Day 4: Introduction to Graph Neural Networks

François Drielsma

(with Kazu and Aashwin)
drielsma@slac.stanford.edu

November 18, 2020

St_Ac

Day 4 Lecture

Outline

1. Graph Neural Networks (GNNs): what are they good for?

- Motivation behind the creation of GNNs
- Introduction to graphs, graph-structured data
- Presentation of typical tasks on graphs

2. GNN feature learning: how does information flow in graphs ?

- Graph convolutions
- Message passing
- Graph pooling operations

3. GNN examples: what are common GNN architectures ?
A. Classifying people in a social network with a GCN + Tutorial
B. Particle clustering with MetaLayers + Tutorial
C. Protein graph classification with with DiffPool + Tutorial
4. Conclusions

Motivation

Machine Learning: learning a transformation from data (classification, regression, etc.) Inductive bias: assumptions about the model in a learning process (very good read)

Motivation

Machine Learning: learning a transformation from data (classification, regression, etc.)
Inductive bias: assumptions about the model in a learning process (very good read)

Hand-engineered function

- Strong inductive bias
- Extremely limited freedom
- Strong potential for underfitting
- Computationally cheap

Motivation

Machine Learning: learning a transformation from data (classification, regression, etc.)
Inductive bias: assumptions about the model in a learning process (very good read)

Hand-engineered function

- Strong inductive bias
- Extremely limited freedom
- Strong potential for underfitting
- Computationally cheap

Fully-connected Neural Network

- Virtually no inductive bias
- Arbitrarily infinite freedom
- No by-design overfitting prevention
- Computationally expensive for deep nets

Motivation

Machine Learning: learning a transformation from data (classification, regression, etc.) Inductive bias: assumptions about the model in a learning process (very good read)

Hand-engineered function

- Strong inductive bias
- Extremely limited freedom
- Strong potential for underfitting
- Computationally cheap

Fully-connected Neural Network

- Virtually no inductive bias
- Arbitrarily infinite freedom
- No by-design overfitting prevention
- Computationally expensive for deep nets

Motivation

Convolutional Neural Networks: freedom of MLPs but locality and translation invariance - Inductive biases:

- Strong correlation between adjacent input pixels (receptive field small compared to full input)
- Model should not care about object position in the data (filters are shared)

Motivation

Convolutional Neural Networks: freedom of MLPs but locality and translation invariance - Inductive biases:

- Strong correlation between adjacent input pixels (receptive field small compared to full input)
- Model should not care about object position in the data (filters are shared)
- State-of-the-art in Computer Vision, exclusively for data on a grid

Motivation

Recurrent Neural Network: freedom of MLPs but with locality and temporal invariance

- Inductive biases:
- Strong correlation between successive inputs (hidden state h_{t} takes h_{t-1} as input)
- Model should not care about absolute time but rather sequence

Motivation

RNN

Recurrent Neural Network: freedom of MLPs but with locality and temporal invariance

- Inductive biases:
- Strong correlation between successive inputs (hidden state h_{t} takes h_{t-1} as input)
- Model should not care about absolute time but rather sequence
- State-of-the-art in speech recognition, exclusively for time-ordered data

Spectrogram

Motivation

What if the data is structured but is neither spatially nor temporally ordered ?

Social network: people and relationships

Graphs

Definition

Graphs generalize concept of locality to arbitrarily-ordered data

- A set of nodes, $\left\{\boldsymbol{v}_{\boldsymbol{i}}\right\}_{i=1}^{N_{v}}$ (e.g. person in social network, paper in an arXiv, etc.)
- A set of edges, $\left\{\boldsymbol{e}_{\boldsymbol{k}}\right\}_{k=1}^{N_{e}}$ (e.g. friendship in social network, citation, etc.)
- A global state, \boldsymbol{u}, associated with one realization of the data (full network, full arXiv, etc.)

Attributes

Graphs

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds

Graphs

Graphs are often the natural choice to represent correlations in a physical data set
(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds
(b) Nodes: discrete masses

Edges: spring force between masses

Graphs

Graphs are often the natural choice to represent correlations in a physical data set
(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds
(b) Nodes: discrete masses

Edges: spring force between masses
(c) Nodes: planets, molecules

Edges:

 attractive/repulsive forces
Graphs

Graphs are often the natural choice to represent correlations in a physical data set
(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds
(b) Nodes: discrete masses

Edges: spring force between masses
(c) Nodes: planets, molecules

Edges:

 attractive/repulsive forces(d) Nodes: molecules, walls

Edges:

attractive/repulsive forces

Graphs

Graphs are often the natural choice to represent correlations in a physical data set

(a)

(b)
(c)

(d)
(a) Nodes: tracker hits

Edges: hit connections (tracks)

Graphs

Graphs are often the natural choice to represent correlations in a physical data set

(a)

(b)

(a) Nodes: tracker hits

Edges: hit connections (tracks)
(b) Nodes: calorimeter cells

Edges: cell correlations (particles)

