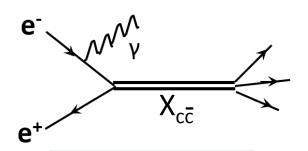
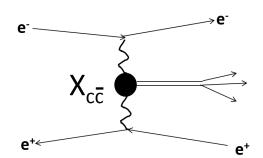
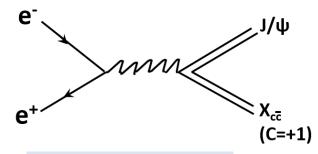

Prospect in hadron spectroscopy at Belle II

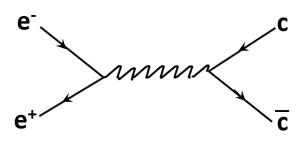

Y. Kato (KMI, Nagoya)

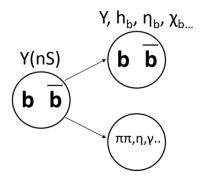


B-factory = hadron factory!

B meson decay


- **1**⁺, 0^{-/+}
- •X(3872), Z(4430)....
- Open charm hadrons


Initial state radiation


- -J^{PC}=1--
- •Y(4260)

Two photon collision

- J^{PC}=0⁺⁺, 2⁺⁺....
- Extract two photon width

Double charmonium

C-even charmonium

$e^+e^-\rightarrow c\bar{c}$

Charm mesons/baryons

Bottomonium transition

Z_b states

"New hadrons" from B-factories

Hadron Type

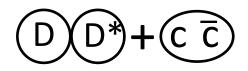
	Charmonium	Bottomonium	D _, D _(s)	Charmed baryon	Hyperon
B-decay	$ \eta_c(2S) \psi_2(3823) $ $ X(3872) X(3915) $ $ Z_c(4050) Z_c(4250) $ $ Z_c(4430) Z_c(4200) $		D* ₀ (2400) D ₁ (2430)	Ξ _c (2930)	Belle BaBar
Initial State Radiation	Y(4260) Z(3900) Y(4008) Y(4360) Y(4660)				
Double charmonium	$X(3860) = \chi_{c0}(2P)$ X(3940) X(4160)				
Two photon	χ _{c2} (2P)				
e⁺e⁻→cc ^{bar}			D* _{s0} (2317) D ₀ (2550) D _J *(2600) D _J (2740) D ₃ *(2750) D* _{s1} (2700) D* _{s1} (2860) D _{sJ} (3040)	$\Sigma_c(2800) \Lambda_c(2940)$ $\Xi_c(2980) \Xi_c(3080)$ $\Omega_c(2770) \Xi_c(3055)$	
Y(nS) decay		$Z_b(10610)$ $Z_b(10650)$ $\eta_b(1S) \eta_b(2S)$ $h_b(1P) h_b(2P)$			Ω(2012)

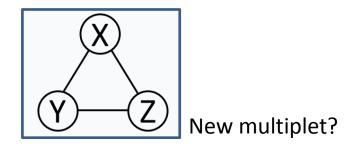
~ 40 new hadrons!

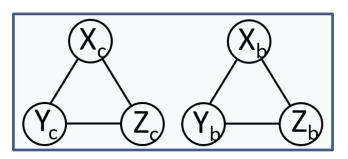
(Some states may be missed)

What we want to know further?

- Nature of each XYZ?
 - Steve's talk


Tetraquark?


Hybrid?


Mixing?

- Understand (part of) XYZ in a unified way?
 - Fengkun's talk

- Understand charm and bottom in a unified way?
 - Umberto's talk

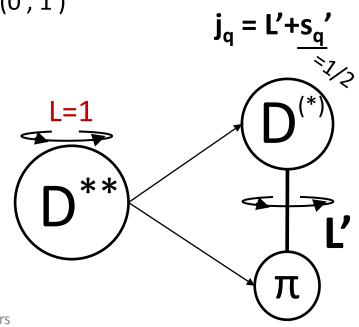
Further new multiplet?

