A lattice QCD calculation of the hadronic light-by-light contribution to the magnetic moment of the muon

Harvey Meyer J. Gutenberg University Mainz

Muon g-2 Theory Initiative workshop in memoriam Simon Eidelman, 2 July 2021 (virtual format)

Established by the European Commission

First idea to compute $a_{\mu}^{\rm HLbL}$ in lattice QCD: Hayakawa, Blum, Izubuchi, Yamada [hep-lat/0509016]

Contributions to formalism for the Mainz approach (since 2014): N. Asmussen, E.-H. Chao, A. Gérardin, J. Green, J. Hudspith, HM, A. Nyffeler

This talk is mostly based on

- 1. Chao, Gérardin, Green, Hudspith, HM, Eur.Phys.J.C 80 (2020) 9, 869 [2006.16224]
- 2. Chao, Hudspith, Gérardin, Green, HM, Ottnad, [2104.02632].

Source of dominant uncertainties in SM prediction for $(g-2)_{\mu}$

Hadronic vacuum polarisation

HVP:
$$O(\alpha^2)$$
, about $7000 \cdot 10^{-11}$
 \Rightarrow target accuracy: $\lesssim 0.5\%$

Hadronic light-by-light scattering

HLbL: $O(\alpha^3)$, about $100 \cdot 10^{-11}$ \Rightarrow target accuracy: $\lesssim 15\%$.

Recall: $a_{\mu}^{\exp} - a_{\mu}^{SM} = (251 \pm 59) \cdot 10^{-11}$.

Analogy: hadronic vacuum polarization in x-space [HM 1706.01139]

QED kernel $H_{\mu\nu}(x)$

 $a_{\mu}^{\rm hvp}$

$$a_{\mu}^{\mathrm{hvp}} = \int d^4x \ H_{\mu\nu}(x) \left\langle j_{\mu}(x)j_{\nu}(0)\right\rangle_{\mathrm{QCD}},$$

 $j_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \dots; \qquad H_{\mu\nu}(x) = -\delta_{\mu\nu}\mathcal{H}_{1}(|x|) + \frac{x_{\mu}x_{\nu}}{x^{2}}\mathcal{H}_{2}(|x|)$

Weight functions \mathcal{H}_i known in terms of Meijer's functions.

Due to $\partial_{\mu}j_{\mu} = 0$, freedom to add to $H_{\mu\nu}$ terms like $\partial_{\mu}\partial_{\nu}f(|x|)$ or $\partial_{\mu}(x_{\nu}f(|x|)$ for f's that do not generate boundary terms upon partial integration [Cè et al, 1811.08669].

Coordinate-space approach to a_{μ}^{HLbL} , Mainz version

• $\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ computed in the continuum & infinite-volume

• no power-law finite-volume effects & only a 1d integral to sample the integrand in |y|.

[Asmussen, Gérardin, Green, HM, Nyffeler 1510.08384, 1609.08454]

Tests of the framework and adjustments to the kernel

Integrands (Lepton loop, method 2)

► The QED kernel $\overline{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is parametrized by six 'weight' functions of the variables $(x^2, x \cdot y, y^2)$.

$$\begin{split} \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\mu\nu\lambda}(x,y) = & \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) - \partial^{(x)}_{\mu}(x_{\alpha}e^{-\Lambda m_{\mu}^{2}x^{2}/2})\bar{\mathcal{L}}_{[\rho,\sigma];\alpha\nu\lambda}(0,y) \\ & - \partial^{(y)}_{\nu}(y_{\alpha}e^{-\Lambda m_{\mu}^{2}y^{2}/2})\bar{\mathcal{L}}_{[\rho,\sigma];\mu\alpha\lambda}(x,0), \end{split}$$

- Using this kernel, we have reproduced (at the 1% level) known results for a range of masses for:
 - 1. the lepton loop (spinor QED, shown in the two plots);
 - 2. the charged pion loop (scalar QED);
 - 3. the π^0 exchange with a VMD-parametrized transition form factor.