Graphs

Graphs are often the natural choice to represent correlations in a physical data set

(a)

(b)
(a) Nodes: tracker hits

Edges: hit connections (tracks)
(b) Nodes: calorimeter cells

Edges: cell correlations (particles)
(c) Nodes: particle objects

Edges: particle correlations (events)

Graphs

Graphs are often the natural choice to represent correlations in a physical data set

(a)

(b)

(c)
(a) Nodes: tracker hits

Edges: hit connections (tracks)
(b) Nodes: calorimeter cells

Edges: cell correlations (particles)
(c) Nodes: particle objects

Edges: particle correlations (events)
(d) Nodes: jet particles

Edges: correlations (jets)

Graphs

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: tracker hits

Edges: hit connections (tracks)
(b) Nodes: calorimeter cells

Edges: cell correlations (particles)
(c) Nodes: particle objects

Edges: particle correlations (events)
(d) Nodes: jet particles

Edges: correlations (jets)
(*) Nodes: particles
Edges: parentage or superstructure

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

Karate Club

- Nodes: people in a club
- Edges: friendship status
- Club splits, who goes with

A and who with I?

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

Karate Club

- Nodes: people in a club
- Edges: friendship status
- Club splits, who goes with A and who with I?

ShapeNet

- Nodes: point in cloud
- Edges: proximity
- Classify points into different categories

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

Karate Club

- Nodes: people in a club
- Edges: friendship status
- Club splits, who goes with A and who with I?

ShapeNet

- Nodes: point in cloud
- Edges: proximity
- Classify points into different categories

Particle classification

- Nodes: particles
- Edges: parentage
- Identify particle type (p, e, γ, μ, π)

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering

Link classification

- Nodes: people in a group
- Edges: potential links
- Are Nate and Laura
friends, family, coworkers?

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering

Link classification

- Nodes: people in a group
- Edges: potential links
- Are Nate and Laura friends, family, coworkers?

Scene comprehension

- Nodes: objects in scene
- Edges: all-to-all
- Is object A the same shape as B ? Is it bigger ?

Graphs

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering

Link classification

- Nodes: people in a group
- Edges: potential links
- Are Nate and Laura friends, family, coworkers?

Scene comprehension

- Nodes: objects in scene
- Edges: all-to-all
- Is object A the same shape as B ? Is it bigger ?

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering
3. Graph: graph classification

Enzyme classification

- Nodes: AA structures
- Edges: spatial proximity
- What is the purpose of this enzyme (protein) ?

Label $=0$
Label $=1$

Graphs

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering
3. Graph: graph classification

Enzyme classification

- Nodes: AA structures
- Edges: spatial proximity
- What is the purpose of this enzyme (protein) ?

Point cloud classification

- Nodes: point in cloud
- Edges: proximity
- What class of object does it belong to ?

Graphs

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering
3. Graph: graph classification

Enzyme classification

- Nodes: AA structures
- Edges: spatial proximity
- What is the purpose of this enzyme (protein) ?

Point cloud classification

- Nodes: point in cloud
- Edges: proximity
- What class of object does it belong to?

Interaction classification

- Nodes: particles
- Edges: parentage
- What class of interaction is this?

Graph Convolutional Network \mid Analogy

To perform the aforementioned tasks, the graph needs to develop embeddings, i.e. map the input features to a space in which the task can be performed.

The basic operation for CNNs is the convolution layer

- Aggregate a the pixel features within some distance by multiplying it by shared filter
- Formally: $\boldsymbol{x}_{i, j}^{(l+1)}=\sigma\left(\sum_{k \in \mathcal{N}(i)} \boldsymbol{w}_{j, k} \boldsymbol{x}_{k, j}^{(l)}\right)$
with $x_{i, j}^{(l)}$ the $j^{\text {th }}$ feature of pixel i at layer l and $w_{j, k}$ the $k^{t h}$ cell of filter j

Graph Convolutional Network \mid Introduction

Graph Convolutional Networks (GCNs) are an early implementation of GNNs which take:

- An $\left(N, N_{v}\right)$ matrix, V, of node features
- An (N, N) adjacency matrix, A, only used for neighborhood aggregation NB: The adjacency matrix is a dense formulation of edges, in which $A_{i j}=1$ if the corresponding edge $e_{\left\{k \mid i=s_{k}, j=r_{k}\right\}}$ exists in the graph, $A_{i j}=0$ otherwise

Graph Convolutional Network \mid Aggregation

GNNs don't have regular neighborhoods, but why not use the adjacency matrix?

$$
\begin{equation*}
h_{i}^{(l+1)}=\sigma\left(\sum_{j=1}^{N} A_{i, j} h_{j}^{(l)} W^{(l)}\right), \quad \text { or } \quad H^{(l+1)}=\sigma\left(A H^{(l)} W^{(l)}\right), \tag{1}
\end{equation*}
$$

where σ is an activation function, $W^{(l)}$ is an $\left(N_{v}^{(l-1)}, N_{v}^{(l)}\right)$ weight matrix shared across all nodes (similar to to the convolution filters of CNNs).

