

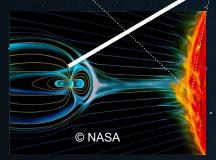
SEEING AND MEASURING THE INVISIBLE: COSMIC MAGNETIC FIELDS

Magnetic fields are ubiquitous.

Yet very little is known about their origin(s) and evolution.

The Northern lights — also known as the aurora borealis — dancing across the night sky in Alaska.

larger structure weaker field

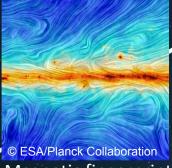


Charged particles emit *light* as they spiral along the magnetic fields of the Sun and the Earth. Seeing the light allows us to trace the otherwise invisible magnetic fields!

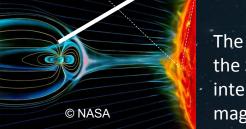
> Magnetic arches towering over the active solar surface

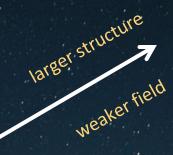
© NASA/SDO and the AIA, EVE, and HMI science teams

The solar wind carries with it the Sun's magnetic field that interacts with the Earth's magnetosphere (in blue).


Charged particles emit *light* as they spiral along the magnetic fields of . the Sun and the Earth. Seeing the light allows us to trace the otherwise invisible magnetic fields!

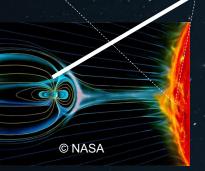
> Magnetic arches towering over the active solar surface


The direction of the polarised light emitted by dust tells us the magnetic field orientation.


© NASA/SDO and the AIA, EVE, and HMI science teams

Magnetic fingerprint of our Galaxy - the Milky Way

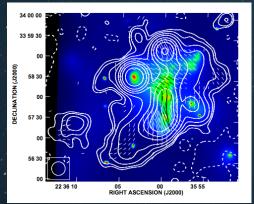
The solar wind carries with it the Sun's magnetic field that interacts with the Earth's magnetosphere (in blue).


Charged particles emit light as they spiral along the magnetic fields of . the Sun and the Earth. Seeing the light allows us to trace the otherwise invisible magnetic fields!

> Magnetic arches towering over the active solar surface

The direction of the polarised light emitted by dust tells us the magnetic field orientation.

© NASA/SDO and the AIA, EVE, and HMI science teams


© ESA/Planck Collaboration Magnetic fingerprint of our Galaxy – the Milky Way

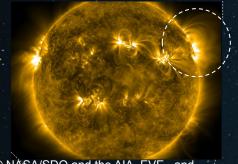
The solar wind carries with it the Sun's magnetic field that interacts with the Earth's magnetosphere (in blue).

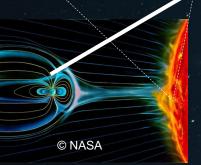
On larger scales, we use radio larger structure observations to trace the magnetic fields.

> Magnetic field vectors of a nearby galaxy – M51, and

© MPIfR (R. Beck) and Newcastle University (A. Fletcher) a galaxy group - Stephan's Quintet

© Nikiel-Wroczyński+ (2013)



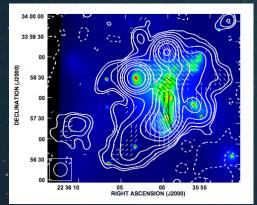

Charged particles emit light as they spiral along the magnetic fields of . the Sun and the Earth. Seeing the light allows us to trace the otherwise invisible magnetic fields!

> Magnetic arches towering over the active solar surface

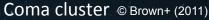
The direction of the polarised light emitted by dust tells us the magnetic field orientation.

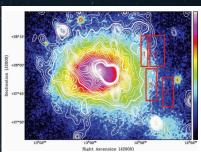
© NASA/SDO and the AIA, EVE, and HMI science teams

© ESA/Planck Collaboration Magnetic fingerprint of our Galaxy – the Milky Way


The solar wind carries with it the Sun's magnetic field that interacts with the Earth's magnetosphere (in blue).

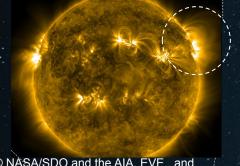
On larger scales, we use radio observations to trace the magnetic fields.

