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1. Landscape & Swampland



String Theory Landscape（cf. 小林さんのトーク）



低エネルギー有効理論としての場の量子論模型

典型的なスケール

1019 GeV

104 GeV LHC

≲ 1014 GeV inflation scale H

string scale Ms

Planck scale MPl 量子重力理論

UV completion

標準模型 ＋ BSM ＋ アインシュタイン重力
UV complete UV incomplete! 

（低エネルギー有効理論）



弦理論のコンパクト化に基づく現象論

典型的なスケール

1019 GeV

104 GeV LHC

≲ 1014 GeV inflation scale H

string scale Ms

Planck scale MPl

弦理論（１０次元の理論）

標準模型 ＋ BSM ＋ アインシュタイン重力
UV complete UV incomplete! 

（低エネルギー有効理論）

余剰次元の形 
ブレーンの配位 UV completion



弦理論 ＝ 量子重力を適切に取り込んだ理論模型の生成機 

※ ほぼ無数の場の量子論模型を構成可能



QFT 1

QFT 5

QFT 4

String Theory Landscape

QFT 3

QFT 2



Q. 全ての場の量子論模型を弦理論で構成可能か？



A. NO!!!



no global symmetry in string theory

# 弦理論に現れる連続対称性はゲージ化されている！ 

 - 世界面の理論（弦の量子力学）を考えると… 

  保存カレントが存在すると、弦のスペクトルにゲージ粒子が現れる 

 - AdS/CFT 対応を仮定すると… 

# 最近は離散対称性にまで拡張する試みも [Harlow-Ooguri ’18, …]

 [Banks-Dixson ’88, …]

 CFT の保存カレント       ⇄  bulk AdS のゲージ場Jµ AM

（重力を含まない理論） （曲がった時空上の量子重力）



ブラックホールの思考実験をすると 

より一般に no (exact) global symmetry in 量子重力！？



global vs gauge in the BH context

global symmetry
ex. B � L

gauge symmetry
ex. U(1)EM  Q

# no-hair theorem: 
 事象の地平線 → global symmetry charge は外からわからない 
  cf. elemag charge は BH のまわりの電場を見ればわかる

electric flux



no global symmetry in 量子重力

BH
蒸発

BH

                の 
粒子を大量注入
B � L > 0 Hawking 輻射は

B � L = 0

BH の蒸発を考えると、global symmetry charge は保存しない 

→ global symmetry は存在したとしても近似的対称性！

cf. ゲージ対称性の場合は電場の影響で Hawking 輻射は中性でない



このような議論を踏まえ、 

量子重力には (exact) global symmetry が存在しないと広く信じられている。 

特に、(exact) global symmetry を持つ理論は (String) Landscape に含まれない。 

→ このような量子重力特有の整合性条件をスワンプランド条件と呼ぶ [Vafa ’06]



QFT C
QFT A QFT B

swampland： 
重力を考えなければ無矛盾な理論だが、 
量子重力とは無矛盾に couple できない

landscape： 
量子重力と整合的な場の量子論的模型



landscape
swampland

boundaries!

- Landscape と Swampland の境界を決める条件な何か？？ 

- その現象論的帰結は？？（量子重力への現象論的手がかり！）

Swampland program
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2. どのような物理を狙っているか



no global symmetry in 量子重力

量子重力における対称性は …

# option 2: 近似的な広域対称性 

 低エネルギーで対称性が emergent するのは OK（実際によくある） 

 ある UV scale で対称性は explicit に破れているべし。 

 → 対称性の破れのスケールはどこか？？？

# option 1: ゲージ対称性 
 荷電粒子はゼロでない相互作用定数  でゲージ粒子と相互作用 
 ※  は禁止 → 定量的下限はないのか？？？

g ≠ 0
g = 0

このような定量的予言を与えないと現象論的には使えない！



この章で「予想」「Conjecture」と出てきたら、 
「面白いけどまだまだ不確かな予想」と読み替えてください。 
ちゃんとした導出に向けた議論については次の章を参照。

Swampland Program では 
 - 弦理論のコンパクト化からの経験則 
 - ブラックホールに関する思考実験 
 - AdS/CFT 対応からの示唆 
 - ブートストラップ法（cf. 次章で話します） 
などを用いて、様々なスワンプランド条件が提唱され、 
その現象論的帰結が議論されている。 
[レビュー：Vafa et al ’17, Palti ’19, Valenzuela et al ’21] 