Graph Convolutional Network \mid Aggregation

GNNs don't have regular neighborhoods, but why not use the adjacency matrix?

$$
\begin{equation*}
h_{i}^{(l+1)}=\sigma\left(\sum_{j=1}^{N} A_{i, j} h_{j}^{(l)} W^{(l)}\right), \quad \text { or } \quad H^{(l+1)}=\sigma\left(A H^{(l)} W^{(l)}\right), \tag{1}
\end{equation*}
$$

where σ is an activation function, $W^{(l)}$ is an $\left(N_{v}^{(l-1)}, N_{v}^{(l)}\right)$ weight matrix shared across all nodes (similar to to the convolution filters of CNNs).

Two caveats:

- A must contain self-loops (otherwise no self-preservation): $\hat{A}=A+I$
- The nodes with more connections (higher degree) have larger features. That is not desirable, so divide by degree matrix \hat{D} of \hat{A}.

$$
\begin{equation*}
h_{i}^{(l+1)}=\sigma\left(\frac{1}{\hat{d}_{i}} \sum_{j=1}^{N} \hat{A}_{i, j} h_{j}^{(l)} W^{(l)}\right), \quad \text { or } \quad H^{(l+1)}=\sigma\left(\hat{D}^{-1} \hat{A} H^{(l)} W^{(l)}\right) \tag{2}
\end{equation*}
$$

Graph Neural Networks

The GCN neighborhood aggregation method, while elegant in its one-to-one similarity with pixel convolutions in CNN, is inherently limited:

- It does not support edge-specific features
- It does not support explicit graph-specific features
- It does not support other neighborhood aggregation strategies than a simple sum
\rightarrow How can we build features with a graph in all its complexity ?

Graph Neural Networks

The most general for GNNs is called message passing

(a) Edge update

(b) Node update

(c) Global update

Graph Neural Networks

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge $\boldsymbol{e}_{k}^{\prime}=\phi_{e}\left(\boldsymbol{e}_{k}, \boldsymbol{v}_{r_{k}}, \boldsymbol{v}_{s_{k}}, \boldsymbol{u}\right)$, with ϕ_{e} a learnable function

(a) Edge update

(b) Node update

(c) Global update

Graph Neural Networks

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge $\boldsymbol{e}_{k}^{\prime}=\phi_{e}\left(\boldsymbol{e}_{k}, \boldsymbol{v}_{r_{k}}, \boldsymbol{v}_{s_{k}}, \boldsymbol{u}\right)$, with ϕ_{e} a learnable function
2. Node update: fold adjacent edge features and global features into a node $\boldsymbol{v}_{i}^{\prime}=\phi_{v}\left(\rho_{e, v}\left(E_{i}^{\prime}\right), \boldsymbol{x}_{i}, \boldsymbol{u}\right)$, with ϕ_{v} a learnable function, $\rho_{e, v}$ an aggregator and $E_{i}=\left\{\mathbf{e}_{k}\right\}_{k \in \mathcal{N}(i)}$

(a) Edge update

(b) Node update

(c) Global update

Graph Neural Networks

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge $\boldsymbol{e}_{k}^{\prime}=\phi_{e}\left(\boldsymbol{e}_{k}, \boldsymbol{v}_{r_{k}}, \boldsymbol{v}_{s_{k}}, \boldsymbol{u}\right)$, with ϕ_{e} a learnable function
2. Node update: fold adjacent edge features and global features into a node $\boldsymbol{v}_{i}^{\prime}=\phi_{v}\left(\rho_{e, v}\left(E_{i}^{\prime}\right), \boldsymbol{x}_{i}, \boldsymbol{u}\right)$, with ϕ_{v} a learnable function, $\rho_{e, v}$ an aggregator and $E_{i}=\left\{\mathbf{e}_{k}\right\}_{k \in \mathcal{N}(i)}$
3. Global update: fold all node and edge features to update the global state $\boldsymbol{u}^{\prime}=\phi_{u}\left(\rho_{e, u}\left(E^{\prime}\right), \rho_{v, u}\left(V^{\prime}\right), \boldsymbol{u}\right)$, with ϕ_{u} a learnable function, $E^{\prime}=\left\{\boldsymbol{e}_{k}\right\}_{k=1}^{N_{e}}$ and $E^{\prime}=\left\{\boldsymbol{v}_{i}\right\}_{i=1}^{N_{v}}$

(a) Edge update

(b) Node update

(c) Global update

Graph Neural Networks

The basic operation for GNNs is called neighborhood aggregation or message passing

$$
m=0
$$

Graph Neural Networks

The basic operation for GNNs is called neighborhood aggregation or message passing

$m=0$

$m=0$

$m=1$

$m=1$

Graph Neural Networks

The basic operation for GNNs is called neighborhood aggregation or message passing

$m=0$

$m=0$

$m=1$

$m=1$

$m=2$

$m=2$

Graph Neural Networks

The basic operation for GNNs is called neighborhood aggregation or message passing

$m=0$

$m=0$

$m=1$

$m=1$

$m=2$

$m=2$

$m=3$

$m=3$

Graph Neural Networks

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

(a) Fully connected

(b) Convolutional

(c) Recurrent

Graph Neural Networks

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

Graph Neural Networks

Graph Neural Networks

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
... and sometimes they do not:
- Point clouds, particle clustering, etc.

