.13/-0.18)10⁻³ eV² (NH)
 - sin²θ₂₃=0.58 +/- 0.03 (UO)
- NOvA is consistent with other long baseline and atmospheric neutrino experiments.

NOVA FD

Normal hierarch

<u>ل</u> 2

Significance

8.85×10²⁰ POT equiv v + 6.9×10²⁰ POT v

A Preliminary

JOINT APPEARANCE AND DISAPPEARANCE

- Excludes $\delta_{CP} = \pi/2$ for IH at > 3σ
- Consistent with all δ_{CP} value at > 1.6 σ
- Prefers NH at 1.8 σ
- Best fit:
 - \bullet $\delta_{CP} = 0.17\pi$
 - $\Delta m_{23}^2 = (2.52 + 0.13 / -0.18) 10^{-3} eV^2 (NH)^2$
 - o sin²θ₂₃=0.58 +/- 0.03 (UO)

FUTURE PROSPECTS

- ▶ Run 50% v, 50% v after 2018.
- Extended running through 2024
- Proposed accelerator improvement projects and test beam program.
- Sensitivities:
 - 3σ sensitivity to hierarchy (if NH and $\delta_{CP} = 3\pi/2$) for allowed range of θ_{23} by 2020.
 - 3σ sensitivity for 30-50% (depending on octant) of δ_{CP} range by 2024.
 - 2+ σ sensitivity for CP violation in both hierarchies at $\delta_{CP}=3\pi/2$ or $\delta_{CP}=\pi/2$ (assuming unknown hierarchy) by 2024.

NOVA TEST BEAM PROGRAMME

- The test beam program will facilitate numerous analysis improvements, including reduced systematics and simulation improvements.
- Installation and commissioning has happened last summer.
- Beam in the first half of 2019, planning on 2 million particles.

PROGRAMME TOWARDS HYPER-KAMIOKANDE

HYPER-KAMIOKANDE OVERVIEW

Same baseline as T2K but:

- 10 times larger far detector
- Higher beam power 1.3MW
- Improved near detectors
- Additional Water Cherenkod near detector
- Potential for second far detector in Korea

Upgraded Accelerator for higher beam

EXPECTED EVENTS

500

400

300

200

100

150

100

50

-50

-100

-150

for δ=0

v beam

v beam

Difference of events/50 MeV

0.2

0.2

0.4

1,656

289

6

0.4

Number of events/50 MeV

v beam

274

444

12317

6040

859

CP VIOLATION SENSI

Exclusion of $\sin \delta_{CP} = 0$

 8σ for $\delta_{CP} = -90^{\circ}$ (T2K best fit)

After 10 years of running, HK will be able to measure 58% of the δ_{CP} 76% of coverage of δ_{CP} parameter space to better than 5σ

Running time (year)

6

100_⊏

70₽

60⊧

50⊧

40⊧

30⊧

20₽

10Ē

n

90 € 1.3MW beam

 10^{10} 1year = 10^{7} s

2

The expected 90% CL allowed regions in the $sin^2 2\theta_{13}$ - δ_{CP} plane.

Зσ

5σ

10

8

FURTHER RESULTS

• δ_{CP} precision measurement • 22° for $\delta_{CP} = -90^{\circ}$

7° for
$$\delta_{CP} = 0^\circ$$

Atmospheric + beam neutrino sensitivities

bind the set of the

Wrong mass hierarchy rejection @ 3σ for all possible values of θ_{23} Wrong octant rejection @ 3σ for $|\theta_{23} - 45^{\circ}| \ge 2.3^{\circ}$

CP VIOLATION SENSITIVITIES

- Over 1k v_e appearance events in ~7 years assuming 1:1 $v:\overline{v}$
- Simultaneous fit of four spectra
- Systematics approximated as normalisation uncertainties

 5σ sensitivity after 300 kt·MW·yr exposure (7 yr), for any δ_{CP} From DUNE Conceptual Design Report (CDR) arXiv:1512.06148

OTHER OSCILLATION PHYSICS AND SENSITIVITIES

 δ_{cP} Resolution (degrees)

Normal ordering The bands represent the range of sensitivities for the NuFit 2016 90% CL allowed regions for $sin^2 \theta_{23}$

R&D: DUNE PROTOTYPES AT CERN

The DUNE FD LArTPCs will be by far the largest ever built

- ProtoDUNEs are a crucial step in the R&D path for the DUNE FD:

 validate construction procedures and operational performance, and use full-size components identical to those planned for DUNE FD
 Two ProtoDUNEs, to test the two designs (single and dual phase), of
 - ~800 tons each largest LArTPCs to date!