※ただし、議論の適用範囲や精密性は千差万別。



# タイプ１：相互作用定数に対する下限 
 - 質量  の粒子が持つ無次元の相互作用定数 （ex. ゲージ結合、湯川結合）に対し、 

   下限  を要求する（重力が弱いことを意味している）。 

　※ どの相互作用、どの粒子がこの不等式を満たすべきかは予想ごとに異なる。 
　※「 … Weak Gravity Conjecture」と呼ばれることが多い。 

 - これの亜種で、UV cutoff に対する上限を与えるものも：

m g
m

MPl
≲ g

ΛUV ≲ gMPl

典型的な Swampland 予想の分類

# タイプ２：対称性の破れのスケールに上限 

 - ポテンシャルが平らな領域に対する上限 　 

 - これの亜種で、ポテンシャルの傾きが満たす不等式を予想するものも。

Δϕ ≲ MPl



この種の不等式から何が言えるかを考えてみる …
例として 
- インフレーション（高エネルギー） 
- 暗黒物質（相互作用が小さい） 
- ニュートリの質量（軽い）



Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.
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LiteBIRD衛星(概念図) 
(C) JAXA宇宙科学研究所

インフレーション（１）

Δϕ ≃ 15 2rMPl

r ≃ 0.003, Δϕ ≃ 1 × MPl
LiteBIRD のターゲット



インフレーション（２）

Q. どういうクラスの large field inflation  が実現可能か？ 

Q. tensor-to-scalar ratio に対する量子重力的な上限は存在するのか？

Δϕ ≳ MPl

ex. アクシオンインフレーションに対する Weak Gravity Conjecture の予言

�

V (�)

2πf ≳ MPl

禁止されるポテンシャル：

許されるポテンシャル：

ポテンシャルに小さな構造 → CMB power spectrum に小さな振動！



暗黒物質（１）

学術変革「ダークマター」のホームページより

※ ほぼ全てに共通：標準模型粒子との相互作用がめっちゃ小さい

めっちゃ軽い（Fuzzy DM）

目標：スワンプランド条件を使って量子重力で許されるパラメータ空間を絞る！



暗黒物質（２）
ex1. ultra light axion DM vs Weak Gravity Conjecture

�

V (�)

※ simple なポテンシャルだと fuzzy な領域  は禁止10−22 GeV ≲ m ≲ 10−21 GeV

非常に軽い → 非常に平坦

ex2. 標準模型粒子との相互作用

標準模型セクター 暗黒セクター
重力

他の相互作用

ex. アクシオン-光子結合、光子と暗黒光子の mixing、…

※「重力より強い」だけではかなり緩い 
　  → より強い条件を出せないか？（cf. 次章）

理論的に棄却（重力よりも弱い）

γ線観測で棄却

太陽アクシオン探査で棄却

質量 [eV]

結合定数 [GeV ]−1

図：アクシオン探査のイメージ 
（一部の質量領域を抜粋した概略図）

10−10

10−11

10−18

10−210−910−11

本研究で下限を押し上げる！

より強い理論的下限が本研究で得られると期待 
今後の実験・観測の感度決定における新たな指標！



ニュートリノと暗黒エネルギー（１）

ニュートリノの質量二乗差： 、暗黒エネルギー：  

→ ただの偶然？？？量子重力的な意味はあるのか？？？

Δm2
12 ∼ (9 meV)2 ΛCC ∼ (2 meV)4

図は Hyper K のホームページより



ニュートリノと暗黒エネルギー（２）

（４次元）標準模型を３次元にコンパクト化したときの radion ポテンシャル

Arkani-Hamed et al ’07
Majorana 正常階層 Dirac 正常階層

ポテンシャルの形はニュートリノ質量の大きさ、質量タイプ、階層性に依存 
 → ポテンシャルが満たすべきスワンプランド条件を解明できれば、 
 　 量子重力と無矛盾なニュートリノ質量が何かわかる。 
 ※ 現状、色々提案はあるが、まだまだ controversial な状況。



そのほかのターゲット

＃ そのほかにも 
　  - 階層性問題 
　  - 量子重力 vs ドジッター時空 
　  - 超対称性の破れのスケール、… 
　 など色々な方向が調べられている。 

＃ 現状、眉唾な議論も少なくないが、 
　 このようなスワンプランド条件をちゃんと出せたら面白い！ 
　  → S-matrix bootstrap に基づくアプローチ
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3. S-matrix bootstrap