Graph Neural Networks

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
... and sometimes they do not:
- Point clouds, particle clustering, etc.

Strategy depends on individual cases:

- Distance-based graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)

Graph Neural Networks

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
... and sometimes they do not:
- Point clouds, particle clustering, etc.

Strategy depends on individual cases:

- Distance-based graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)
- Complete graphs offer maximum information flow when
no prior knowledge of correlations (e.g. edge prediction)
- Complete graphs offer maximum information flow when
no prior knowledge of correlations (e.g. edge prediction)

Graph Neural Networks

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
... and sometimes they do not:
- Point clouds, particle clustering, etc.

Strategy depends on individual cases:

- Distance-based graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)
- Complete graphs offer maximum information flow when no prior knowledge of correlations (e.g. edge prediction)
- Directed graphs are preferred over undirected graph if edge direction is meaningful (e.g. particle flow)

Graph Neural Networks

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
... and sometimes they do not:
- Point clouds, particle clustering, etc.

Strategy depends on individual cases:

- Distance-based graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)
- Complete graphs offer maximum information flow when no prior knowledge of correlations (e.g. edge prediction)
- Directed graphs are preferred over undirected graph if edge direction is meaningful (e.g. particle flow)
- Edges can also dynamically evolve during training

Graph Neural Networks

Training regiment

GNNs have the peculiarity of supporting either transductive of inductive inference

- Semi-supervised learning: some of the nodes in the input graph(s) are unlabeled

Graph Neural Networks

GNNs have the peculiarity of supporting either transductive of inductive inference

- Semi-supervised learning: some of the nodes in the input graph(s) are unlabeled
- Supervised learning: all of the nodes in the input graphs(s) are labeled

Graph Pooling

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is single-step aggregation:

- Recall from earlier: $\boldsymbol{u}=\phi_{u}\left(\rho_{e, u}\left(E^{\prime}\right), \rho_{v, u}\left(V^{\prime}\right)\right)$ with ϕ_{u} a learnable function, $\rho_{e, u}, \rho_{v, u}$ edge and node feature aggregators, respectively

Graph Pooling

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is single-step aggregation:

- Recall from earlier: $\boldsymbol{u}=\phi_{u}\left(\rho_{e, u}\left(E^{\prime}\right), \rho_{v, u}\left(V^{\prime}\right)\right)$ with ϕ_{u} a learnable function, $\rho_{e, u}, \rho_{v, u}$ edge and node feature aggregators, respectively
- The aggregators are typically one of sum, mean or max

Graph Pooling

Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is single-step aggregation:

- Recall from earlier: $\boldsymbol{u}=\phi_{u}\left(\rho_{e, u}\left(E^{\prime}\right), \rho_{v, u}\left(V^{\prime}\right)\right)$ with ϕ_{u} a learnable function, $\rho_{e, u}, \rho_{v, u}$ edge and node feature aggregators, respectively
- The aggregators are typically one of sum, mean or max
- Function ϕ_{u} is typically an MLP

Graph Pooling

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is single-step aggregation:

- Recall from earlier: $\boldsymbol{u}=\phi_{u}\left(\rho_{e, u}\left(E^{\prime}\right), \rho_{v, u}\left(V^{\prime}\right)\right)$ with ϕ_{u} a learnable function, $\rho_{e, u}, \rho_{v, u}$ edge and node feature aggregators, respectively
- The aggregators are typically one of sum, mean or max
- Function ϕ_{u} is typically an MLP

Example: PointNet used to classifify 3D shapes (arXiv:1612.00593)

Graph Pooling

Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN, one wants to progressively extract more / features. Hierarchical pooling iteratively uses:

- Sampling: reduce the number of nodes between layers
- Grouping: aggregate the features of the nodes that are gone

Graph Pooling

Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN, one wants to progressively extract more / features. Hierarchical pooling iteratively uses:

- Sampling: reduce the number of nodes between layers
- Grouping: aggregate the features of the nodes that are gone

Example 1: PointNet++ for point cloud classification

- Iterative farthest point sampling
- Max-pool grouping over neighborhood of new nodes

Graph Pooling

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN, one wants to progressively extract more / features. Hierarchical pooling iteratively uses:

- Sampling: reduce the number of nodes between layers
- Grouping: aggregate the features of the nodes that are gone

Example 2: DiffPool for arbitrary graph classification

- At each step, let the network learn a $\left(N_{v}^{(l)}, N_{v}^{(l+1)}\right)$ assignment matrix $S^{(l)}$ (w/GNN):

$$
H^{(l+1)}=S^{(l)^{T}} H^{(l)}, \quad A^{(l+1)}=S^{(l)^{T}} A^{(l)} S^{(l)}
$$

Example A: Social network

Dataset: Zachary's Karate club, famous early (70s) example of a social network problem

- Consists of $N=34$ nodes (individuals), with no node features (no information)
- Has 78 edges, corresponding to pairs of people who talk to each other outside of the club
- The group splits (in this example four ways), who goes with in what group ?

