ニュートリノを伴わない二重ベータ崩壊 と軽い右巻きニュートリノ

田中和樹(新潟大学)

共同研究者

淺賀岳彦(新潟大学) 石田裕之(富山県立大学)

参考文献

Phys.Rev.D103 (2021) 015014 + PTEP 2021 ptab046 + arXiv:2101.12498

Flavor Physics Workshop 2022 @ 伊豆 静岡県 2022年11月9日

Outline

- **1. Introduction**
- 2. Minimal Seesaw mechanism
- 3. $0\nu\beta\beta$ decay
- 4. $0\nu\beta\beta$ decay in the seesaw mechanism
- **5. Future experiments**
- 6. Summary

1. Introduction

Puzzles of neutrinos in SM

- ✓ Neutrino masses (oscillation experiments)✓ Dirac type or Majorana type ?
- ✓ Right-handed neutrino ...?

Oscillation experiment data [NuFIT 5.1('21)]

l: index of lightest active neutrino

Neutrino mass hierarchy	$\Delta m_{21}^2 / 10^{-5} \mathrm{eV}^2$	$\Delta m_{3l}^2 / 10^{-3} \mathrm{eV}^2$	
NH $(m_1 < m_2 < m_3)$	$7.42^{+0.21}_{-0.20}$	$2.510_{-0.027}^{+0.027}$	Mass scale
IH $(m_3 < m_1 < m_2)$	$7.42^{+0.21}_{-0.20}$	$-2.490^{+0.026}_{-0.028}$	$\mathcal{O}(10^{-11}) \mathrm{GeV}$

At least two generations of neutrinos are massive
Smallness of neutrino masses

 $m_{\nu} \sim \mathcal{O}(10^{-11}) \text{GeV}$ (10⁻¹¹) $M_e \sim 10^{-4} \text{GeV}$ (10⁻¹¹) m_e : active neutrino mass

Beyond SM physics is needed to explain these discrepancies

2. Minimal Seesaw mechanism (SM + $2RH\nu$)

 v_{RI} : right-handed neutrino $F_{\alpha I}$: Yukawa coupling

Lagrangian

 L_{α} : SM lepton doublet Φ : SM Higgs doublet M_{I} : Majorana mass of right-handed neutrino

$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{\nu_{RI}}\gamma^{\mu}\partial_{\mu}\nu_{RI} - \left(F_{\alpha I}\overline{L_{\alpha}}\Phi\nu_{RI} + \frac{M_{I}}{2}\overline{\nu_{RI}^{c}}\nu_{RI} + h.c.\right)$$

Dirac mass term

Majorana mass term

Prediction

➢All mass eigenstates become Majorana particles.

 \succ Natural explanation of smallness of m_{ν} .

Beyond SM interaction could occur.

All mass eigenstates have the weak interaction.

3. $0\nu\beta\beta$ decay

• The decay process violates the lepton number two units.

 $(Z,A) \to (Z+2,A) + 2e^-$

- One possibility is massive Majorana neutrino mediation.
 - →It is possible to verify the Majorana nature of the neutrino predicted in seesaw mechanism.

Half-life time of $0\nu\beta\beta$ decay

$$\tau_{1/2}^{-1} = G \left| \mathcal{M} \right|^2 \left| m_{\text{eff}} \right|^2$$

[Faessler, Gonzalez, Kovalenko, Simkovic('14)]

Current limits on 0 uetaeta decay

KamLAND-Zen ('16)

4. $0\nu\beta\beta$ decay in the seesaw mechanism

Effective mass $m_{eff} = m_{eff}^{\nu} + m_{eff}^{N}$ Active ν 's
contribution $m_{eff}^{\nu} = \sum_{i} U_{ei}^{2} m_{i}$ RH ν 's
contribution $m_{eff}^{N} = \sum_{I} \Theta_{eI}^{2} M_{eff} f_{\beta}(M_{I})$

Suppression factor by the propagator

$$f_{\beta}(M_I) = \frac{\Lambda_{\beta}^2}{\Lambda_{\beta}^2 + M_I^2}$$

[Faessler, Gonzalez, Kovalenko, Simkovic('14)] [Barea, Kotila, Iachello('15)]