- What we can learn from open charm hadrons?
 - Heavy quark symmetry
 - Exotic states
 - Di-quark degree of freedom

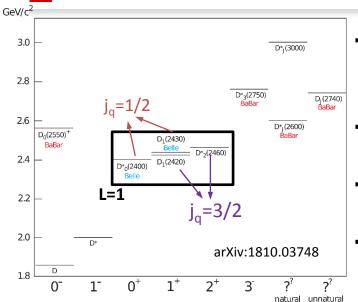
- Overview of hadron spectroscopy at B-factories
- Charmed mesons
 - Heavy quark spin symmetry
 - B-factory achievements
 - $D_s(2317)^+$, $D_s(2460)^+$
- Charmed baryons
 - Di-quark in charmed baryons
 - B-factory achievements
 - Spin determinations, new states, strange factory.
- "Rediscoveries" in Belle II phase 2

See review paper "Open charm hadron spectroscopy at B-factories" (arXiv:1810.03748) for more detail

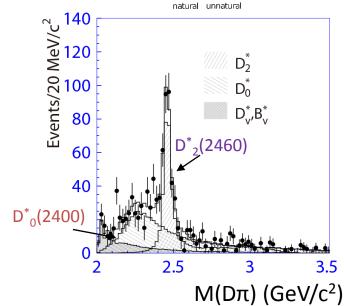
Charmed mesons

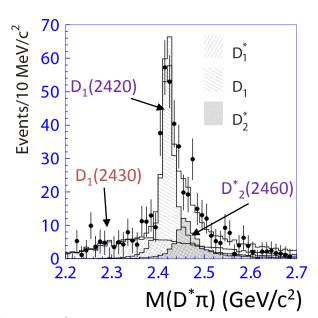

Heavy quark spin symmetry (HQSS)

• The spin-spin interaction $\propto 1/m_q m_Q = 0$ $m_Q \rightarrow \infty$ → S_Q is conserved. $\begin{array}{c|c}
 & \downarrow \\
 & \downarrow \\$

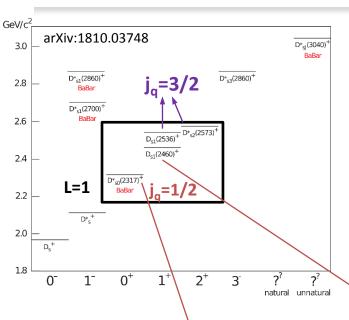

- Total spin J = S_Q+j_q
 - \rightarrow j_q is also a good quantum number.

 $J = j_{\alpha} \pm 1/2 \rightarrow$ Heavy quark spin doublet (degenerate in heavy quark limit).

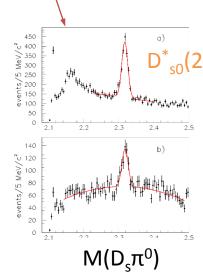

- •ex: The ground states (L=0) have $j_q^p=1/2 \rightarrow D$ and D^* (0⁻, 1⁻)
- In case of L=1, j_q = either 1/2 or 3/2 \rightarrow two HQS doublets.
- In $D^{**} \rightarrow D^{(*)}\pi$ decay, L' between $D^{(*)}$ pi is S-wave for $j_{\alpha} = 1/2$ and D-wave for $j_{\alpha} = 3/2$.
- → Two broad and two narrow states.

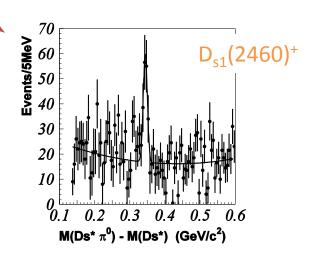


D meson family by B-factories



- Before the start of B-factory, L=1, $j_{\alpha} = 3/2$ were discovered $= D_1(2420), D_2^*(2460)$
- Belle observed $j_a = 1/2$ states, $D_0^*(2400)$ and $D_1(2430)$.
- Indeed two narrow states and two broad states!
- BaBar observed many higher states.

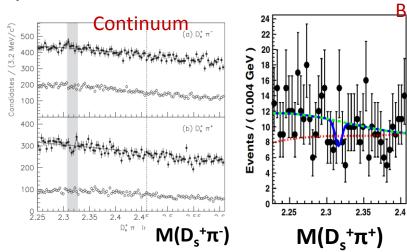




So how is D_s meson family?