Goal: Some nodes are known, some are unknown, classify unknown nodes (semi-supervised)

Embedding visualization

t-SNE

An aside: how to represent point in a feature space of dimension >3 ?
The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:
$p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N}$, with $p_{j \mid i}=\frac{\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}$, and σ_{i} adpatative to local density

Embedding visualization

An aside: how to represent point in a feature space of dimension >3 ?
The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:
$p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N}$, with $p_{j \mid i}=\frac{\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}$, and σ_{i} adpatative to local density
2. Defines a new set of point, $\left\{\boldsymbol{y}_{i}\right\}_{i=1}^{N}$, in a new, smaller dimensional d^{\prime}-space

Embedding visualization

An aside: how to represent point in a feature space of dimension >3 ?
The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:
$p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N}$, with $p_{j \mid i}=\frac{\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}$, and σ_{i} adpatative to local density
2. Defines a new set of point, $\left\{\boldsymbol{y}_{i}\right\}_{i=1}^{N}$, in a new, smaller dimensional d^{\prime}-space
3. Defines the t-distributed (strong tails) similarity of points in the new space as $q_{i j}=\frac{\left(1+\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|^{2}\right)^{-1}}{\sum_{k} \sum_{l \neq k}\left(1+\left\|\mathbf{y}_{k}-\mathbf{y}_{l}\right\|^{2}\right)^{-1}}$

Embedding visualization

An aside: how to represent point in a feature space of dimension >3 ?
The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:
$p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N}$, with $p_{j \mid i}=\frac{\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)}$, and σ_{i} adpatative to local density
2. Defines a new set of point, $\left\{\boldsymbol{y}_{i}\right\}_{i=1}^{N}$, in a new, smaller dimensional d^{\prime}-space
3. Defines the t-distributed (strong tails) similarity of points in the new space as
$q_{i j}=\frac{\left(1+\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|^{2}\right)^{-1}}{\sum_{k} \sum_{l \neq k}\left(1+\left\|\mathbf{y}_{k}-\mathbf{y}_{l}\right\|^{2}\right)^{-1}}$
4. Minimize the KL-divergence (see Kazu day 1) between the two set of similarities using gradient decent (optimization)
$\mathrm{KL}(P \| Q)=\sum_{i \neq j} p_{i j} \log \frac{p_{i j}}{q_{i j}}$

Embedding visualization

t-SNE

Fundamentally different approach (albeit much more complex) to PCA:

- PCA maximizes variance in the lower-dimensional space

Embedding visualization

t-SNE

Fundamentally different approach (albeit much more complex) to PCA:

- PCA maximizes variance in the lower-dimensional space
- t-SNE preserves data point similarity (close in original space \rightarrow close in lower dimension)

Karate Club

Training regiment

These are the steps of the feedforward network:

- Pass the nodes through two GCN layers

1. Increase node features from 1 (blank) to 16
2. Maintain 16 features in the convolution

- Pass the nodes features through a fully connected linear classification layer $(16 \rightarrow 4)$
- Apply the class-wise mean cross-entropy loss on node scores

$$
L=-\frac{1}{N_{c}} \frac{1}{N} \sum_{i} \sum_{c} s_{i, c} \times \ln \left(s_{i, c}\right), \quad s_{i}=\operatorname{softmax}\left(x_{i}\right)
$$

- Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video

Karate Club

These are the steps of the feedforward network:

- Pass the nodes through two GCN layers

1. Increase node features from 1 (blank) to 16
2. Maintain 16 features in the convolution

- Pass the nodes features through a fully connected linear classification layer $(16 \rightarrow 4)$
- Apply the class-wise mean cross-entropy loss on node scores
 $L=-\frac{1}{N_{c}} \frac{1}{N} \sum_{i} \sum_{c} s_{i, c} \times \ln \left(s_{i, c}\right), \quad s_{i}=\operatorname{softmax}\left(x_{i}\right)$
- Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video The GNN learns to separate classes in the feature hyperspace

Karate Club

These are the steps of the feedforward network:

- Pass the nodes through two GCN layers

1. Increase node features from 1 (blank) to 16
2. Maintain 16 features in the convolution

- Pass the nodes features through a fully connected linear classification layer $(16 \rightarrow 4)$
- Apply the class-wise mean cross-entropy loss on node scores
 $L=-\frac{1}{N_{c}} \frac{1}{N} \sum_{i} \sum_{c} s_{i, c} \times \ln \left(s_{i, c}\right), \quad s_{i}=\operatorname{softmax}\left(x_{i}\right)$
- Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video The GNN learns to separate classes in the feature hyperspace Will use this technique for another task in the tutorial!