歴史上、散乱振幅のユニタリー性は大活躍！ 
 - フェルミ相互作用の UV completion → ウィークボソン 
 - ウィークボソン散乱の UV completion → ヒッグス粒子 
 - 重力子散乱のユニタリー性を保とうとした結果が弦理論 
散乱振幅の整合性から理論を決定：S-matrix bootstrap 
※ 近年の研究のキーワードの１つが Positivity Bounds



ユニタリー性と散乱振幅の符号

＃ ヒッグス粒子予言の歴史を思い出すと …

 scattering w/o Higgs:  @ high energy 

Higgs exchange diagram:  @ high energy 

→ total amplitude: 

W−
L W+

L → W−
L W+

L ℳw/o ≃ − g2

4m2
W

u

ℳHiggs ≃ + g2

4m2
W

u

ℳHiggs = ,(E0)

＃ もし  だったら 

 Higgs exchange diagram ではキャンセルできてなかった。。。 

※ Higgs propagator を逆符号（ghost）にすればキャンセルできる

ℳw/o ≃ + g2

4m2
W

u

Positivity bounds: 
低エネルギー有効理論を unitary な UV 理論に埋め込めむための必要条件（様々な不等式） 
※ この辺りの詳細は野海、德田順生（神戸大）、青木勝輝（京大）あたりがいつでもセミナーします！



gravitational Standard Model vs Positivity Bounds
[Aoki-Loc-TN-Tokuda ’21]



Gravitational Standard Model

健全な UV 理論

Gravitational Standard Model: ℒ = ℒSM + M2
Pl

2 R + ⋯

energy

0

Ms

Λ

Regge states

other states 
(if any)

UV completable？？ 
（Positivity Bounds で判定）

※ 健全な UV 理論の性質として何を要求すべきかは非自明



Positivity Bounds

＃  scattering の分解：  

 ：重力を含まない寄与 

 ：重力相互作用の leading order、つまり

γγ → γγ ℳ = ℳQFT + ℳGR + ,(M−4
Pl )

ℳQFT

ℳGR ,(M−2
Pl )

3 3
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FIG. 2. Feynman diagrams relevant for MQED and MGR.
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FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s)

(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)

�

� �

�

P,R

Vi = ⇢,!,�

FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum

FIG. 2. Feynman diagrams relevant for MQED and MGR.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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a negative constant in the limit ⇤ ! 1. This is why
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positivity bounds.

We remark that the result (11) can be used even in
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Pl), where m is the mass of the
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charged particle should provide the dominant contribu-
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only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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bution (11) is much larger than the uncertainty. Second,
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
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as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s) (9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)

3

�

� �

�

e

�

� �

�

hµ⌫

�

� �

�

hµ⌫

e

FIG. 2. Feynman diagrams relevant for MQED and MGR.

�

� �

�

W

�

� �

� �

� �

�

FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum

FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is

3 3

�

� �

�

e

�

� �

�

hµ⌫

�

� �

�

hµ⌫

e

FIG. 2. Feynman diagrams relevant for MQED and MGR.

�

� �

�

W

�

� �

� �

� �

�

FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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GR approaches
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
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GR throughout this letter.

Now we discuss implications of the gravitational pos-
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
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Pl), where m is the mass of the
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s)

(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)

�

� �

�

P,R

Vi = ⇢,!,�

FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s)

(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)

�

� �

�

P,R

Vi = ⇢,!,�

FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum

FIG. 2. Feynman diagrams relevant for MQED and MGR.

3

�

� �

�

e

�

� �

�

hµ⌫

�

� �

�

hµ⌫

e

FIG. 2. Feynman diagrams relevant for MQED and MGR.

�

� �

�

W

�

� �

� �

� �

�

FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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above the cuto↵ scale ⇤. From the EFT perspective,
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
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when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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for ⇤ � me. Regarding MGR, we have the tree and one-
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Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
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GR throughout this letter.

Now we discuss implications of the gravitational pos-
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s ) uncertainty in (6) because the GR contri-
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum

FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is

＃Positivity Bounds：  

 - cutoff scale  を含む不等式 
 - 右辺は正になっている 
 - 例えば QED では [Alberte-de Rham-Jaitly-Tolley ’20, see also Aoki-Loc-TN-Tokuda ’21] 

    ⇄  GeV. 

