

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

New physics and other exotica in bottomonium annihilations

Umberto Tamponi tamponi@to.infn.it

INFN - Sezione di Torino

Hints for New Physics in Heavy Flavors and related topics Nagoya University, November 17th 2018

What did we learn of new about bottomonium in the last 15 years?

- $\rightarrow b\overline{b}$ is not a bad model all
 - \rightarrow Quite nice Quark model/data matching
- $\rightarrow b\overline{b}\,$ is not the whole story, at least near the thresholds
 - \rightarrow Zb's, triangular contributions, anomalous transitions...
 - \rightarrow The light degrees of freedom matter a lot
- \rightarrow Hadronic annihilations are very peculiar

Bottom line: quite some QCD exotic and new effects

NP signals in bottomonium

A comprehensive summary of the signals of new physics in quarkonia

Why? It look likes we paid little or no attention to these analyses

Rare decay

- ightarrow two-lepton decays: flavor violation and lepton universality tests
- \rightarrow Invisible decays: direct dark matter searches

Hadronic annihilations

 \rightarrow stable exaquarks (aka dibaryons)

New Physics! New Physics! (The rare decays)

Y(1S), Y(2S), Y(3S) are among the few resonances decaying in $\tau\tau$

$Y(1S) \rightarrow invisible$

 $Y(1S) \rightarrow \text{invisible is well calculable in the SM}$ $\frac{BR(Y(1S) \rightarrow v \bar{v})}{BR(Y(1S) \rightarrow e^+ e^-)} = \frac{27 G^2 M_{Y(1S)}^4}{64 \pi^2 \alpha^2} (-1 + \frac{4}{3} \sin^2 \theta_w)^2 = 4.14 \times 10^{-4}$ $BR(Y(1S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}$

$Y(1S) \rightarrow invisible$

 $Y(1S) \rightarrow \text{invisible is well calculable in the SM}$ $\frac{BR(Y(1S) \rightarrow v \bar{v})}{BR(Y(1S) \rightarrow e^+ e^-)} = \frac{27 G^2 M_{Y(1S)}^4}{64 \pi^2 \alpha^2} (-1 + \frac{4}{3} \sin^2 \theta_w)^2 = 4.14 \times 10^{-4}$ $BR(Y(1S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}$

$Y(1S) \rightarrow invisible$: where do we stand

BaBar, Phys. Rev. Lett. 103, 251801 (2009)

INFN

$Y(1S) \rightarrow invisible$: where do we stand

12

Interpreting $Y(1S) \rightarrow DM DM (\gamma)$

 $Y(1S) \rightarrow \gamma$ invisible in terms of DM limits

Fernandez, Seong, Stengel, PRD93, 054023 (2016) Fernandez, Kumar, Seong, Stengel, PRD90, 015029 (2014)

Name	Interaction structure	Annihilation	Scattering
F5	$(1/\Lambda^2)\bar{X}\gamma^\mu X\bar{q}\gamma_\mu q$	Yes	SI
F6	$(1/\Lambda^2)\bar{X}\gamma^{\mu}\gamma^5 X\bar{q}\gamma_{\mu}q$	No	No
F9	$(1/\Lambda^2) \bar{X} \sigma^{\mu\nu} X \bar{q} \sigma_{\mu\nu} q$	Yes	SD
F10	$(1/\Lambda^2) \bar{X} \sigma^{\mu\nu} \gamma^5 X \bar{q} \sigma_{\mu\nu} q$	Yes	No
S 3	$(1/\Lambda^2)\iota{ m Im}(\phi^\dagger\partial_\mu\phi)ar q\gamma^\mu q$	No	SI
V3	$(1/\Lambda^2)\iota{ m Im}(B^{\dagger}_{\nu}\partial_{\mu}B^{\nu})\bar{q}\gamma^{\mu}q$	No	SI
V5	$(1/\Lambda)(B^{\dagger}_{\mu}B_{\nu}-B^{\dagger}_{\nu}B_{\mu})\bar{q}\sigma^{\mu\nu}q$	No	SD
V 7	$(1/\Lambda^2) B^{(\dagger)}_ u \partial^ u B_\mu ar q \gamma^\mu q$	No	No
V9	$(1/\Lambda^2)arepsilon^{\mu u ho\sigma}B^{(\dagger)}_ u\partial_ ho B_\sigma ar q\gamma_\mu q$	No	No