Example B: Clustering

Here the goal is to cluster multiple particle traces into superstructures

- Nodes are particles, edges are connections.

Clustering

Architecture

Here the goal is to cluster multiple particle traces into superstructures

- Nodes are particles, edges are connections.

Paper: arXiv:2007.01335

Shower clustering

Network input

Input:

- Fragmented EM showers

Shower clustering

Network input

Input:

- Fragmented EM showers

Node features:

- Centroid
- Covariance matrix, PCA
- Start point, direction (PPN)

Shower clustering

Input:

- Fragmented EM showers

Node features:

- Centroid
- Covariance matrix, PCA
- Start point, direction (PPN)

Input graph:

- Connect every node with every other node (complete graph)

Network input
SLAC

Shower clustering

Input:

- Fragmented EM showers

Node features:

- Centroid
- Covariance matrix, PCA
- Start point, direction (PPN)

Input graph:

- Connect every node with every other node (complete graph)

Edge features:

- Displacement vector (+variations)
- Closest points of approach

Network input
St_Ac

Shower clustering

At each message passing step (MetaLayer: arXiv:1806.01261):

- Edge update

$$
\boldsymbol{e}_{k}^{\prime}=\operatorname{MLP}\left(\boldsymbol{v}_{s_{k}}, \boldsymbol{v}_{r_{k}}, \boldsymbol{e}_{k}\right)
$$

- Node update

$$
\begin{aligned}
& \boldsymbol{m}_{j i}=\operatorname{MLP}\left(\boldsymbol{v}_{j}, \boldsymbol{e}_{\left\{k \mid s_{k}=j, r_{k}=i\right\}}^{\prime}\right) \\
& \boldsymbol{v}_{i}^{\prime}=\operatorname{MLP}\left(\boldsymbol{v}_{i}, \square_{i \in \mathcal{N}(i)} \boldsymbol{m}_{j i}\right)
\end{aligned}
$$

After $n=3$ node+edge updates:

- Edge binary classification

Edge classification
SLIAC

Shower clustering

At each message passing step (MetaLayer: arXiv:1806.01261):

- Edge update

$$
\boldsymbol{e}_{k}^{\prime}=\operatorname{MLP}\left(\boldsymbol{v}_{s_{k}}, \boldsymbol{v}_{r_{k}}, \boldsymbol{e}_{k}\right)
$$

- Node update

$$
\begin{aligned}
& \boldsymbol{m}_{j i}=\operatorname{MLP}\left(\boldsymbol{v}_{j}, \boldsymbol{e}_{\left\{k \mid s_{k}=j, r_{k}=i\right\}}^{\prime}\right) \\
& \boldsymbol{v}_{i}^{\prime}=\operatorname{MLP}\left(\boldsymbol{v}_{i}, \square_{i \in \mathcal{N}(i)} \boldsymbol{m}_{j i}\right)
\end{aligned}
$$

After $n=3$ node+edge updates:

- Edge binary classification

Target:

- Predict adjacency matrix $A_{i j}=\delta_{g_{i}, g_{j}}$ with \boldsymbol{g} the true partition of the set
- Apply cross-entropy loss

Edge classification

Shower clustering

Example

Shower clustering

The network predicts a score matrix \boldsymbol{S}, estimate of the true adjacency matrix \boldsymbol{A}

- How to recover a set partition $\hat{\boldsymbol{g}}$?

True partition

Shower clustering

The network predicts a score matrix \boldsymbol{S}, estimate of the true adjacency matrix \boldsymbol{A}

Edge scores

- How to recover a set partition $\hat{\boldsymbol{g}}$?

Shower clustering

The network predicts a score matrix \boldsymbol{S}, estimate of the true adjacency matrix \boldsymbol{A}

- How to recover a set partition $\hat{\boldsymbol{g}}$?

We want the partition $\hat{\boldsymbol{g}}$ that minimizes the CE loss, given $\hat{A}_{i j}=\delta_{\hat{g}_{i}, \hat{g}_{j}}$, e.g.
$L(S \mid g)=-\frac{1}{N_{e}} \sum_{(i, j) \in E} \delta_{g_{i}, g_{j}} \ln \left(s_{i j}\right)+\left(1-\delta_{g_{i}, g_{j}}\right) \ln \left(1-s_{i j}\right)$

Thresholded graph

$$
L \simeq 3.92
$$

Shower clustering

Empty graph

The network predicts a score matrix \boldsymbol{S}, estimate of the true adjacency matrix \boldsymbol{A}

- How to recover a set partition $\hat{\boldsymbol{g}}$?