Wick-contraction topologies in HLbL amplitude $\langle 0|T\{j_x^{\mu}j_y^{\nu}j_z^{\lambda}j_0^{\sigma}\}|0\rangle$

First two classes of diagrams turn out to be dominant, with a cancellation between them.

Example: $\Pi = \langle (j_u - j_d)(j_u - j_d)(j_u - j_d) \rangle$ does not contain the π^0 pole (π^0 only couples to one isovector, one isoscalar current).

Write out the Wick contractions: $\Pi = 2 \cdot \Pi^{(4)} + 4 \cdot \Pi^{(2,2)}$

In kinematic regime where π^0 dominates: $|\Pi| \ll \Pi^{(4)} \Rightarrow \Pi^{(2,2)} \approx -\frac{1}{2}\Pi^{(4)}$. Including charge factors: $\left[(Q_u^2 + Q_d^2)^2 \Pi^{(2,2)}\right] = -\frac{25}{34}\left[(Q_u^4 + Q_d^4)\Pi^{(4)}\right]$.

Large- N_c argument by J. Bijnens, 1608.01454; see also 1712.00421.

Quark-connected integrand at $m_{\pi} = m_K \simeq 415 \text{ MeV}$

 Partial success in understanding the integrand in terms of familiar hadronic contributions.

 Reasonable understanding of magnitude of finite-size effects. (L_{H200} = 2.1 fm, L_{N202} = 3.1 fm)

```
2006.16224 Chao et al. (EPJC)
```

 $a_{\mu}^{
m HLbL}$ at $m_{\pi}=m_K\simeq 415~{
m MeV}$

[Chao, Gérardin, Green, Hudspith, HM 2006.16224 (EPJC)]

$$a_{\mu}^{\text{hlbl},\text{SU}(3)_{\text{f}}} = (65.4 \pm 4.9 \pm 6.6) \times 10^{-11}.$$

Guesstimating the result at physical quark masses: correct for π^0 exchange

$$a_{\mu}^{\text{hlbl},\text{SU}(3)_{\text{f}}} - a_{\mu}^{\text{hlbl},\pi^{0},\text{SU}(3)_{\text{f}}} + a_{\mu}^{\text{hlbl},\pi^{0},\text{phys}} = (104.1 \pm 9.1_{\text{stat}}) \times 10^{-11}$$

Estimate based on lattice QCD calculation of $\pi^0 \rightarrow \gamma^* \gamma^*$ transition form factor [Gérardin, HM, Nyffeler 1903.09471 (PRD)].

Integrand of connected contribution at $m_{\pi} \approx 200 \text{ MeV}$

- using four local vector currents
- based on 'Method 2'.

En-Hung Chao, Renwick Hudspith, Antoine Gérardin, Jeremy Green, HM, Konstantin Ottnad 2104.02632

Truncated integral for $a_{\mu}^{\rm HLbL}$

- Extend reach of the signal by two-param. fit $f(y) = A|y|^3 \exp(-M|y|)$;
- provides an excellent description of the π^0 exchange contribution in infinite volume.
- We see a clear increase of the magnitude of both connected and disconnected contributions.

Chiral, continuum, volume extrapolation

Extrapolating the sum of conn. & disconn.

Ansatz: $Ae^{-m_{\pi}L/2} + Ba^2 + D + Em_{\pi}^2$

- results very stable with respects to cuts in a, m_{π} or $m_{\pi}L$.
- largest systematic comes from choice of continuum limit ansatz.
- ▶ final result: central value from fitting these results with a constant; systematic error set to $\sqrt{(1/N)\sum_{i=1}^{N}(y_i \bar{y})^2}$ as a measure of the spread of the results.

Overview table

Contribution	$Value \times 10^{11}$
Light-quark fully-connected and $(2+2)$	107.4(11.3)(9.2)
Strange-quark fully-connected and $(2+2)$	-0.6(2.0)
(3+1)	0.0(0.6)
(2+1+1)	0.0(0.3)
(1+1+1+1)	0.0(0.1)
Total	106.8(14.7)

error dominated by the statistical error and the continuum limit.

 all subleading contributions have been tightly constrained and shown to be negligible; quark loops with a single current insertion generated by K. Ottnad within G. von Hippel's DFG project HI 2048/1-2.