 $Y(1S) \rightarrow DM DM$

 $Y(1S) \rightarrow DM DM \gamma$

$Y(1S) \rightarrow invisible$: where do we stand

Rare leptonic decays

Study of $\chi_{b0} \rightarrow \tau \tau$ in the Type II 2HDM model, Godfrey and Logan [PRD 93, 055014 (2016)]

QED contribution:

$$\begin{split} \Gamma^{2\gamma}(\chi_0 \to \ell^+ \ell^-) &\simeq \frac{\alpha^2}{2\beta_\ell} \left[\frac{m_\ell}{M_{\chi_0}} \ln \frac{(1+\beta_\ell)}{(1-\beta_\ell)} \right]^2 \Gamma(\chi_0 \to \gamma \gamma) \\ & \text{BR}^{2\gamma}(\chi_{b0}(1P) \to \tau^+ \tau^-) \simeq 1 \times 10^{-9} \\ & \text{BR}^{2\gamma}(\chi_{b0}(2P) \to \tau^+ \tau^-) \simeq 6 \times 10^{-9} \end{split}$$

SM higgs contribution:

$$\begin{split} \Gamma^{H}(\chi_{0} \to \ell^{+} \ell^{-}) &= \frac{M_{\chi_{0}}}{8\pi} \left[1 - \frac{4m_{\ell}^{2}}{M_{\chi_{0}}^{2}} \right]^{3/2} \left(\frac{m_{q}m_{\ell}}{v^{2}M_{H}^{2}} \right)^{2} f_{\chi_{0}}^{2}. \\ &\text{BR}^{H}(\chi_{b0}(1P) \to \tau^{+} \tau^{-}) = 3.1 \times 10^{-13}, \\ &\text{BR}^{H}(\chi_{b0}(2P) \to \tau^{+} \tau^{-}) = (1.9 \pm 0.5) \times 10^{-12} \end{split}$$

Rare leptonic decays

Experiment

Experiment

INFN

Y(3S): rare χ_h decays

Experiment

Very old limits only for the most challenging channel

Predictions: *Rachid, Duraisamy, Datta, PRD82,054031 (2010)*

Aloni, Efrati, Grossman, Nir, JHEP06 (2017) 019

 Υ and ψ leptonic decays as probes of solutions to the $R\left(D^{(*)}\right)$ puzzle

 \rightarrow Write the Y(nS) leptonic widths in EFT (SM)

 \rightarrow Add 4-fermion operators for new contributions

 \rightarrow Tune the Wilson coefficients to reproduce R(D*)

Lepton universality violation in Y decays

Aloni, Efrati, Grossman, Nir, JHEP06 (2017) 019

Lepton Universality: where do we stand

Direct LFV: $Y(1S) \rightarrow \mu \tau$

Untagged:

 \rightarrow Sit on the resonance, reconstruct the muon and measure its momentum

Tagged:

 \rightarrow As for the invisible

LFV: where do we stand

Most of these limits are still from CLEO...

32

Hazard, Petrov, PRD 94,074023 (2016)

Most stringent limits on the Wilson coefficients from the bottomonium

	Leptons	Leptons Initial state (quark)				
Wilson coefficient [GeV ⁻²]	$\ell_1\ell_2$	$\Upsilon(1S)(b)$	$\Upsilon(2S)(b)$	$\Upsilon(3S)(b)$	$J/\psi(c)$	$\phi(s)$
$ C_{VI}^{q\ell_1\ell_2}/\Lambda^2 $	μτ	5.6×10^{-6}	4.1×10^{-6}	3.5×10^{-6}	5.5×10^{-5}	FPS
	e au		4.1×10^{-6}	4.1×10^{-6}	1.1×10^{-4}	FPS
	$e\mu$			••••	$1.0 imes 10^{-5}$	2×10^{-3}
$ C_{VP}^{q\ell_1\ell_2}/\Lambda^2 $	μau	5.6×10^{-6}	4.1×10^{-6}	3.5×10^{-6}	5.5×10^{-5}	FPS
	e au		4.1×10^{-6}	4.1×10^{-6}	1.1×10^{-4}	FPS
	$e\mu$			•••	$1.0 imes 10^{-5}$	2×10^{-3}
$ C_{TI}^{q\ell_1\ell_2}/\Lambda^2 $	$\mu \tau$	4.4×10^{-2}	3.2×10^{-2}	$2.8 imes 10^{-2}$	1.2	FPS
	$e\tau$		3.3×10^{-2}	3.2×10^{-2}	2.4	FPS
	$e\mu$	••••		••••	4.8	1×10^4
$ C_{TR}^{q\ell_1\ell_2}/\Lambda^2 $	μau	4.4×10^{-2}	3.2×10^{-2}	$2.8 imes 10^{-2}$	1.2	FPS
	e au		3.3×10^{-2}	3.2×10^{-2}	2.4	FPS
	$e\mu$				4.8	1×10^4