We want the partition $\hat{\boldsymbol{g}}$ that minimizes the CE loss, given $\hat{A}_{i j}=\delta_{\hat{g}_{i}, \hat{g}_{j}}$, e.g.
$L(S \mid g)=-\frac{1}{N_{e}} \sum_{(i, j) \in E} \delta_{g_{i}, g_{j}} \ln \left(s_{i j}\right)+\left(1-\delta_{g_{i}, g_{j}}\right) \ln \left(1-s_{i j}\right)$
G is the set of all possible partitions

- Bell number, huge ($B_{20} \simeq 5 \times 10^{13}$), cannot brute force, how to optimize?
- Start with an empty graph

$L \simeq 15.35$

Shower clustering

The network predicts a score matrix \boldsymbol{S}, estimate of the true adjacency matrix \boldsymbol{A}

- How to recover a set partition $\hat{\boldsymbol{g}}$?

We want the partition $\hat{\boldsymbol{g}}$ that minimizes the CE loss, given $\hat{A}_{i j}=\delta_{\hat{g}_{i}, \hat{g}_{j}}$, e.g.
$L(S \mid g)=-\frac{1}{N_{e}} \sum_{(i, j) \in E} \delta_{g_{i}, g_{j}} \ln \left(s_{i j}\right)+\left(1-\delta_{g_{i}, g_{j}}\right) \ln \left(1-s_{i j}\right)$
G is the set of all possible partitions

- Bell number, huge ($B_{20} \simeq 5 \times 10^{13}$), cannot brute force, how to optimize?
- Start with an empty graph

First edge

- Iteratively attempt to add most likely edges until edge score <0.5
$L \simeq 13.15$

Shower clustering

The network predicts a score matrix \boldsymbol{S}, estimate of the true adjacency matrix \boldsymbol{A}

- How to recover a set partition $\hat{\boldsymbol{g}}$?

We want the partition $\hat{\boldsymbol{g}}$ that minimizes the CE loss, given $\hat{A}_{i j}=\delta_{\hat{g}_{i}, \hat{g}_{j}}$, e.g.
G is the set of all possible partitions

- Bell number, huge $\left(B_{20} \simeq 5 \times 10^{13}\right)$,
cannot brute force, how to optimize?
- Bell number, huge $\left(B_{20} \simeq 5 \times 10^{13}\right)$,
cannot brute force, how to optimize?
- Start with an empty graph

Second edge

$$
L(S \mid g)=-\frac{1}{N_{e}} \sum_{(i, j) \in E} \delta_{g_{i}, g_{j}} \ln \left(s_{i j}\right)+\left(1-\delta_{g_{i}, g_{j}}\right) \ln \left(1-s_{i j}\right)
$$

- Iteratively attempt to add most likely edges until edge score <0.5
$L \simeq 10.95$

Shower clustering

The network predicts a score matrix \boldsymbol{S}, estimate of the true adjacency matrix \boldsymbol{A}

- How to recover a set partition $\hat{\boldsymbol{g}}$?

We want the partition $\hat{\boldsymbol{g}}$ that minimizes the CE loss, given $\hat{A}_{i j}=\delta_{\hat{g}_{i}, \hat{g}_{j}}$, e.g.
G is the set of all possible partitions

- Bell number, huge $\left(B_{20} \simeq 5 \times 10^{13}\right)$,
cannot brute force, how to optimize?
- Bell number, huge $\left(B_{20} \simeq 5 \times 10^{13}\right)$,
cannot brute force, how to optimize?
- Start with an empty graph

Optimized partition

$$
L(S \mid g)=-\frac{1}{N_{e}} \sum_{(i, j) \in E} \delta_{g_{i}, g_{j}} \ln \left(s_{i j}\right)+\left(1-\delta_{g_{i}, g_{j}}\right) \ln \left(1-s_{i j}\right)
$$

- Iteratively attempt to add most likely edges until edge score <0.5
$L \simeq 2.13$

Shower clustering

Clustering

Purity $=\frac{1}{N} \sum_{i=1}^{n_{p}} \max _{j}\left|c_{i} \cap t_{j}\right|$

- c_{i} predicted cluster
- t_{j} true cluster with highest count in c_{i}

Efficiency $=\frac{1}{N} \sum_{i=0}^{n_{t}} \max _{j}\left|c_{j} \cap t_{i}\right|$

- c_{j} pred. cluster with highest count in t_{i}
- t_{i} true cluster

Clustering

Purity $=\frac{1}{N} \sum_{i=1}^{n_{p}} \max _{j}\left|c_{i} \cap t_{j}\right|$

- c_{i} predicted cluster
- t_{j} true cluster with highest count in c_{i}

Efficiency $=\frac{1}{N} \sum_{i=0}^{n_{t}} \max _{j}\left|c_{j} \cap t_{i}\right|$

- c_{j} pred. cluster with highest count in t_{i}
- t_{i} true cluster

Adjusted Rand Index (ARI)