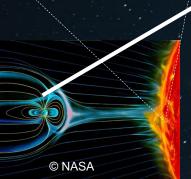

largerstructure


Magnetic field vectors of a nearby galaxy – M51, and

© MPIfR (R. Beck) and Newcastle University (A. Fletcher) a galaxy group - Stephan's Quintet

© Nikiel-Wroczyński+ (2013)

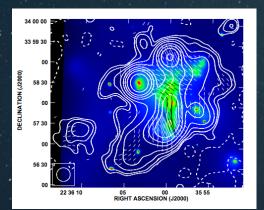



Charged particles emit light as they spiral along the magnetic fields of . the Sun and the Earth. Seeing the light allows us to trace the otherwise invisible magnetic fields!

> Magnetic arches towering over the active solar surface

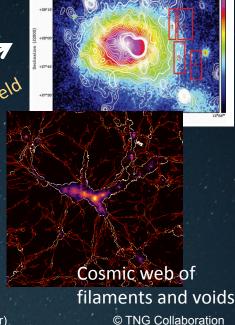
The direction of the polarised light emitted by dust tells us the magnetic field orientation.

© NASA/SDO and the AIA, EVE, and HMI science teams


© ESA/Planck Collaboration Magnetic fingerprint of our Galaxy – the Milky Way

The solar wind carries with it the Sun's magnetic field that interacts with the Earth's magnetosphere (in blue).

On larger scales, we use radio observations to trace the magnetic fields.


> Magnetic field vectors of a nearby galaxy – M51, and

© MPIfR (R. Beck) and Newcastle University (A. Fletcher) a galaxy group - Stephan's Quintet

© Nikiel-Wroczyński+ (2013)

Coma cluster © Brown+ (2011)

How do we correctly infer the magnetic field properties in galaxy clusters and beyond?

Background credit: Just the night sky by Stefan Cosma



THE COSMIC WEB

The first magnetic fields: primordial in origin, or astrophysical?

Projected magnetic field strength at z = 0across a (50 Mpc)³ cosmological simulation (Vazza+ 2014)

Numerical simulations

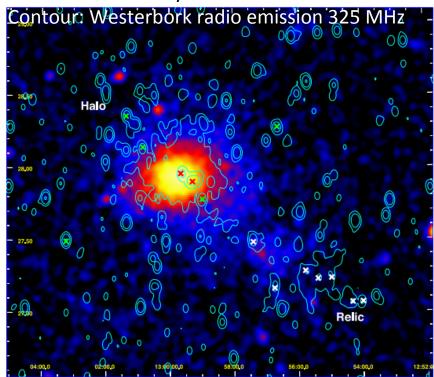
(e.g. Ryu+ 1998, Ryu+ 2008, Akahori & Ryu 2010, Vazza+ 2014)

Radio observations

(e.g. Xu+ 2006, Giovannini+ 2015, Govoni+ 2019)

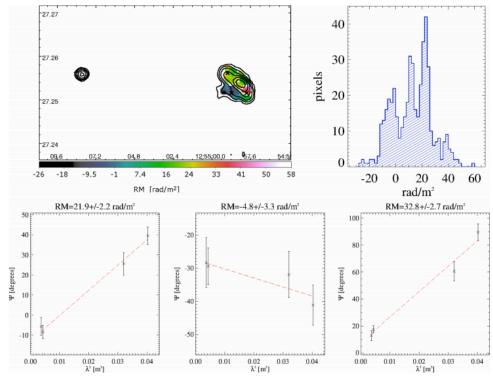
B-field strength order:

 $\sim \mathrm{nG}$ to $< 1\,\mu\mathrm{G}$



BEYOND GALACTIC SCALES

Magnetic fields are relatively weaker and more difficult to be observed

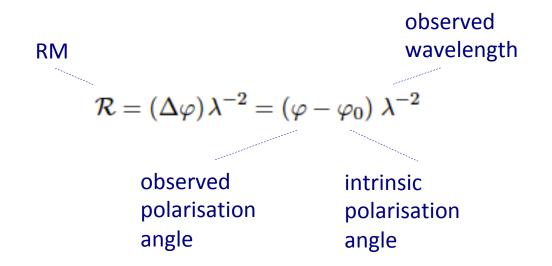

radio emission and Faraday rotation measure as probes

Colour: ROSAT X-ray

Coma cluster and NGC 4839 group

Colour: RM Contour: Total radio intensity 1.4 GHz

a radio background source 5C4.24



MEASURING THE INVISIBLE

Faraday rotation measure (RM) at radio wavelengths is commonly used to diagnose large-scale magnetic fields.