- Before the start of B-factory, L=1, $j_q = 3/2$ are discovered = $D_{s1}(2536)$, $D_{s2}^*(2573)$
- BaBar observed $D_{s0}^*(2317)^+$ and CLEO observed $D_{s1}(2460)^+$.
- Widths are very narrow
 - $D_{s}^{(*)} + \pi^{0}$ is isospin violating decay.
- The mass is too small (D^(*)K channel not opened)
 - ~ 100 MeV smaller than quark model prediction.
 - Even smaller than non-strange charm partner.

Nature of $D_{s0}^*(2317)$ and $D_{s1}(2460)$?


Many models ... (cs, molecule, tetraquark..)

• Simple cs state?

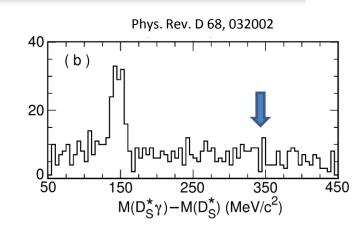
- Masses significantly below the predictions.

Tetraquark?

Isospin one preferred, but partner searches failed. (CS/BR one order smaller)

• D^(*) K molecule state ?

- They are just ~40 MeV below D(*)K threshold
- $M_{DS1(2460)}$ $M_{D*s0(2317)} \doteq M_{D*} M_{D}$ can be explained by HQSS (arxiv: 1712.07957).


 $M(D_s^+\pi^-)$

Future measurements

Radiative decay

$$-\frac{\Gamma(D_{s0}^{*}(2317) \to D_{s}^{*} \gamma)}{\Gamma(D_{s0}^{*}(2317) \to D_{s}^{+} \pi^{0})} < 5.9\%$$

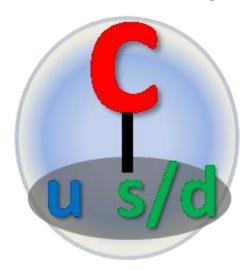
- Theory predictions:
 - -- Molecule: 0.7 1.8% (Phys. Rev. D 76, 014005) and 10±4% (Eur. Phys. J. A50 149)
 - -- CS: 19% (Phys.Lett. B568 254-260)
- Statistics limited. Belle II can reach < 1%

Total width

- Only upper limit: 3.8 MeV for $D_{s0}^*(2317)$ and 3.5 MeV for $D_{s1}^*(2460)$.
- Prediction: O(10 keV) in cs picture, ~100 keV in molecule.
- Measure width of ~100 keV with π^0 is a challenge.
 - -- The mass resolution is $^{\sim}6$ MeV/c² at Belle for D_s(2317)⁺.
 - -- May possible at PANDA by pp^{bar} \rightarrow D_S D_S(2317)⁺ cross section at threshold.
- Need an idea to improve the mass resolution.
 - -- Use B-decay and apply additional constraint.

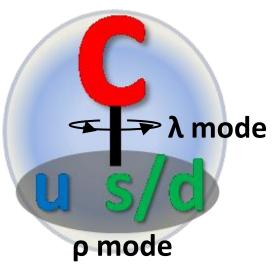
Charmed baryons

Physics of charmed baryons

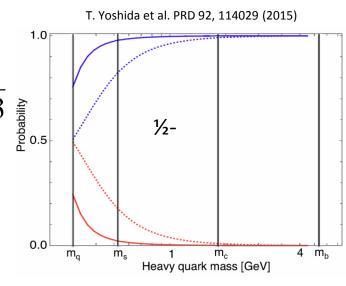

- •Charm quark is heavy: $(1500 \text{ MeV/c}^2) > u,d,s \text{ quarks} (300-500 \text{ MeV/c}^2)$
- •spin-spin interaction ≈ 1/m₁m₂
- Di-quark correlation in light quarks (more simple! New d.o.f!).

