Deep Learning In the Wild: Application on ATLAS

Michael Kagan

SLAC

Machine Learning at the LHC, KMI, Nagoya University February 5th, 2020

Challenges for ML on ATLAS?

- Successfully physics program at the LHC requires overcoming major hardware, computing, and analysis challenges!
- How will the increasing power of ML play a role?

Analysis Challenges 120 SM

Trigger Challenges 10⁵ TLAS Simulation HL-LHC Trigger, Vs=14 TeV $HH \rightarrow b\overline{b}b\overline{b}, \langle \mu \rangle = 200$ 10⁴ Jet hl<2.5

Tracking Challenges

Simulation Challenges

The ATLAS Experiment

 $\sim 10^8$ detector channels

<u>Data:</u> ~300 MB / sec ~3000 TB / year

<u>Weight:</u> 7000 tons <u>Size:</u> 46 m long, 25 m high, 25 m wide

Generative Model

From Theory to Experiment... and Back

7

$$\begin{split} & -\frac{1}{2}(d_{2}^{2}(0,d_{2}^{2}-g_{1}^{-H}\partial_{2}^{2})d_{2}^{2}d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-W_{1}^{2})d_{2}^{2}d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-W_{1}^{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-W_{1}^{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-W_{1}^{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-W_{1}^{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-W_{1}^{2}-d_{2}^{2}-W_{1}^{2}-\frac{1}{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-d_{2}^{2}-W_{1}^{2}-\frac{1}{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-\frac{1}{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-\frac{1}{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-d_{2}^{2}-\frac{1}{2})d_{2}^{2}-\frac{1}{2}(d_{2}^{2}-d_{$$

$$\begin{split} &\gamma^{3}(w_{1}^{3})|_{1}^{4} = \frac{w_{1}}{2\sqrt{2}} \frac{1}{m^{2}} \left[-\phi^{2}(k^{2}(1-\gamma^{3})e^{\lambda}) + \phi^{-}(e^{\lambda}(1+\gamma^{3})\mu^{\lambda}) \right] - \\ &\frac{2}{3} \frac{1}{m^{2}_{2}} \left[H(e^{\lambda}e^{\lambda}) + i\phi^{2}(e^{\lambda}\gamma^{2}e^{\lambda}) \right] + \frac{1}{m^{2}_{2}\sqrt{2}} \phi^{-1}(m^{2}_{3}(w^{2}_{2}(L-\gamma^{3})d^{2}_{2}) + \\ &m^{2}_{6}(e^{\lambda})^{2}C_{M}(1+\gamma^{5})d^{2} \right] + \frac{1}{m^{2}_{2}\sqrt{2}} \phi^{-1}(m^{2}_{3}(d^{2})C_{M}(1+\gamma^{5})d^{2}_{2}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}} H(d^{2}_{1}d^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{3} \frac{1}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{3} \frac{1}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{3} \frac{1}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{3} \frac{1}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{3} \frac{1}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{3} \frac{1}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) - \frac{2}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) - \frac{2}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{m^{2}_{3}} H(d^{2}_{1}d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) - \\ &\gamma^{2}(w^{2}_{1}) - \frac{2}{m^{2}_{3}} H(d^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) + \frac{2}{m^{2}_{3}} \phi^{2}(d^{2}_{1}\gamma^{2}_{1}) + \\ &\gamma^{2}(w^{2}_{1}$$

$$\begin{split} \gamma^{-}(y_0) &= \frac{1}{2}\pi^{-}W(y_0^{-}y_0) - \frac{1}{2}\pi^{-}W(a_0^{-}y_0) + \frac{1}{2}\pi^{-}\varphi(w_0^{-}\gamma)u_0^{-}, \\ &= \frac{1}{2}\pi^{-}_{0}\phi(a_0^{-}\gamma)a_0^{-}X^{+}(\delta_0^{-}-\delta_0^{-}X^{+}X^{+}) + igs_w W_{\mu}^{+}(\partial_{\mu}X^{-}-\partial_{\mu}X^{+}X^{+}) + igs_w W_{\mu}^{+}(\partial_{\mu}X^{-}X^{-}-\partial_{\mu}X^{+}X^{+}) + igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}Y^{-}-\partial_{\mu}X^{-}X^{+}) + igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}Y^{-}-\partial_{\mu}X^{-}X^{+}) + igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}Y^{-}-\partial_{\mu}X^{-}X^{+}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}Y^{-}-\partial_{\mu}X^{-}X^{-}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}Y^{-}-\partial_{\mu}X^{-}X^{-}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}Y^{-}-\partial_{\mu}X^{-}X^{-}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}Y^{-}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}) - igs_w W_{\mu}^{-}(\partial_{\mu}X^{-}) - igs_w W_{\mu}^{$$