EHN1 Extension

OTHER FUTURE OPTIONS

- DUNE and Hyper-K are the first priority for the future of accelerator neutrino physics and must be pursued with the maximum support
- Possibility of optimization should also be studied with great attention
- Other topics in neutrino physics exist that require different accelerator experiments to be addressed
- It is important that the R&D is kept alive and first stage experiments are welcome. In a nutshell:
 - Alternative configurations for LBL experiments: P2O, Pacific, Chips
 Alternative configurations
 Alternative configurative configurations
 Alternative configurative config

 Ancillary setups for LBL experiments: Enubet, NuStorm.
 New concepts for neutrino beams (and their first stages): ESSnuBeam, DAEδALUS (IsoDAR), Nufact (nuSTORM), Moment (EMuS)

Chips

MOTIVATION OF PROTON DECAY SEARCHES

Proton decay observation would be a strong evidence of the Grand Unified

Theories.

Neutrino mass/mixings/CPV and proton decays could be related to each other at very high energy physics (GUTs).

We are in an exciting era because large neutrino detectors (JUNO, DUNE, Hyper-K) are planned to start operation near future. They are also good proton decay detectors!

P-DECAY SEARCHES TO PROVE GUT

Variety of predictions and no SUSY in LHC \rightarrow We must pursue both these and other decay modes for discovery

EXPERIMENTAL LIMITS AND MODEL

Super-K provides world stringent limits on the proton lifetime • $\tau/B(p \rightarrow e^{+}\pi^{0}) > 1.6 \times 10^{34}$ years (90%C.L.) • $\tau/B(p \rightarrow \overline{\nu}K^{+}) > 5.9 \times 10^{33}$ years (90%C.L.) • PRD90, 072005 (2014)

- Already constrain the construction of many GUT models
- Many models predict $\tau/B=O(10^{34-35})$ years
 - Discovery could be around corner!

CHARGED LEPTON + MESON DECAY

		Eff.	.(%)	BG	(SK-I+II)	Candidates
Modes		SK-I	SK-II	NEUT	(NUANCE)	SK-I+II
$p \rightarrow e^+ \pi^0$		44.6	43.5	0.31	(0.27)	0
$p \rightarrow \mu^+ \pi^0$		35.5	34.7	0.34	(0.27)	0
$p \rightarrow e^+ \eta$	(2γ)	18.8	18.2	0.28	(0.29)	0
	$(3\pi^{0})$	8.1	7.6	0.16	(0.32)	0
$p ightarrow \mu^+ \eta$	(2γ)	12.4	11.7	0.04	(0.04)	0
	$(3\pi^{0})$	6.1	5.4	0.45	(0.44)	2
$p \rightarrow e^+ ho^0$		4.9	4.2	0.35	(0.34)	0
$p \rightarrow \mu^+ ho^0$		1.8	1.5	0.42	(0.46)	1
$p \rightarrow e^+ \omega$	$(\pi^0 \gamma)$	2.4	2.2	0.14	(0.29)	0
	(3π)	2.5	2.3	0.39	(0.30)	1
$p \rightarrow \mu^+ \omega$	$(\pi^0\gamma)$	2.8	2.8	0.31	(0.37)	0
	(3π)	2.7	2.4	0.17	(0.05)	0
$n \rightarrow e^+ \pi^-$		19.4	19.3	0.27	(0.37)	0
$n \rightarrow \mu^+ \pi^-$		16.7	15.6	0.43	(0.44)	1
$n ightarrow e^+ ho^-$		1.8	1.6	0.38	(0.44)	1
$n \to \mu^+ \rho^-$		1.1	0.94	0.29	(0.69)	0

TABLE V. Summary of the nucleon decay searches.