Nucleon

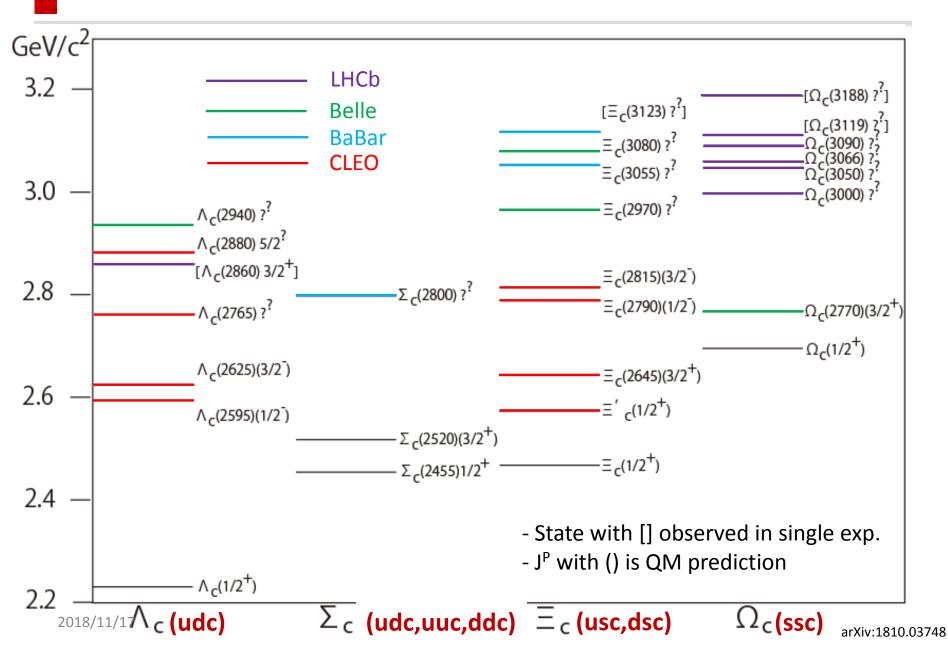
Every pair can not be distinguished.


Charmed baryon

Light di-quark and charm quark.


Excitation modes

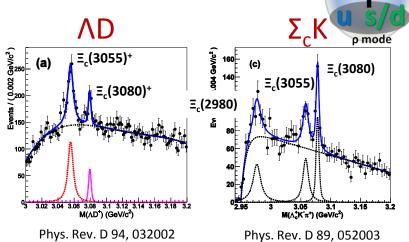
- There are two kind of excitation modes.
 - λ mode: excitation between c quark and u-d di-quark.
 - ρ mode: excitation in the di-quarks.


$$\frac{h\omega_{\rho}}{h\omega_{\lambda}} = \sqrt{\frac{3m_{Q}}{2m_{q} + m_{Q}}} \sim = \sqrt{3}$$

The fraction of λ mode for the 1st excited state.

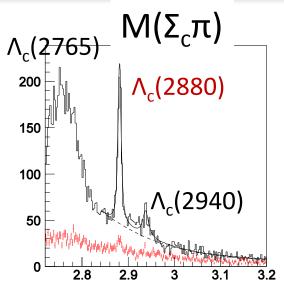
- No clear indication of ρ and λ mode yet.
- There should be two J^P=1/2⁻ states.
- Experimentally, discover charmed baryons, study the property and check global consistency with di-quark picture.

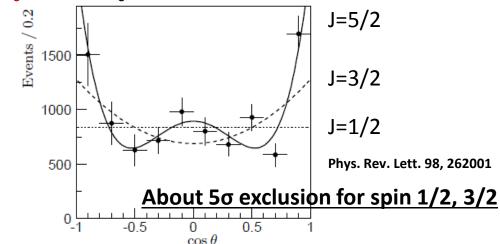
Observed charmed baryons


Achievements and missing things

- All the ground states and many excited states observed.
- J^P for a few states determined.
- Many decay modes observed.
 - Separation of λ ρ mode.
- Very precise mass determinations.
 - Isospin splitting depends on baryons.

However...

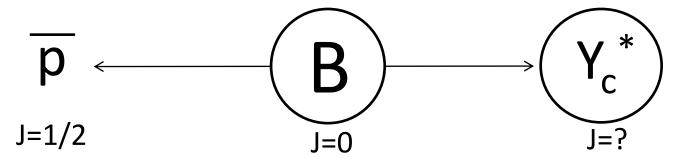

- Even for λ mode, it is from QM.