ROTATION MEASURE

In the context of polarised radiative transfer

distance between the source and observer

$$\mathcal{R}(s) = 0.812 \int_{s_0}^{s} \frac{\mathrm{d}s'}{\mathrm{pc}} \left(\frac{n_{\mathrm{e,th}}(s')}{\mathrm{cm}^{-3}} \right) \left(\frac{B_{\parallel}(s')}{\mu \mathrm{G}} \right) \, \mathrm{rad} \, \mathrm{m}^{-2}$$
 thermal electron along line-of-sight

assuming:

no absorption, emission, and Faraday conversion only thermal electrons

The correlations in the observed RM fluctuations (RMF) are used to probe the length scales on which magnetic fields vary.

ROTATION MEASURE FLUCTUATIONS (RMF)

Conventional approach – pseudo random-walk process

equal step size Δs density and magnetic field uncorrelated only thermal electrons present

standard deviation
$$\sigma_{\mathcal{R}} = \frac{e^3}{2\pi m_{\rm e}^2 c^4} \sqrt{\frac{L}{\overline{\Delta s}}} \, \overline{\Delta s} \, \overline{n}_{\rm e,th} \, B_{\parallel \rm rms}$$
 of RM
$$= 0.812 \, \sqrt{\frac{L}{\overline{\Delta s}}} \, \left(\frac{\overline{\Delta s}}{\rm pc}\right) \, \left(\frac{\overline{n}_{\rm e,th}}{\rm cm}^{-3}\right) \, \left(\frac{B_{\parallel \rm rms}}{\mu \rm G}\right) \, \rm rad \, m^{-2} \tag{1}$$

Most studies on large-scale magnetic fields use this expression.

(e.g. Sokoloff+ 1998, Blasi+ 1999, Dolag+ 2001, Govoni+ 2004, Subramanian+ 2006, Cho+ 2009, Sur 2019).

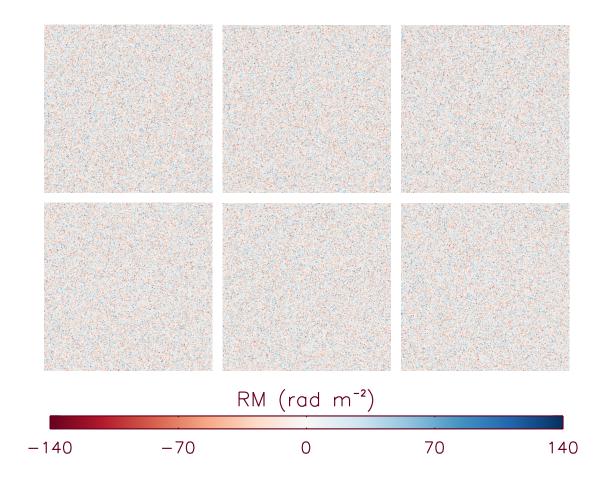
ASSESSING THE RMF APPROACH

When is it justified? When does it deserve caution?

- carried out Monte Carlo simulations to compute the RMF
- built models of various magnetic field configurations and thermal electron number density distributions
- applied divergence-free filter
- normalised to galaxy cluster scale

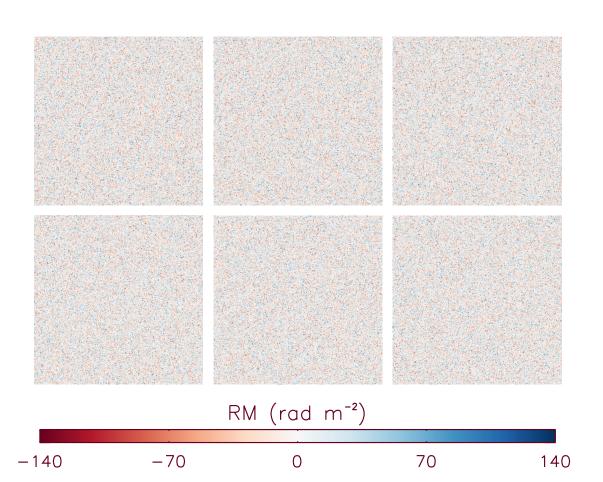
$$\mathcal{R}_{\perp} = 0.812 \sum_{\parallel} \frac{\overline{\Delta s}}{\text{pc}} \left[\left(\frac{n_{\text{e,th}}(i,j,k)}{\text{cm}^{-3}} \right) \left(\frac{B(i,j,k)}{\mu \text{G}} \right) \right]_{\parallel} \text{rad m}^{-2}$$
 (2)