PRD 96, 012003 (2017)

No evidence is found in Super-K

OTHER SEARCHES

Test o	f excess in e/ μ spectrum		PRL113,101801(2014)			
Mode	SK I-IV Sensitivity (years)	SK I-IV Limit (years)	PDG Limit (years)			
$p ightarrow e^+ \nu \nu$	$2.7 \cdot 10^{32}$	$1.7 \cdot 10^{32}$	$1.7 \cdot 10^{31}$			
$p \to \mu^+ \nu \nu$	$2.5 \cdot 10^{32}$	$2.2 \cdot 10^{32}$	$2.1 \cdot 10^{31}$			
Mode	SK I-IV Sensitivity (years)	SK I-IV Limit (years)	PDG Limit (years)			
$p \rightarrow e^+ X$	$7.9 \cdot 10^{32}$	$7.9 \cdot 10^{32}$	_			
$p \to \mu^+ X$	$7.7 \cdot 10^{32}$	$4.1 \cdot 10^{32}$	_			
$n \rightarrow \nu \gamma$	$5.8 \cdot 10^{32}$	$5.5 \cdot 10^{32}$	$2.8 \cdot 10^{31}$			
$np \rightarrow e^+ \nu$	$9.9 \cdot 10^{31}$	$2.6 \cdot 10^{32}$	$2.8 \cdot 10^{30}$			
$np \rightarrow \mu^+ \nu$	$1.1 \cdot 10^{32}$	$2.2 \cdot 10^{32}$	$1.6 \cdot 10^{30}$			
$np \to \tau^+ \nu$	$1.1 \cdot 10^{31}$	$2.9 \cdot 10^{31}$	_			
$ p \rightarrow v \pi^0, \tau/$ $ p \rightarrow v \pi^+, \tau/$	$^{\prime}B_{\pi0}$ > 1.1 x 10 ³³ years at 90 $^{\prime}B_{\pi+}$ > 3.9 x 10 ³² years at 90	%CL %CL	PRL 113, 121802 (2014)			
$\Delta B = 2, n$	PRD91,072006(2015)					
• $\tau/B_{n-\overline{n}}(^{16}O) > 1.9 \times 10^{32}$ years @ 90%C.L.						
• $\tau/B_{n-\overline{n}}(\text{free})>2.7\times10^8 \text{sec}$						
► ∆B=2 din	PRL112,131803(2014)					
Super-	• Super-K also searched for $pp \rightarrow \pi^+\pi^+$, $pn \rightarrow \pi^+\pi^0$, $n \rightarrow \pi^0\pi^0$					

SENSITIVITIES OF FUTURE EXPERIMENTS

	Hyper-K I90 kton		DUNE 40 kton		JUNO 20 ton	
	Eff. (%)	BG (/Mt y)	Eff. (%)	BG (/Mt y)	Eff. (%)	BG (/Mt y)
e+π⁰	40	0.7	45	Ι	-	-
⊽K +	24	١.6	97	I	64	2.5
	arXiv:18	805.04163	JHEP0704 arXiv:15	4(2007)041; 512.06148	arXiv:15	07.05613

For modes with Kaons, DUNE and JUNO can benefit from K identification and expected to have better S/N than water.
 For modes of "charged lepton plus mesons" like p→e+π⁰, Hyper-K sensitivities are better by high mass.

PROTON LIFETIME SENSITIVITIES

3σ discovery potential will reach:

- > 1x10³⁵ years for $p \rightarrow e^+ \pi^0$
- ► $5x10^{34}$ years for $p \rightarrow \overline{v}K^+$

HYPER-K SENSITIVITIES

- Improvements in many modes by a factor ~10
- Large number of decay modes will be investigates, including $p \rightarrow e^+ \pi^0$, $p \rightarrow \overline{v} K^+$
- Good chance for discovery!

CONCLUSIONS

- Major quest for CP violation in the lepton sector is being addressed by two running experiments T2K and NoVA.
- Current results
 - Exclude CP = 0 or π at 2σ
 - Prefer normal hierarchy
- Experiments are continuing to run, more data and lower systematics will be achieved.
- Future experiments, chiefly Hyper-K and DUNE, currently being built, will definitely be able to measure CP violation in the lepton sector.
- Proton and neutron decays have been challenged by Super-K. Much higher sensitivity will be provided by Hyper-K, DUNE and JUNO.