When $M_I \ll \Lambda_{\beta}$, RH ν could contribution enough !!

$$\begin{split} M_{1}, M_{2} \gg \Lambda_{\beta} & f_{\beta}(M_{1}) = 0 \quad f_{\beta}(M_{2}) = 0 \\ m_{\text{eff}}^{N} = 0 \quad \Rightarrow \quad m_{\text{eff}} = \sum_{i} U_{ei}^{2} m_{i} \\ \begin{pmatrix} 0 & M_{D} \\ M_{D}^{T} & M_{M} \end{pmatrix}_{ee} = \begin{bmatrix} \begin{pmatrix} U & \Theta \\ -\Theta^{\dagger}U & 1 \end{pmatrix} \begin{pmatrix} M_{\nu}^{d} & 0 \\ 0 & M_{I} \end{pmatrix} \begin{pmatrix} U^{T} & -U^{T}\Theta^{*} \\ \Theta^{T} & 1 \end{pmatrix} \end{bmatrix}_{ee} \\ = \sum_{i} U_{ei}^{2} m_{i} + \sum_{I} \Theta_{eI}^{2} M_{I} \\ m_{\text{eff}} = \sum_{i} U_{ei}^{2} m_{i} + \sum_{I} \Theta_{eI}^{2} M_{I} = 0 \\ \Rightarrow \quad \text{the decay will never happen} \end{split}$$

<u>Cancellation by $RH\nu$ </u>

NH case

Mass assumption $M_1 < \Lambda_\beta \ll M_2$

Suppression factor $f_{\beta}(M_1) = 1 - \delta_f^2 \quad f_{\beta}(M_2) = 0$

The effective mass can be expressed by using Casas-Ibarra parametrization.

Future experiments of direct search of RHvs

Huge region can be searched on future experiments

NH case

Mixing elements of N_1

$$\Theta_{\alpha I} = \frac{F_{\alpha I} \langle \Phi \rangle}{M_I} \quad \blacklozenge$$

RH ν suppress the $0\nu\beta\beta$ decay, if $\tan\omega = \frac{A \pm i\delta_f}{1 \mp i\delta_f A} \equiv \tan\omega_{\pm}$

Observed case
$$m_{eff}^{obs} = |m_{eff}|$$
 10^{-7} Mass assumption $M_1 \neq M_2$ 10^{-8} The absolute value of the $\Im_{10^{-9}}^{\bullet}$ mixing element is 10^{-10}

determined by the effective mass of the observed decay.

$$\Theta_{e1}^2 = \frac{m_{\text{eff}} - m_{\text{eff}}^{\nu} \left[1 - f_{\beta}(M_2)\right]}{M_1 \left[f_{\beta}(M_1) - f_{\beta}(M_2)\right]}$$

5. Future experiments

Predicted effective mass

6. Summary

- > We discussed the $0\nu\beta\beta$ decay in the **minimal** seesaw mechanism.
- > We comprehensively investigated the contribution of the RH ν s to the $0\nu\beta\beta$ decay.
- Especially, when Majorana mass is lighter than the typical Fermi momentum, the decay is strongly suppressed and may no longer occur.
- > We showed that the properties of RH ν may be characterized by the future decay-observation-experiments.
- ➢We pointed out that multiple experiments using different nuclei are important to understand the properties of RHvs (masses and mixing elements).

Back up

$$M_N = \Lambda_\beta \sqrt{\frac{m_{\text{eff}}^{\text{obs}}}{|m_{\text{eff}}^{\nu}| - m_{\text{eff}}^{\text{obs}}}}}$$
$$\left|\Theta_{e1}^2 + \Theta_{e2}^2\right| = \frac{|m_{\text{eff}}^{\nu}|}{\Lambda_\beta} \sqrt{\frac{|m_{\text{eff}}^{\nu}| - m_{\text{eff}}^{\text{obs}}}{m_{\text{eff}}^{\text{obs}}}}}$$

2022/11/9

FPW 2022 (Kazuki Tanaka)

