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The bottleneck: signal/noise ratio for HVP (HLbL,. . . )
I The HVP contribution to aµ = (g − 2)µ/2 reads

aHVP
µ =

(α
π

)2
∫ ∞

0
dx0K(x0,mµ)G(x0)

where

G(x0) =

∫
d3x〈Jem

k (x)Jem
k (0)〉

with K(x0,mµ) being a known function

I For the light-connected contribution
(by far the largest)

σ2
Gconn
u,d

(x0)

[Gconn
u,d (x0)]2

∝ 1
ncnfg

e2(Mρ−Mπ)|x0|

where Mρ is the lightest state in that channel.

Signal lost after 1.5-2.5 fm (depending on

mu,d ) due to exp. increase of statistical error

ncnfg = n0 = 25 , ntot = n0 · n1
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G(x0) =

∫
d3x〈Jem

k (x)Jem
k (0)〉

with K(x0,mµ) being a known function

I Sharp rise of σ2 with x0 when computed by a
standard 1-level integration (red points) is
automatically flattened out by the 2-level
integration (blue-points)

I Accurate computations can be obtained at large
distances: no need for any modeling of the
long-distance behaviour of Gconn

u,d

ncnfg = n0 = 25 , ntot = n0 · n1
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Why/How does it work ?
I If the action and the obser-

vable can be factorized

S[U] = S0[UΩ0 ] + S2[UΩ2 ] + . . .

O[U] = O0[UΩ0 ]× O2[UΩ2 ]

then

〈O[U] 〉 = 〈 〈〈O0[UΩ0 ]〉〉Λ0×〈〈O2[UΩ2 ]〉〉Λ2 〉Λ1

Λ0 Λ1 Λ2 Λ1

Jem
k Jem

k

Ω0
Ω2

time

sp
a
ce

where
〈〈O0[UΩ0 ]〉〉Λ0 =

1
ZΛ0

∫
DUΛ0 e−S0[UΩ0 ] O0[UΩ0 ]

I Two-level integration:

- n0 configurations UΛ1

- n1 configurations UΛ0 and UΛ2 for each UΛ1

I If 〈〈·〉〉Λi
can be computed efficiently with a statistical error comparable to its central value,

then the prefactor in the signal/noise ratio changes as (until S/N problem solved)
n0 → n0n

2
1

at the cost of generating approximatively n0n1 level-0 configurations
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Split-even estimator of disconnected contribution
I Advantage of multi-level sets in when variances are due to fluctuations of gauge field

I The disconnected Wick contraction reads

t(x) = Tr
[
γk{D−1

mu
(x , x)− D−1

ms
(x , x)}

]
= (ms −mu)Tr

[
γkD

−1
mu

D−1
ms

(x , x)
]

I Standard stochastic estimator [〈η(x)η†(y)〉 = δxy ]

θ(x) =
(ms−mu)

Ns

Ns∑
i=1

Im
[
η†i (x)γk{D−1

mu
D−1

ms
ηi}(x)

]

is expensive. It requires O(104) random fields η
for its σ2 to be dominated by gauge fluctuations

Why random noise much larger than gauge one?
Computable and understandable in QFT
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Im
[
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mu
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ms
ηi}(x)

]

requires O(102) random fields η to hit gauge
noise. Gain: 2 orders of magnitude. Definition
suggested by the QFT analysis of the variance.

Used in the past for pseudoscalar density
in TMQCD (one-end trick)
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combined with multi-level integration is
a solution for a precise computation of the
disconnected contribution

It is already being applied in production phase
for HVP by CLS (Mainz)
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Conclusions & Outlook

I Permille precision and accuracy on HVP is the

challenge for lattice QCD

I Our strategy: new integration and estimators

(better “machine” and “experiment”)
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I Multi-level integration reduces the variance exponentially:

- with the time-distance of the currents

- when pion mass gets lighter (physical point)

I Next step: R&D =⇒ production. Significant human and numerical resources needed

I Analogous variance-reduction pattern expected to work out also for lattice calibration,

electromagnetic corrections, HLbL, . . .
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