- Measure of overlap of prediction and truth, adjusted for random chance
$\mathrm{RI}=\frac{a+b}{a+b+c+d}$
$\mathrm{ARI}=\frac{R I-E(R I)}{1-E(R I)}$

Shower clustering

Shower clustering accuracy:

Shower Clustering

Shower primary accuracy (99.8 \%):

Interaction Clustering

The shower clustering task can be extended to interaction clustering:

- Interaction group $=$ particles that originate from the same vertex
- Fragment ID \rightarrow Particle ID
- Particle ID \rightarrow Interaction ID

Useful to:

- Separate signal from background
- Resolve pileup

Interaction Clustering

Interaction Clustering

Interaction clustering performance:

GNN Clustering

Optimization studies

StAc

A lot of work in optimizing the different components of the GNN chain:

- Feature extractor
- Geometric (w/ or w/o PPN)
- CNN

GNN Clustering

Optimization studies

$\frac{\square}{\square}=0$

A lot of work in optimizing the different components of the GNN chain:

- Feature extractor
- Geometric (w/ or w/o PPN)
- CNN
- Receptive field (graph)
- Complete, Delaunay, MST, kNN

GNN Clustering

Optimization studies

A lot of work in optimizing the different components of the GNN chain:

- Feature extractor
- Geometric (w/ or w/o PPN)
- CNN
- Receptive field (graph)
- Complete, Delaunay, MST, kNN

- Architecture
- Node updater
- Number of message passings

GNN Clustering

Optimization studies

A lot of work in optimizing the different components of the GNN chain:

- Feature extractor
- Geometric (w/ or w/o PPN)
- CNN
- Receptive field (graph)
- Complete, Delaunay, MST, kNN
- Architecture
- Node updater
- Number of message passings
- Target adjacency matrix
- Cluster graph
- Forest

GNN Clustering

Optimization studies

A lot of work in optimizing the different components of the GNN chain:

- Feature extractor
- Geometric (w/ or w/o PPN)
- CNN
- Receptive field (graph)
- Complete, Delaunay, MST, kNN
- Architecture
- Node updater
- Number of message passings
- Target adjacency matrix
- Cluster graph
- Forest

See paper: arXiv:2007.01335

Example C: Proteins

Dataset: PROTEINS is a dataset of graph-encoded proteins

- There are 1113 graphs, one per protein
- The nodes are secondary structure elements (essentially turns, twists, folds, etc.)
- Edges connect adjacent structures (either in the chain, or in space)

Goal: Predict whether the protein is a enzyme, or not

Label $=1$

Label $=0$

$$
\text { Label = } 1
$$

Label $=0$

Protein Classification

Architecture

For this example, there are two main ingredients:

- A 3-layer message passing function: SAGEConv
- $x_{i}^{(l+1)}=W_{1}^{(l)} x_{i}^{(l)}+W_{2}^{(l)} \cdot$ mean $_{j \in \mathcal{N}(i)} x_{j}^{(l)}$
- A linear layer combining the 3 node embeddings into a set of N_{v}^{\prime} features
- $x_{i}^{\prime}=W^{\prime}\left(x_{i}^{(1)}, x_{i}^{(2)}, x_{i}^{(3)}\right)$

Protein Classification

Architecture

For this example, there are two main ingredients:

- A 3-layer message passing function: SAGEConv
- $x_{i}^{(l+1)}=W_{1}^{(l)} x_{i}^{(l)}+W_{2}^{(l)} \cdot$ mean $_{j \in \mathcal{N}(i)} x_{j}^{(l)}$
- A linear layer combining the 3 node embeddings into a set of N_{v}^{\prime} features
- $x_{i}^{\prime}=W^{\prime}\left(x_{i}^{(1)}, x_{i}^{(2)}, x_{i}^{(3)}\right)$
- Two-layer graph pooling operation: Diffpool
- First, reduce the number of nodes to N/4, then to N/16
- Aggregate the remaining node features to a 1D array
- Reduce to two features (one score for enzyme=NO, one for YES)

Protein Classification

Training regiment

Given the 2-channel output of the network:

- The binary cross entropy loss is computed for each score pair:

$$
-\frac{1}{N}\left(s_{0} \ln \left(s_{0}\right)+s_{1} \ln \left(s_{1}\right), \quad\left(s_{0}, s_{1}\right)=\operatorname{softmax}\left(x_{0}^{\prime}, x_{1}^{\prime}\right)\right.
$$

- Update the model weights
- Repeat this for 10 epochs
\rightarrow Let's move to the notebook!

Conclusions

1. What are Graph Neural Networks (GNNs) good for ?

- Generalize the concept of receptive field in CNNs and succession in RNNs to any structured data
- Infer about objects in an ensemble, but also about their correlations and superstructures

2. How does information flow in a graph ?

- GNNs are Neural Networks with a shared neighborhood
 aggregation rule: message passing
- The adjacency matrix determines information flow
- The message passing rule is extremely flexible... as long as it is learnable!

Thank you for your attention!