Non-exotic exotica (Hadronic Annihilations)

~90% of the Y(1S) decays are Y(1S) \rightarrow ggg \rightarrow hadrons (10-20 of them)

Jaffe,

Phys.Rev.Lett. 38 (1977) 195-198, Erratum: Phys.Rev.Lett. 38 (1977) 617 SLAC-PUB-1828

$$|H\rangle = \sqrt{\frac{1}{8}} |\Lambda\Lambda\rangle + \sqrt{\frac{4}{8}} |N\Xi\rangle - \sqrt{\frac{3}{8}} |\Sigma\Sigma\rangle$$

SLAC-PUB-1828 October 1976 (T/E)

PERHAPS A STABLE DIHYPERON*

R. L. Jaffe** Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

and

Department of Physics and Laboratory of Nuclear Science[†] Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Strangeness production + anti-deuteron production = H dibaryon?

Belle PRL 110, 222002 (2013)

The loosley bound version of the H seems not to be there...

What if Jaffe's di-baryon is very, very bound?

Baryonic dark matter (?)

Kochelev JETP Lett. 70 (1999) 491-494

H with mass \sim 1.7 GeV to explain the GZK cutoff

Farrar arXiv:1708.08951 [hep-ph]

Very light H as dark matter candidate

Must be compact to avoid photo-disintegration

2. A Deeply Bound Dibaryon is Incompatible with Neutron Stars and Supernovae

Samuel D. McDermott, Sanjay Reddy, Srimoyee Sen. Sep 18, 2018. 2 pp.

FERMILAB-PUB-18-490-A

e-Print: arXiv:1809.06765 [hep-ph] | PDF

<u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>ADS Abstract Service</u>

Detailed record

3. Dibaryons cannot be the dark matter

Edward W. Kolb, Michael S. Turner (Chicago U., EFI & Chicago U., KICP). Sep 16, 2018. 11 pp. e-Print: arXiv:1809.06003 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service

Detailed record - Cited by 2 records

Baryonic dark matter (?)

A very light H seems to be problematic for oxigen stability

Gross, Polosa et a., PRD 98 (2018) no.6, 063005

Y(nS) annihilations

Similarities between hadronic collisions and bottomonium annihilations

- 1) High density Frascati Phys. Ser. (2007) 1519-1522
- 2) Baryon and strangeness enhancement PRD76 012005 (2007)

3) Production of nucleiPhys.Rev. D89 (2014) no.11, 111102

Strangeness enhancement

Z.Phys. C62 (1994) 367-370

The results on the inclusive production of the Λ in direct $\Upsilon(1s)$ decays

Experiment	$\langle n_{\Lambda}(Y_{dlr}) \rangle$
CLEO(85) [1]	0.19±0.02
ARGUS(88) [2]	0.228±0.003±0.021
this experiment	0.194±0.018±0.017

Table 5

The results on the inclusive production of the Λ in the continuum

Experiment	the cms range, GeV	<n (continuum)=""></n>
CLEO(85) [1] ARGUS(88) [2] this experiment	10.4-10.6 9.4-10.6 7.2-10.0 7.2-9.4	0.066±0.010 0.092±0.003±0.008 0.076±0.018±0.015 0.070±0.027±0.020

40

41

What did we learn of new about bottomonium in the last 15 years?

