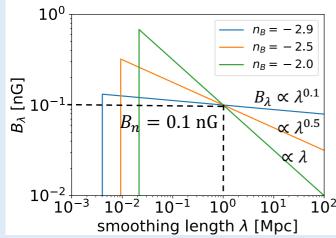

A novel constraint on the Primordial Magnetic Fields using 21-cm line absorption signal

TEPPEI MINODA, Hiroyuki Tashiro (Nagoya-U.), Tomo Takahashi (Saga-U.) The 4th KMI International Symposium & The 2nd KMI school @ Nagoya, JAPAN

1. INTRODUCTION

What is the origin of magnetic fields with various astronomical objects?

Magnetic fields in the early universe? (=Primordial Magnetic Fields, PMFs)

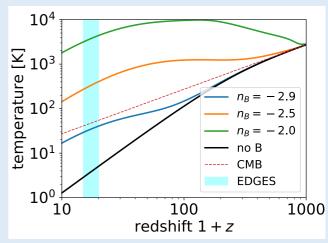


Amplification by adiabatic compression --> The seed field $B_{1 \rm Mpc} \sim 1$ nG is needed. PMFs with 1 nG heat up the IGM gas?

2. Model of PMFs

scale dependence $B_{\lambda} = B_n \left(\frac{\lambda}{1 \text{ Mpc}}\right)^{-(n_B+3)/2}$

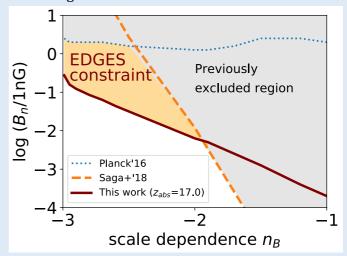
 B_n : PMF amplitude smoothed on 1Mpc n_R : spectral index of PMF strength


PMF has a cut-off scale because of the collision between baryon-photon plasma

$$\lambda_{\rm cut}^2 = \frac{B_{\rm cut}^2}{4\pi\rho_{\rm CMB}\sigma_{\rm T}} \int_0^{t_{\rm rec}} \frac{c\ dt}{a^2\ n_e}$$

3. IGM thermal history

After decoupling from CMB ($z \lesssim 200$),


- I. Adiabatic case $T_{\rm gas} \propto (1+z)^2$
- II. PMF heating case (this work)
- Ambipolar Diffusion (dominant)
 collision between the neutral and ionized particles
- Ohmic dissipation (sub-dominant)
 small-scale eddies from MHD turbulence

4. A constraint from 21-cm signal

EDGES 21-cm line observation suggests

$$T_{
m gas} < T_{
m CMB}$$
 (for $15 < z < 20$)
Calculate $T_{
m gas}$ with various (B_n, n_B)

5. Conclusion

(T. Minoda et al., arXiv:1812.00730)

- Calculate IGM gas temperature $T_{
 m gas}$ with PMFs fluctuation and dissipation
- Constrain the PMF strength from the 21-cm signal condition ($T_{
 m gas} < T_{
 m CMB}$)
- Suggestion for another amplification mechanism except for the adiabatic compression?