Particle	$M(\Xi_c^+) - M(\Xi_c^0) \text{ (MeV/}c^2)$
$\Xi_c(2645)$	$-0.85 \pm 0.09 \pm 0.08 \pm 0.48$
$\Xi_c(2815))$	$-3.47 \pm 0.12 \pm 0.05 \pm 0.48$
$\Xi_c(2980))$	$-4.8 \pm 0.1 \pm 0.2 \pm 0.5$
$\Xi_c^{\prime+}$	$-0.8 \pm 0.1 \pm 0.1 \pm 0.5$
$\Xi_c(2790)$	$-3.3 \pm 0.4 \pm 0.1 \pm 0.5$

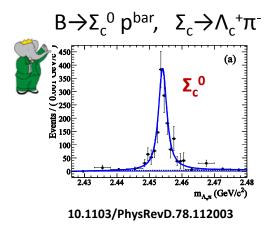
J^P determination at Belle

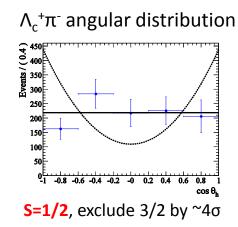
 $\Lambda_c^+(2880) \Sigma_c \pi$ decay angular distribution

The decay angular distribution for spin 5/2.

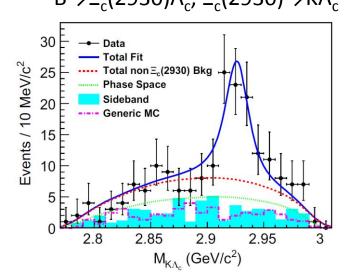

$$W_{5/2} = \frac{3}{8} [\rho_{55} 2(5\cos^4\theta - 2\cos^2\theta + 1) + \rho_{33}(-15\cos^4\theta + 14\cos^2\theta + 1) + \rho_{11} 5(1 - \cos^2\theta)^2]$$

- Decay angular distribution depends on helicity fraction (ρ_{ii}). Difficult to predict ρ_{ii} in continuum production.
- If a charm baryon is not polarized (ρ_{ii} have same value), angular distribution becomes flat.

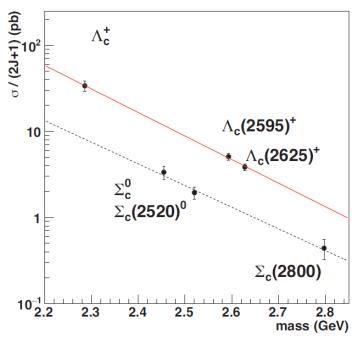

 → It is difficult to distinguish spin 1/2 and no polarization.


Spin prospect at Belle II

- B-meson two body decay constrains the helicity to be ½ as B meson has spin zero and proton has spin ½. This largely reduce uncertainty
- Statistics at current B-factory is not good enough for higher excited states.



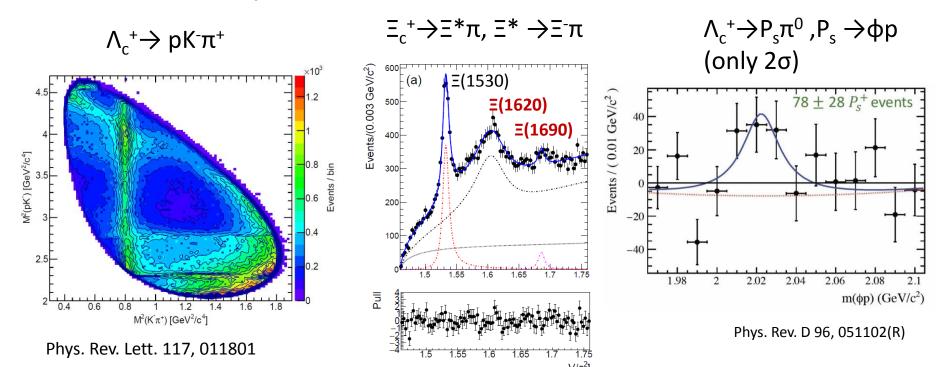
Example


Higher excited states observed! $B \rightarrow \Xi_c(2930) \Lambda_c$, $\Xi_c(2930) \rightarrow K \Lambda_c$

Eur. Phys. J. C (2018) 78: 252.