[Chao et al, 2104.02632]

New: subtract out π^0 exchange prior to chiral extrapolation

Attempt at reducing the m_{π} -dependence:

$$a_{\mu}^{\text{HLbL}}(m_{\pi}) - a_{\mu}^{\text{HLbL},\pi^{0}}(m_{\pi}) + a_{\mu}^{\text{HLbL},\pi^{0}}(m_{\pi}^{\text{phys}})$$

• Used $a_{\mu}^{\text{HLbL},\pi^0}(m_{\pi}^{\text{phys}}) = 59.7 \pm 3.6$ from [1903.09471].

- Result of extrapolating linearly in m_{π}^2 and in a^2 : $a_{\mu}^{\text{HLbL}} = 111.8 \pm 11_{\text{stat}}$
- \blacktriangleright to be compared with $106.8 \pm 14.7_{tot}$ (black data pt on figure) [2104.02632].

Strange contribution

Ensemble C101 ($48^3 \times 96$, a = 0.086 fm, $m_{\pi} = 220$ MeV)

NB. Strange integrand has a factor 17 suppression due to charge factor.

(2,2) disconnected contributions.

The (2,2) *sl* contribution is practically the correlator $\langle (j_u - j_d)(j_u - j_d)j_sj_s \rangle$. Challenge: who can predict this correlator?

Conclusion on a_{μ}^{HLbL}

Results from the Bern dispersive framework and from two independent lattice QCD calculations are in good agreement and have comparable uncertainties.

It is now practically excluded that a^{HLbL}_μ can by itself explain the tension between the SM prediction and the experimental value of a_μ.

Backup Slides

Wick-contraction topologies in HLbL amplitude $\langle 0|T\{j_x^{\mu}j_y^{\nu}j_z^{\lambda}j_0^{\sigma}\}|0\rangle$

First two classes of diagrams thought to be dominant, with a cancellation between them:

	Weight factor of:	fully connected	(2,2) topology
${ m SU(2)_f}: \ m_s = \infty$	isovector-meson exchange isoscalar-meson exchange π^{\pm} loop (-28/81 \in (3,1) topol.)	$34/9 \approx 3.78$ 0 34/81	$-25/9 \approx -2.78$ 1 75/81
${ m SU(3)_f}: \ m_s = m_{ud}$	octet-meson exchange singlet-meson exchange	3 0	-2 1

Large- N_c argument by J. Bijnens, 1608.01454; see also 1712.00421; Fig. by J. Green.

Separate extrapolation of conn. & disconn.

Ansatz: $Ae^{-m_{\pi}L/2} + Ba^2 + CS(m_{\pi}^2) + D + Em_{\pi}^2$

chirally singular behaviour cancels in sum of connected and disconnected.

Direct lattice calculation of HLbL in $(g-2)_{\mu}$

At first, this was thought of as a QED+QCD calculation [pioneered in Hayakawa et al., hep-lat/0509016].

Today's viewpoint: the calculation is considered a QCD four-point Green's function, to be integrated over with a weighting kernel which contains all the QED parts.

RBC-UKQCD: calculation of $a_{\mu}^{\rm HLbL}$ using coordinate-space method in muon rest-frame; photon+muon propagators:

- either on the $L \times L \times L$ torus (QED_L) (1510.07100-present)
- or in infinite volume (QED $_{\infty}$) (1705.01067-present).