 $\begin{array}{l} \frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+-\bar{X}^-X^0\phi^-]+\frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+\\ igMs_w[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+\frac{1}{2}igM[\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0] \end{array}$

Parameters θ

O(10) particles

O(100) particles

O(10⁸) detector elements

Slide credit: K. Cranmer

ML Across the ATLAS Analysis Pipeline

- **Reconstruction** discrimination / regression problems, leading to fastest uptake of new ideas
 - Jets: Tagging, Calibration, Decorrelation
 - Missing Energy Pileup Subtraction
 - Jet Flavour Tagging
 - Tau Particle ID
 - Pixel Clustering for Tracking
- Simulation problems of density estimation and sampling
 Fast Calorimeter Simulation
- Analysis largely well known ML methods for signal vs background discrimination and event reconstruction

 Very impactful, but not going to talk about this much
- ML applications growing more sophisticated
 − Classification → Density estimation → Differentiable Programs

ML Across the ATLAS Analysis Pipeline

- **Reconstruction** discrimination / regression problems, leading to fastest uptake of new ideas
 - Jets: Tagging Calibration Decorrelation

How can existing ML allows us to approach new challenges

How can we design ML systems to our needs

ML applications growing more sophisticated
 − Classification → Density estimation → Differentiable Programs

Looming Gap in Theory vs Practice

- Large difference between what is done in phenomenology papers and on the experiment (at least what is public)
- Why????
 - Real detector models have MUCH more complex noise than simplified simulation
 - Method performance doesn't necessarily transfer
 - Even the ones that transfer can be hard to tune
 - Calibration even our best simulations for training are not perfect
 - After training the algorithm, we still have to calibrate!
 - Information disconnect
 - Model expertise may be outside experiment
 - Different people build and calibrate algorithm within ATLAS
 - Experiment computational resources may not be well suited to ML
 - Moreover, full data re-processing alone can take months
 - Resistance to change

Classification and Regression in Reconstruction

Jets at the LHC

- Jets are formed by clustering energy depositions in calorimeter with the anti- $k_{\rm T}$ algorithm
- Jet identification = Classification: p(parent particle | jet cluster)
- Energy estimation = Inference, regression: $p(E_{true}^{jet} | jet cluster)$

Canonical Discrimination Problem: Jet Identification

Combining Substructure Variables

- Wide array of physics insight has gone into developing jet substructure observables
- Direct application of ML for combining power of multiple partially correlated substructure features
- First calibrations look quite reasonable!

Jets as Images

- A jet induces a distribution of energy over $\eta \phi$ – Essentially how a jet is seen by calorimeters
- Jet-image fixed size 2D representation of the jet as a distribution of energy

Jet Images

16

Unrolled slice of detector jet image Boosted W ---> qq 10² Pixel $p_{_{T}}$ [GeV] 0.5 jet 10 proton-proton ϕ collision into/ out-of page 1 -0.5 jet -0.5 0.5 -1 0 not to scale [Translated] Pseudorapidity (η) jet image

Calorimeter towers as pixels Energy depositions as intensity

Jet Images

Average of large number of Jet Images jet image $250 < p_T/GeV < 260 GeV, 65 < mass/GeV < 95$ Pythia 8, W' \rightarrow WZ, $\sqrt{s} = 13 \text{ TeV}$ [Translated] Azimuthal Angle (<a) Pixel p_T [GeV] 10² 10 0.5 10-1 10⁻² jet W-jets 10⁻³ 10-4 10⁻⁵ -0.5 10⁻⁶ proton-proton ϕ 10-7 collision into/ 10⁻⁸ out-of page 10⁻⁹ -1 -0.5 0 0.5 [Translated] Pseudorapidity (n) jet 250 < p_x/GeV < 260 GeV, 65 < mass/GeV < 95 Pythia 8, QCD dijets, $\sqrt{s} = 13 \text{ TeV}$ 0³ Pixel p_r [GeV] 10² 10 not to scale 0.5 10-1 QCD-jets 10⁻² jet image 10⁻³ 10-4 10⁻⁵ -0.5 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹

-1

-0.5

0

0.5 [Translated] Pseudorapidity (η)

Image Credit: **B. Nachman**

Jet Images on ATLAS: Quarks vs Gluons

ATL-PHYS-PUB-2017-017

Quark Jet Efficiency

Note: Other experimental results on CMS with ImageTop, a boosted top tagger based on images <u>CMS-PAS-JME-18-002</u>

Calo-Images for Missing Energy Pileup Removal

- *Input*: images of calorimeter clusters and tracks
- *Output*: NN regress to predict hard scatter energy in each calorimeter tower
- Gains in resolution
 - NNN doesn't learn accurate cell by cell predictions
 - Considering new ways to define loss

Reconstructing Bottom Quark Jets

Bottom Quark Jet Identification

- Goal: Discriminate b-jets from non-b-jets
- Track Impact Parameter based taggers: p(jet flavor | tracks in jet)
 - Dimensionality too high for histogram density estimation
 - Often make naïve Bayes assumption that tracks independent!