 $\rightarrow b\overline{b}$ is not a bad model all

 \rightarrow Quite nice Quark model/data matching

 \rightarrow bb is not the whole story, at least near the thresholds \rightarrow Zb's, triangular contributions, anomalous transitions...

 \rightarrow The light degrees of freedom matter a lot

 \rightarrow Hadronic annihilations are very peculiar

 \rightarrow If you are looking for strange (exotic) baryons, you should look at the Y(nS) annihilations

BaBar arXiv:1810.04724 [hep-ex]

```
B(Y(3S, 2S) \rightarrow \Lambda\Lambda + invisible) < 1.2 \times 10^{-7}
```


Stable H: where are we?

BaBar arXiv:1810.04724 [hep-ex]

$$B(Y(3S, 2S) \rightarrow \Lambda\Lambda + invisible) < 1.2 \times 10^{-7}$$

Belle preliminary

$$B(Y(2S) \rightarrow \Lambda \overline{\Lambda} pp) < 1.8 \times 10^{-7}$$

Few body reactions are largely suppressed.

Conclusions

We didn't see hints of new physics in bottomonium decays, but we barely looked for them

- \rightarrow Analyses not been updated
- \rightarrow Few theoretical papers (?)
- \rightarrow Orthogonal communities?

Hadronic decays are the perfect place for strangeness studies.

Charmonium is experimentally easy and accessible

 \rightarrow Direct production in e⁺e⁻ collisions \bigcirc

B€SII

 \rightarrow Production in B \rightarrow K cc

 \rightarrow Photon-photon scattering $\gamma\gamma^* \rightarrow (cc)$

 \rightarrow Double Charmonium $e^+e^- \rightarrow (cc)(cc)$

 \rightarrow Prompt production \swarrow \checkmark

Bottom line: Charmonium will still be fully covered in the next 15 yrs. Pentaquarks, multi-charm baryons...

 \rightarrow Direct production in $e^+e^{\text{-}}$ collisions

 \rightarrow Production in B and $\Lambda_{_{\rm b}}$ decays

Bottom line: well covered by LHCb, little room for other experiments

Bottomonium is much less accessible

 \rightarrow Direct production in e⁺e⁻ collisions $\frac{2}{2}$

Bottom line: after Belle II, only the LHC experiments will cover bottomonia with strong limitations

e⁺e⁻ machines

- \rightarrow Triggers are quite open
- \rightarrow High efficiency / Sensitive to very low momentum
- \rightarrow Unique measurements (double charmonium, $\gamma\gamma^* \rightarrow cc$)
- \rightarrow Initial states is always a 1⁻⁻ quarkonium or a B meson \rightarrow CM energy is a limiting factor

Current samples in the (minions of events), and the proposal for Den	Current samples in fb ⁻¹	(millions of events)), and the proposal for Belle
--	-------------------------------------	----------------------	-------------------------------

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	$\Upsilon(5S)$	$\Upsilon(6S)$	$rac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII	-	-	300 (1200)	$5 \times 10^4 (5.4 \times 10^4)$	1000 (300)	100+400(scan)	3.6%

 \rightarrow Bottomonium program is alternative to the B-physics one (special runs)

 \rightarrow Supported by the Collaboration, seen fully as part of the Belle II physics program \rightarrow Still, external support is very welcome!

 \rightarrow Sensible plan: one (or two) special runs / year starting from 2021

Idea nr. 2: nucleon coalescence

With no dedicated PID or tracking, BaBar measured the d spectrum Phys. Rev. D89 (2014) no.11, 111102

Process	Rate
$\mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(2S) \to \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1S) \to \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01})$ fb
$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to \text{Hadrons})}$	$(3.01\pm0.13^{+0.37}_{-0.31})\times10^{-6}$

Deuteron production $\sim 10 \times \text{more}$ likely in Y(nS) than in qq

Idea nr. 2: nucleon coalescence

d detection in cosmic rays is considered since long a probe for low or intermediate mass WIMPs Donato, Fornengo, Salati, PRD 62, 043003 (2000) Aramaki et al. Phys. Rept. 618 (2016) 1-37

 \rightarrow it's kinematically easier to produce a d from $\chi\chi$ annihilation than from SM processes

Idea nr. 2: nucleon coalescence