Discovery of new excited states

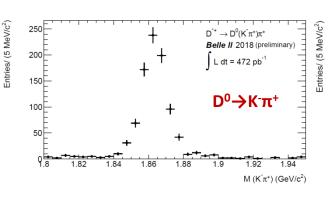
Phys. Rev. D **97**, 072005

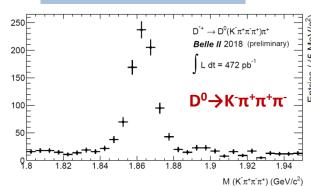


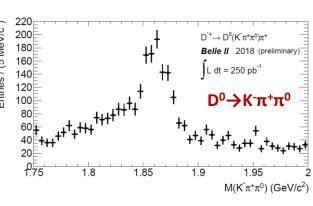
- Cross section decrease with mass by exponential curve (~1/2 with 100 MeV increase)
- CLEO reached discovery of $\Lambda_c^+(2880)$. B-factories reached $\Lambda_c(2940)^+$, $\Xi_c(3080)$, $\Omega_c(3119)^+$
 - ~200 MeV higher sensitivity.
- We may have another 2-300 MeV sensitivity at Belle II, right?
- ρ mode, Roper, and higher excited states.

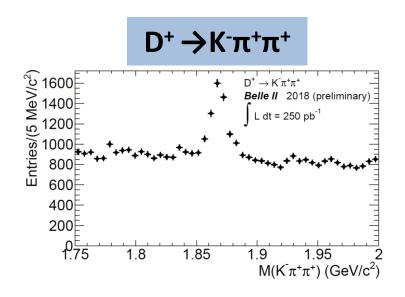
Charm baryon as strange factory

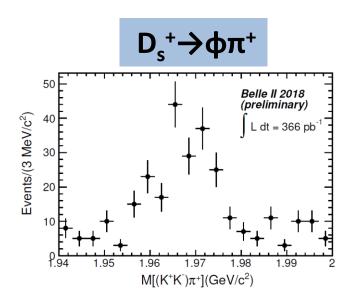
- Ground state charm baryons proceed via $c \rightarrow s$ transition.
 - → Good laboratory to study baryons including strange quarks.
- There are couple of examples on these analysis recently from Belle.
- Rare process, Ω_c decays, etc should be available at Belle II.

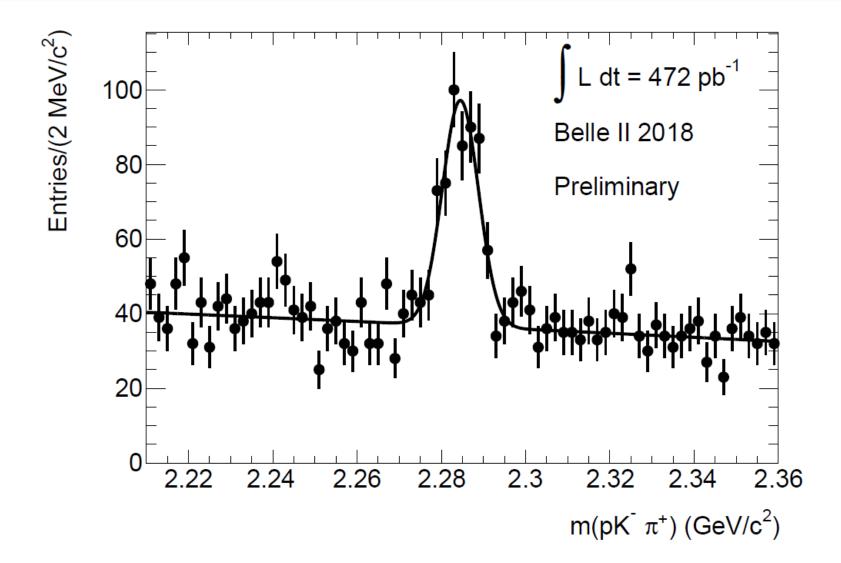

2018/11/17




arXiv:1810.06181


Charm mesons already observed at Phase 2! 21





^{**2811}To1be approved?

Summary

- Charm hadrons is unique laboratory to explore low energy QCD.
- Homeworks from B-factory: D_s(2317)⁺, D_s(2460)⁺
 - -- Radiative decay, decay width at Belle II.
- Understand Di-quark degree of freedom in charm baryons
 - Spin, observe new states...
- Charm baryon weak decay is another field for strange baryons.

Stay tuned for Belle II phase3!