 ※ Weak Gravity Conjecture  よりも強い条件

2
π ∫

∞

Λ

Im ℳQFT(s,0)
s3 > − ℳGR(s, t)

,(s2)

Λ

64α2

Λ4 (ln Λ
m − 1

4 ) > 22α
45πm2e M2

Pl
Λ ≲ emMPl ∼ 108

Λ ≲ eMPl



Cutoff scale of gravitational SM

gravitational positivity: 

→ this defines the cutoff of the gravitational SM  GeV.

BQED(Λ) + BUV(Λ) + Bweak(Λ) + BQCD(Λ) > − BGR(Λ)

Λ ≃ 3 × 1016

4

⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
cuto↵ scale of QED coupled to GR. A new physics is
required below ⇤QED to satisfy the bound (6). Needless
to say, we already know the “new” physics, weak force
and strong force, in nature and these physics contribute
to the light-by-light scattering well below 108GeV.

Positivity in Electroweak Theory.— We then include
the weak sector into our consideration. While charged
lepton loops provide the same contribution as (10) (after
a replacement of me by the lepton masses), W bosons
yield a qualitatively di↵erent contribution because of the
spin-1 nature. In the high-energy limit (|s| � m2

W ), the
one-loop amplitude is5

AWeak ⇡
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�s
+ (s $ �s). (13)

In contrast to (9), the imaginary part of the amplitude
grows linearly in s in the high-energy limit. Accordingly,
the weak sector contribution to B(2) reads

B(2)
Weak ⇡

128↵2

m2
W⇤2

, (14)

which decreases as ⇤�2. Then, the W boson contribu-

tion B(2)
Weak eventually dominates over the fermion loop

contributions (10) at UV (see Fig. 5, where we plot B(2)
i

without using the high-energy approximation). The UV

physics e↵ect B(2)
UV / ⇤�4 also becomes subdominant in

the same regime. As a result, we obtain the cuto↵ which
is much larger than the one obtained in QED case,

⇤EW =

r
2880⇡↵
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meMPl

mW
' 3.8⇥ 1013GeV . (15)

It is worth mentioning that after taking the high-
energy limit ⇤ � m, the fermion contribution (10) is
almost independent of the fermion mass and the mass
of spin-1 particle (W boson) appears in the denomina-
tor of (14). Therefore, we may continue to increase ⇤
even if new charged spin-1/2 or spin-1 states, namely
new physics, appear because they are subdominant in
B(2)(⇤). The result must be insensitive to inclusion of
new charged particles at UV regime as far as the theory
is weakly coupled6. On the other hand, QCD is not a
weakly coupled theory and, more importantly, QCD ac-
commodates mesons that are lighter than W bosons. The
result here must be insensitive to unknown UV physics
involving up to spin-1 particles but sensitive to QCD.

5 The one-loop diagrams are calculated by using the Mathematica
packages FeynArts [28] and FeynCalc [29], and the loop inte-
grals are evaluated by Package-X [30]. As a consistency check,
we confirm the desired crossing symmetries, the relation (8), and
the agreement with two di↵erent gauge choices, the Feynman-’t
Hooft gauge and the unitary gauge.

6 The inclusion of a charged spin-0 particle does not change the
situation as well. See [25] for the analysis in scalar QED.
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FIG. 5. The ⇤ dependence of B(2)
i where i = QED (red),

Weak (blue), and QCD (green), and the black dashed line

represents �B(2)
GR. The intersection between the solid line and

the dashed line determines the cuto↵ ⇤i.

Positivity in Standard Model.— We finally take into
account all the known physics and evaluate the cuto↵
scale of the SM by means of the gravitational positivity
bounds. Since (non-gravitational) QCD amplitudes have

to satisfy (8), we can compute B(2)
QCD from the imaginary

part of the forward limit amplitude ImAQCD at UV. A
nontriviality here is that in the forward limit, the momen-
tum transfer is soft and so the non-perturbative physics
of QCD contributes to ImAQCD even at UV via t-channel
diagrams. To compute the light-by-light scattering in the
forward limit, we use the vector meson dominance model
(VDM) and consider intermediate hadronic excitations,
which we call the VDM-Regge model following [31].