Mainz:

manifestly covariant QED_∞ coordinate-space approach, averaging over muon momentum using the Gegenbauer polynomial technique (1510.08384-present). Wisdom gained from model calculations Prades, de Rafael, Vainshtein 0901.0306

heavy (charm) quark loop makes a small contribution

$$a_{\mu}^{\text{HLbL}} = (\frac{\alpha}{\pi})^3 N_c \mathcal{Q}_c^4 c_4 \frac{m_{\mu}^2}{m_c^2} + \dots, \qquad c_4 \approx 0.62.$$

• Light-quarks: (A) charged pion loop is negative, proportional to m_{π}^{-2} :

$$a_{\mu}^{\mathrm{HLbL}} = (\frac{\alpha}{\pi})^3 c_2 \frac{m_{\mu}^2}{m_{\pi}^2} + \dots, \qquad c_2 \approx -0.065.$$

(B) The neutral-pion exchange is positive, $\log^2(m_\pi^{-1})$ divergent: Knecht, Nyffeler, Perrottet, de Rafael PRL88 (2002) 071802

$$a_{\mu}^{\text{HLbL}} = \left(\frac{\alpha}{\pi}\right)^3 N_c \frac{m_{\mu}^2}{48\pi^2 (F_{\pi}^2/N_c)} \left[\log^2 \frac{m_{\rho}}{m_{\pi}} + \mathcal{O}\left(\log \frac{m_{\rho}}{m_{\pi}}\right) + \mathcal{O}(1)\right].$$

For real-world quark masses: using form factors for the mesons is essential, and resonances up to 1.5 GeV can still be relevant ⇒ medium-energy QCD.

Method based on QED_L pursued by RBC/UKQCD collaboration

- Photon and muon propagators computed with lattice action.
- Photon q = 0 spatial zero-mode removed 'by hand'.
- magnetic moment computed with formula of the type $\mu = \frac{1}{2} \int d^3 r \ r \times j$.
- Use domain-wall fermions practically at physical quark masses.
- Gluons: use gauge ensembles with two different actions
- \blacktriangleright Largest spatial lattice used: 64^3
- Extrapolation of the type

$$a_{\mu}^{\mathrm{HLbL}}(L,a) = a_{\mu} \Big(1 - \frac{b_2}{(m_{\mu}L)^2} + \frac{b_3}{(m_{\mu}L)^3} \Big) \Big(1 - c_1(m_{\mu}a)^2 + c_2(m_{\mu}a)^4 \Big).$$

[Blum et al. 1911.08123 (PRL)]

RBC/UKQCD (QED_L): final extrapolation [Blum et al. 1911.08123 (PRL)]

Wick contractions of the connected contribution

Method 1:

Method 2:

$$\begin{split} a^{\text{conn}}_{\mu} &= -\frac{18}{81} Z_{\text{V}}^4 \frac{m_{\mu} e^6}{3} 2\pi^2 \int d|y| |y|^3 \int d^4x \\ \left((\bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\mu\nu\lambda}(x,y) + \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\nu\mu\lambda}(y,x) - \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\lambda\nu\mu}(x,x-y)) \int d^4z \, z_{\rho} \widetilde{\Pi}^{(1)}_{\mu\nu\sigma\lambda}(x,y,z) \right. \\ \left. + \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\lambda\nu\mu}(x,x-y) x_{\rho} \int d^4z \, \widetilde{\Pi}^{(1)}_{\mu\nu\sigma\lambda}(x,y,z) \right) . \end{split}$$

Dependence of connected a_{μ}^{HLbL} on starting point of using fit

Ensemble C101 ($48^3 \times 96$, a = 0.086 fm, $m_{\pi} = 220$ MeV)

The contribution of the (3+1) topology

Final result: $a_{\mu}^{\text{hlbl},3+1} = (0.0 \pm 0.6) \times 10^{-11}$.