Calculated the standard deviation across the sky plane

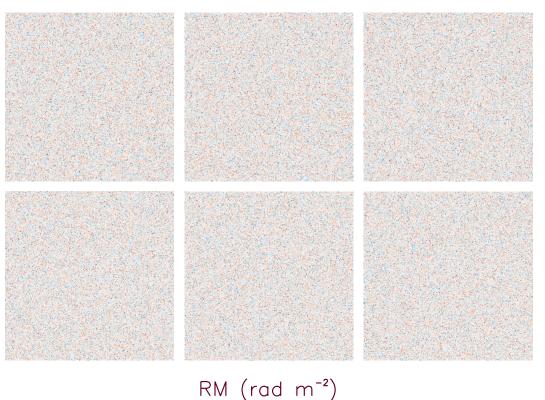


AN EYE TEST

Spot the difference(s) between each panel (if any)



Indistinguishable



Indistinguishable

-140

-70

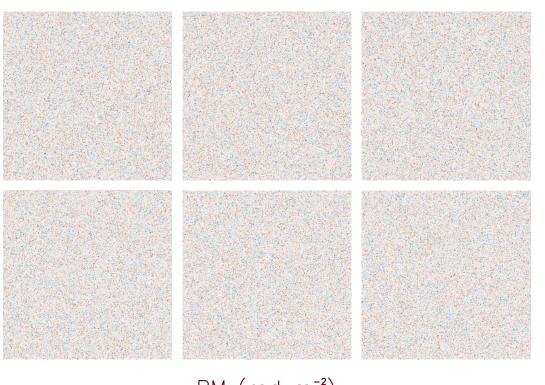
Gaussian-distributed densities

Gaussian-distributed magnetic field strengths

random magnetic field orientations

70

140



-70

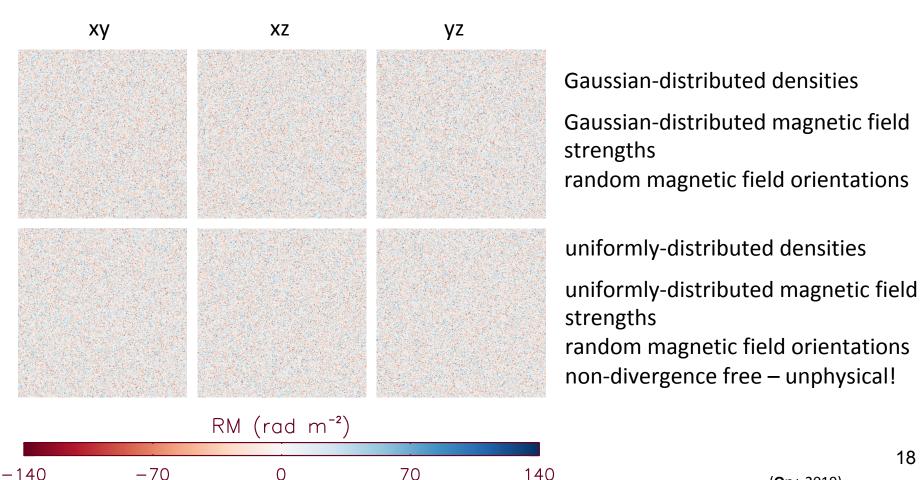
-140

Indistinguishable

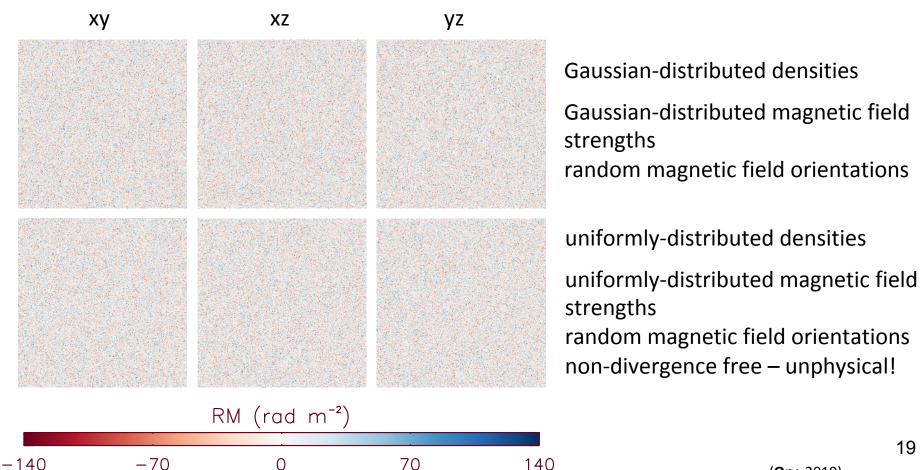
Gaussian-distributed densities
Gaussian-distributed magnetic field strengths
random magnetic field orientations