The relevant Feynman diagrams in the VDM-Regge
model are shown in Fig. 4. The photon is supposed to
transform into vector mesons Vi = ⇢,!,� before the col-
lision and the mesons undergo the hadronic processes ex-
changing Pomeron and Reggeon (P and R in Fig. 4). The
corresponding amplitude reads [31]
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where C2

�!Vi
are the transition constants and the

hadronic interactions are supposed to be the universal
form. MV V!V V is composed of two contributions, the
Pomeron exchange and the Reggeon exchange, where the
former one provides the faster than linear growth in s
while the latter one is subdominant at UV. Also, the
prefactor 4 originates from the helicity sum. The imagi-

BQED(Λ) + BUV(Λ) ∼ Λ−4

Bweak(Λ) ∼ m−2
W Λ−2

BQCD(Λ) ∼ GeV−2.08Λ−1.92

|BGR(Λ) | ∼ m−2
e M2

Pl



A remark on EW theory w/o QCD

gravitational positivity implies:    ⇄   

- Possible explanation for the hierarchy between the EW scale and the Planck scale??

- in terms of the Yukawa coupling,  (weak gravity type)
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It is worth mentioning that after taking the high-
energy limit ⇤ � m, the fermion contribution (10) is
almost independent of the fermion mass and the mass
of spin-1 particle (W boson) appears in the denomina-
tor of (14). Therefore, we may continue to increase ⇤
even if new charged spin-1/2 or spin-1 states, namely
new physics, appear because they are subdominant in
B(2)(⇤). The result must be insensitive to inclusion of
new charged particles at UV regime as far as the theory
is weakly coupled6. On the other hand, QCD is not a
weakly coupled theory and, more importantly, QCD ac-
commodates mesons that are lighter than W bosons. The
result here must be insensitive to unknown UV physics
involving up to spin-1 particles but sensitive to QCD.

5 The one-loop diagrams are calculated by using the Mathematica
packages FeynArts [28] and FeynCalc [29], and the loop inte-
grals are evaluated by Package-X [30]. As a consistency check,
we confirm the desired crossing symmetries, the relation (8), and
the agreement with two di↵erent gauge choices, the Feynman-’t
Hooft gauge and the unitary gauge.
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Positivity in Standard Model.— We finally take into
account all the known physics and evaluate the cuto↵
scale of the SM by means of the gravitational positivity
bounds. Since (non-gravitational) QCD amplitudes have

to satisfy (8), we can compute B(2)
QCD from the imaginary

part of the forward limit amplitude ImAQCD at UV. A
nontriviality here is that in the forward limit, the momen-
tum transfer is soft and so the non-perturbative physics
of QCD contributes to ImAQCD even at UV via t-channel
diagrams. To compute the light-by-light scattering in the
forward limit, we use the vector meson dominance model
(VDM) and consider intermediate hadronic excitations,
which we call the VDM-Regge model following [31].

The relevant Feynman diagrams in the VDM-Regge
model are shown in Fig. 4. The photon is supposed to
transform into vector mesons Vi = ⇢,!,� before the col-
lision and the mesons undergo the hadronic processes ex-
changing Pomeron and Reggeon (P and R in Fig. 4). The
corresponding amplitude reads [31]
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where C2
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are the transition constants and the

hadronic interactions are supposed to be the universal
form. MV V!V V is composed of two contributions, the
Pomeron exchange and the Reggeon exchange, where the
former one provides the faster than linear growth in s
while the latter one is subdominant at UV. Also, the
prefactor 4 originates from the helicity sum. The imagi-
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4. まとめと展望



1. Landscape & Swampland 
 - 量子重力に特有の整合性条件「スワンプランド条件」 

2. どのような物理を狙っているか 

 - 典型的に , ,  

 - 高エネルギー、小さい相互作用、軽い質量に効く 
 - インフレーション、暗黒物質、ニュートリノ、暗黒エネルギー、… 

3. S-matrix bootstrap 
 - Positivity Bounds：有効理論が満たすべき散乱振幅の整合性条件 

 - QED cutoff  GeV, SM cutoff  GeV 

 - weak gravity 的条件は良く出る、より強いものが出ることもある 
 - 他の応用：scalar potential [TN-Tokuda ’21], DM [TN-Sato-Tokuda in progress], … 
 - 重力理論における positivity bounds のより深い理解は不可欠

m
MPl

≲ g ΛUV ≲ gMPl Δϕ ≲ MPl

∼ 108 ∼ 1016

まとめと展望



スワンプランド条件の解明を進められれば 

量子重力（弦理論）と現実世界の架け橋に！



Thank you!