Connected integrand for $a_{\mu}^{\text{HLbL}} = \int_{0}^{\infty} d|y| f(|y|)$ vs. hadronic models

 $m_{\pi} = 200$ MeV, $m_K = 480$ MeV: (64³ × 128 lattice, a = 0.064 fm)

En-Hung Chao, Renwick Hudspith, Antoine Gérardin, Jeremy Green, HM, Konstantin Ottnad 2104.02632

The connected contribution

Cumulated $a_{\mu}^{\mathrm{HLbL}} = \int_{0}^{|y|_{\mathrm{max}}} d|y| f(|y|)$

Chiral, continuum, vol. extrapolation

The disconnected contribution

Cumulated $a_{\mu}^{\mathrm{HLbL}} = \int_{0}^{|y|_{\mathrm{max}}} d|y| f(|y|)$

Chiral, continuum, vol. extrapolation

Continuum tests: contribution of the π^0 and lepton loop to a_μ^{HLbL}

- > Even more freedom in choosing best lattice implementation than in HVP.
- ► The form of the |y|-integrand depends on the precise QED kernel used: can perform subtractions (Blum et al. 1705.01067; $\mathcal{L} \to \mathcal{L}^{(2)}$), impose Bose symmetries on $\overline{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ or add a longitudinal piece $\partial_{\mu}^{(x)} f_{\rho;\nu\lambda\sigma}(x,y)$.

RBC/UKQCD (QED_L): cumulative contributions to a_{μ}^{HLbL}

Explicit form of the QED kernel

$$\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) = \sum_{A=\mathrm{I},\mathrm{II},\mathrm{III}} \mathcal{G}^{A}_{\delta[\rho\sigma]\mu\alpha\nu\beta\lambda} T^{(A)}_{\alpha\beta\delta}(x,y),$$

with e.g.

$$\mathcal{G}^{\mathrm{I}}_{\delta[\rho\sigma]\mu\alpha\nu\beta\lambda} \equiv \frac{1}{8} \mathrm{Tr}\Big\{\Big(\gamma_{\delta}[\gamma_{\rho},\gamma_{\sigma}] + 2(\delta_{\delta\sigma}\gamma_{\rho} - \delta_{\delta\rho}\gamma_{\sigma})\Big)\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}\gamma_{\beta}\gamma_{\lambda}\Big\},\$$

$$T^{(I)}_{\alpha\beta\delta}(x,y) = \partial^{(x)}_{\alpha}(\partial^{(x)}_{\beta} + \partial^{(y)}_{\beta})V_{\delta}(x,y),$$

$$T^{(II)}_{\alpha\beta\delta}(x,y) = m\partial^{(x)}_{\alpha}\Big(T_{\beta\delta}(x,y) + \frac{1}{4}\delta_{\beta\delta}S(x,y)\Big)$$

$$T^{(III)}_{\alpha\beta\delta}(x,y) = m(\partial^{(x)}_{\beta} + \partial^{(y)}_{\beta})\Big(T_{\alpha\delta}(x,y) + \frac{1}{4}\delta_{\alpha\delta}S(x,y)\Big),$$

$$\begin{split} \mathbf{S}(x,y) &= \int_{u} G_{m\gamma}(u-y) \Big\langle J(\hat{\epsilon},u) J(\hat{\epsilon},x-u) \Big\rangle_{\hat{\epsilon}}, \quad J(\hat{\epsilon},y) \equiv \int_{u} G_{0}(y-u) \, e^{m\hat{\epsilon}\cdot u} G_{m}(u) \\ V_{\delta}(x,y) &= x_{\delta} \overline{\mathfrak{g}}^{(1)}(|x|, \hat{x} \cdot \hat{y}, |y|) + y_{\delta} \overline{\mathfrak{g}}^{(2)}(|x|, \hat{x} \cdot \hat{y}, |y|), \\ T_{\alpha\beta}(x,y) &= (x_{\alpha} x_{\beta} - \frac{x^{2}}{4} \delta_{\alpha\beta}) \, \overline{\mathfrak{l}}^{(1)} + (y_{\alpha} y_{\beta} - \frac{y^{2}}{4} \delta_{\alpha\beta}) \, \overline{\mathfrak{l}}^{(2)} + (x_{\alpha} y_{\beta} + y_{\alpha} x_{\beta} - \frac{x \cdot y}{2} \delta_{\alpha\beta}) \, \overline{\mathfrak{l}}^{(3)}. \end{split}$$

The QED kernel $\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is parametrized by six weight functions.