Jets as Sequences

- Jets are a grouping of a variable number of particles
- With physically motivated ordering: jet as a sequence

Recurrent Neural Networks

Image credit: <u>F. Fleuret</u>

Image credit: <u>F. Fleuret</u>

Image credit: F. Fleuret

Image credit: F. Fleuret

Long Short Term Memory (LSTM)

- Gating:
 - network can grow very deep,
 in time → vanishing gradients.

- *Critical component*: add pass-through (additive paths) so recurrent state does not go repeatedly through squashing non-linearity.
- LSTM:
 - Add internal state separate from output state
 - Add input, output, and forget gating

Jets and Sequence Processing

29

ATL-PHYS-PUB-2017-003

RNN b-tagging

- Order tracks by impact parameter
- RNN can learn inter-track dependencies

Combining With Other Algorithms

1/(false-positive rate) at fixed true-positive rate vs jet p_T

ATLAS-PHY-PLOTS-FTAG-2019-005

Calibration

*This is actually a slightly older version of the algorithm than previous slide

arXiv:1910.08447

Real World Impact: Dijet Resonances

Tau RNN

Tau RNN

Density Estimation and Generative Modeling

Why Generative Modeling

- Discriminative models: $f(x) \approx \overline{y} = E_{p(y|x)}[y]$
- How do we model uncertainty on predictions, i.e. learn a posterior on likelihood?
- Generative models aim to estimate density p(x) or conditional p(x | y)
 - Explicitly: can compute the value $p(\cdot)$
 - Implicitly: can draw samples from $p(\cdot)$
 - More on Generative Models in A. Butter's Talk

Fast Simulation

- Increased pileup at HL-LHC will push boundaries of our computational capabilities for simulation
- Full Simulation
 - Accurate but costly to sample
- Fast Simulation
 - Sample from parametric average shower model
 - Doesn't account for correlations in shower shape fluctuations

ATLAS Simulation Preliminary

Fast Simulation

- Increased pileup at HL-LHC will push boundaries of our computational capabilities for simulation
- Full Simulation
 - Accurate but costly to sample
- Fast Simulation
 - Sample from parametric average shower model

- Correct average: Model correlated fluctuations on top of average
- *Full ML approach*: Learn generative mode of distribution of showers, p(x), and produce samples

• Method: Fit parametric approximation to correlated noise distribution

• Sklar's Theorem: given a random vector $(X_1, ..., X_n)$, the joint cumulative distribution function $H(x_1, ..., x_n) = P(X_1 \le x_1, ..., X_n \le x_n)$

$$\Pi(x_1, ..., x_n) = \Gamma(x_1 \ge x_1, ..., x_1 \ge x_1)$$

can be expressed using marginals $F_i(x_i) = P(X_1 \le x_1)$ as $H(x_1, ..., x_n) = C(F_1(x_1), ..., F_n(x_n))$

where $C(\cdot)$ is the copula

Correcting the Average

• Method: Fit parametric approximation to correlated noise distribution with a *Gaussian Copula*

Gaussian Copula

$$C_R^{ ext{Gauss}}(u) = \Phi_R\left(\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_d)
ight)$$

Gaussian Copula density

$$c_R^{ ext{Gauss}}(u) = rac{1}{\sqrt{\det R}} \exp\left(-rac{1}{2} egin{pmatrix} \Phi^{-1}(u_1)\dots\ \Phi^{-1}(u_d) \end{pmatrix}^T \cdotig(R^{-1}-Iig) \cdotegin{pmatrix} \Phi^{-1}(u_1)\dots\ \Phi^{-1}(u_d) \end{pmatrix}
ight)$$

- 1. CDF transform inputs x_i to uniform u_i
- 2. Fit copula to sample of correlated uniform variables
- 3. Sample Copula to get u_i and invert CDF to get x_i

Correcting the Average with Copula

Deep Generative Models

Generative Adversarial Networks (GAN) [arXiv:1406.2661]

- Generator produces images from random noise and tries to trick discriminator into thinking they are real
- Classifier tries to tell the difference between real and fake images