uniformly-distributed densities uniformly-distributed magnetic field strengths random magnetic field orientations non-divergence free – unphysical!

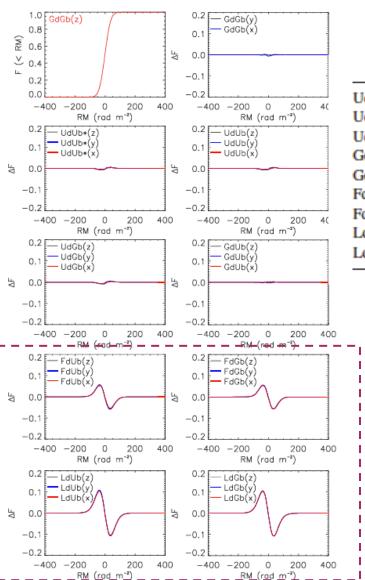
17



Indistinguishable



Indistinguishable – non-trivial to characterise the thermal number densities and the magnetic field strengths from the observed RM fluctuations alone



ASSESSING THE CONVENTIONAL RMF ANALYSES

distribution		conventional (eq. 1)			standard deviation (eq. 2)		
		$\sigma^{xy}_{\mathcal{R}}$	$\sigma^{xz}_{\mathcal{R}}$	$\sigma_{\mathcal{R}}^{\mathbf{yz}}$	$\mathcal{S}_{\mathcal{R}}^{xy}$	SR	5 R
Ud	Ub*	29.2971	29.2975	29.2962	29.2861	29.3151	29.3042
Ud	Ub	29.2962	29.2977	29.2970	29.3101	29.3198	29.3278
Ud	Gb	29.2965	29.2965	29.2979	29.3231	29.2934	29.3299
Gd	Ub	29.2982	29.2961	29.2966	29.9263	29.8972	29.8994
Gd	Gb	29.2970	29.2973	29.2966	29.9113	29.8854	29.8902
Fd	Ub	29.2987	29.2965	29.2956	39.1187	39.1392	39.1134
Fd	Gb	29.2975	29.2966	29.2968	39.1185	39.1357	39.1186
Ld	Ub	29.2969	29.2968	29.2972	48.3524	48.3218	48.3327
Ld	Gb	29.2975	29.2964	29.2970	48.3058	48.3017	48.3146

The conventional RMF analyses cannot distinguish between various distinct distributions of densities and magnetic field strengths.

The conventional RMF analyses do not work for fractal and lognormal density distributions.

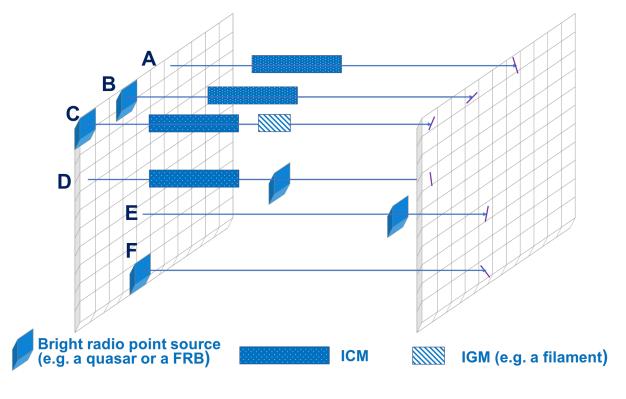
SUBTLETIES IN QUANTIFYING THE RMF

Fluctuations of density and magnetic fields along the line-of-sight and across the sky plane can be different

A has *two* characteristic length scales **Polarisation** angle changes along each line-of-sight B has *one* characteristic length scale (2) $I_{c. perp} \neq I_{c1, ||} \neq I_{c2, ||} \neq I_{c3, ||}$