ADDITIONAL SLIDES

SUMMER 2018 RESULTS – EVENTS RATES

Sampla	Expect	Expectation , $\sin^2 \theta_{23} = 0.528$, $\delta =$				
Sample	$-\pi/2$	0	π	$+\pi/2$	Observed	
FHC 1R-μ	268.5	268.2	268.9	268.9	243	
RHC 1R-µ	95.5	95.3	95.8	95.5	102	
Sum of 1R-μ	364.0	363.5	364.7	364.5	345	
FHC 1R-e	73.8	61.6	62.2	50.0	75	
FHC 1R- <i>e</i> +d.e.	6.9	6.0	5.8	4.9	15	
RHC 1R-e	11.8	13.4	13.2	14.9	9	

See fewer v_{μ} like events than expected,

⇒ fit will prefer maximal disappearance

See more v_e and fewer \bar{v}_e than expected, even for $\delta = -\pi/2$ \Rightarrow fit will have a strong preference for CP-

violation that enhances neutrino rates

•Excess in d.e. sample has $p \sim 1\%$, but does not have big impact on fit

STRONG CASES

 We could identify details of unification picture, e.g. gauge group and other symmetries

- $\Gamma(n \rightarrow v\pi^0)/\Gamma(p \rightarrow e^+\pi^0)$ depends on SU(5), SO(10), E₆ (Y. Muramatsu)

• P-decay Br. ratio could tell us flavor structure of SUSY particles.

Decay branches depends on the size of sfermion mixing. (N.Nagata and S.Shirai, JHEP 1403, 049 (2014))

High mass (190kton for HK)

• To advance $p \rightarrow e^+\pi^0$ (>10³⁵ years), vK+(>3×10³⁴ years), and others beyond Super-K

• Free-p (¹H) available

- No Fermi motion, nuclear effect
- High efficiency & good S/N separation

• Excellent & well-proven detector

<u>performance</u>

- Good ring-imaging capability at sub-GeV
- Excellent particle ID (e or μ) capability
- > 99% (single-ring)
- Energy resolution

	material	Fiducial Mass (kton)
Super-K	Water	22
Hyper-K	Water	190
Dune	Argon	40
JUNO	Liq. Scinti	20

HYPER-KAMIOKANDE $P \rightarrow E^+\Pi^0$

- Background (BG) free search possible
 - (0.06 BG/Mton·year)
 - Free proton (¹H) no nuclear effect
 - Well proven performance and understood BG
 - Discovery potential extends to10³⁵ years

$P \rightarrow \overline{\nu} K^+$ DISCOVERY POTENTIAL

- K is below Cherenkov threshold, identified by daughter particles (established by SK)
- Signatures are:
 - Monochromatic muon (K⁺ $\rightarrow \mu^+ \nu$)

• K⁺ $\rightarrow \pi^+ \pi^0$

- Enhanced sensitivity thanks to improved photosensors (photon efficiency and timing)
- Discovery reach >3×10³⁴ years

DUNE SENSITIVITY POTENTIAL

- LArTPC could identify the K⁺track by higher ionization density with high efficiency.
- Single-event discovery could be possible.
- In addition, potential clean search for neutron-antineutron oscillation (ΔB=2) and other modes for which significant BG for water Cherenkov detectors

 $p \rightarrow e^{+} \pi^{0}$ - efficiency = 45%, 1BG/Mtyr

p→vK+ - efficiency = 97%, 1BG/Mtyr

JUNO SENSITIVITY POTENTIAL

- 20 kiloton liquid scintillator
- Starting data taking in 2021
- Triple coincidence of $K^+ \rightarrow \mu^+ \rightarrow e^+ w/$ well-defined time constant (12nsec, 2.2 μ sec) and particle energies
- Signal efficiency = 64% (pulse shape cut+energy cut+decay. positron cut)
- Estimated backgrounds = 0.5 evt./ 10 years
- $\tau_{\text{proton}}(p \rightarrow \overline{\nu}K^+)=1.9 \times 10^{34} \text{ years assuming zero candidates}$

BG REDUCTION BY NEUTRON-TAG & TIGHTER PTOT CUT

- Shiozawa@NNN00 workshop - PRD95, 012004 (2017)
- SK-IV w/ new electronics can tag neutrons by n+p→d+2.2MeVy
- Atmospheric neutrino BG is reduced by 40%

- Two regions of P_{tot} to enhance discovery reach
 - P_{tot} < 100MeV/c for free proton decays
 - $P_{tot} < 250 \text{ MeV/c for } {}^{16}\text{O}$

p _{tot} <1	00MeV/c	100 <p<sub>tot<250MeV/c</p<sub>		
Sig. ε(%)	Bkg (/Mtyr)	Sig. ε(%)	Bkg (/Mtyr)	
18.7	0.06	19.4	0.62	