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z(z)} \left[1 - \log D(G(z)) \right]$

- Two-player minimax game between Generator (G) and Discriminator (D) networks
- Training involves carful and often unstable iteration between updating G parameters (θ) and D parameters (ψ)
- If perfectly trained, generator converges to implicit model of data density: $G(z) = x \sim p_{data}(x)$

GANs for Calorimeter Energy Depositions

Making use of Generative Modeling Tools

Adversarial Learning for Enforcing Invariance

- With flexibility come complexity:
 - Hard to control how models learn / utilize information
 - Potentially unwanted sensitivity to poorly modeled aspects of simulation
 - Potentially unwanted sculpting of key physics distributions like mass
- *Idea*: Augment training of classifier to enforce invariance to changes in a variable Z (nuisance parameter for systematic uncertainty, kinematic variables, etc.)
 - Several ways to do this, see D. Shih's Talk

Adversarial Networks

• Classifier built to solve problem at hand

Adversarial Networks

- Loss that encodes performance of a classifier and adversary
- Classifier penalized when adversary does well at predicting Z

arXiv:1611.01046

$$\hat{\theta}_f, \hat{\theta}_r = \arg\min_{\theta_f} \max_{\theta_r} E(\theta_f, \theta_r).$$

$$E_{\lambda}(\theta_f, \theta_r) = \mathcal{L}_f(\theta_f) - \lambda \mathcal{L}_r(\theta_f, \theta_r),$$

- Hyper-parameter λ controls trade-off
 - Large λ enforces f(...) to be pivotal, e.g. robust to nuisance
 - Small λ allows f(...) to be more optimal without Z variation

Learning to Pivot: Toy Example

• 2D example

$$x \sim \mathcal{N}\left((0,0), \begin{bmatrix} 1 & -0.5\\ -0.5 & 1 \end{bmatrix}\right) \quad \text{when } Y = 0,$$

 $x \sim \mathcal{N}\left((1,1+Z), \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right) \quad \text{when } Y = 1.$

With Adversary 4.0 $p(f(X)|Z = -\sigma)$ 3.5 p(f(X)|Z=0)3.0 $p(f(X)|Z = +\sigma)$ 2.5 ((X)f)d1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 f(X)

Learning to Pivot: Physics Example

- Standard training with no systematics during training, evaluate systematics after training
- λ=0
 - Training samples include events with systematic variations, but no adversary used

• λ=10

 Trading accuracy for robustness results in net gain in terms of statistical significance

[AMS = Estimate of statistical significance including systematic uncertainty]

arXiv:1611.01046

Decorrelating Variables

- Same adversarial setup can decorrelate a classifier from a chosen kinematic variable [<u>arXiv:1703.03507</u>]
- Example: decorrelate classifier from jet mass, so as not to sculpt jet mass distribution with classifier cut

W-jets vs. QCD Jets

ATL-PHYS-PUB-2018-014

Decorrelating Variables

- Same adversarial setup can decorrelate a classifier from a chosen kinematic variable <u>[arXiv:1703.03507]</u>
- Example: decorrelate classifier from jet mass, so as not to sculpt jet mass distribution with classifier cut

Non-ATLAS, but related, use of Generative Modeling Tools

Black Box Optimization

57

• Goal: Optimize simulator parameters to minimize objective

Black Box Optimization

58

• Goal: Optimize simulator parameters to minimize objective

Black Box Optimization

- Goal: Optimize simulator parameters to minimize objective
- Can we approximate the simulator directly?

Differentiable Surrogates

- Train parameterized generative surrogate model S, i.e. GAN or flow, to approximate $F(x; \psi)$
 - Noise input to surrogate can account for stochastic nature of F

Differentiable Surrogates

61

Differentiable Surrogates

-2

 ψ_1

-0.60

• Optimize objective with gradient descent using trained surrogate to produce differentiable samples

Optimization on Toy Examples

Under Review S. Shirbikov, V. Belavin, M. K., A. Baydin, A. Ustyuzhanin

Rosenbrock function

100 Dim parameter space projected on 10 Dim submanifold

Optimization In Physics Example

Under Review S. Shirbikov, V. Belavin, M. K., A. Baydin, A. Ustyuzhanin

Conclusion

- Analysis pipeline is grounded in our detail physics domain knowledge
- Maintain our physics knowledge embedded in this pipeline while using ML to help solve some of the intractable challenges we face on ATLAS
- ML methods have shown strong performance improvements in reconstruction and analysis methods
- Techniques to deal with key challenges such as simulation computational cost and systematic uncertainty mitigation are under study