(1) Resulting polarisation angles we see on the sky are the same

21

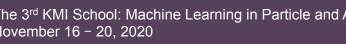

SUBTLETIES IN QUANTIFYING THE RMF

Different astrophysical conditions give rise to different polarisation fluctuations

A: background source absent

B: background source present

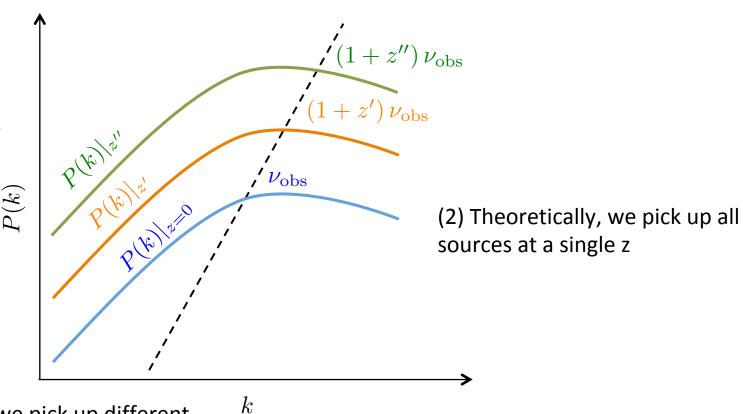
C: multiple sources with various Faraday depths (vs. B)



D: different source positions (vs. B)

E: change of radiation frequency + low-z source

F: change of radiation frequency + high-z source



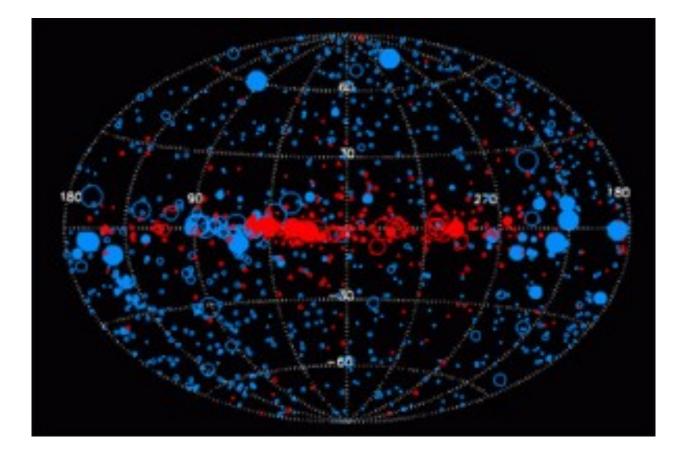
CONTAMINATION IN THE POWER SPECTRUM

Higher-z structures can contaminate the observed P(k) at a fixed v_{obs}

(3) Seeing higher power in the smaller scales – is it due to emissions from the medium and embedded sources, or truly from the magnetic field?

How about absorption?

(1) Observationally, we pick up different components at higher k at a fixed v_{obs}


DECODING AN UNPRECEDENTED RADIO SKY

Square Kilometre Array (SKA) – the world's largest radio telescope Machine Learning and Big Data: all-sky survey of over ten million RMs!

~ 1200 RMs

closed: +ve

open: -ve

~ 900 extragalactic sources (blue)

~ 300 radio pulsars (red)

TAKE-HOME MESSAGES

- Density fluctuations can mask the effect of magnetic field fluctuations, affecting the correlation length of magnetic fields inferred from the conventional RMF analyses.
- We caution against interpretations of RMF analyses in lognormal-distributed and fractal-like density structures.
- The spatial correlations are generally not the same along the line-of-sight and across the sky plane.
- In complex situations, a covariant polarised radiative transfer calculation is essential to properly track all radiative and transport processes, otherwise the interpretations of magnetism in galaxy clusters and larger scale cosmological structures would be ambiguous.

ABOUT THE AUTHOR

Alvina Y. L. On is in the Theoretical Astrophysics group at Mullard Space Science Laboratory, University College London, UK. She is also a visiting researcher at the Institute of Astronomy, National Tsing Hua University, Taiwan (ROC), where a part of this work has been carried out. This research is in collaboration with Jennifer Y. H. Chan, Kinwah Wu, Curtis J. Saxton, and Lidia van Driel-Gesztelvi.

alvina on

□ alvina.on.09@ucl.ac.uk

On+ (2019)

Chan+ (2018)