
Day 4: Introduction to Graph Neural Networks

François Drielsma
(with Kazu and Aashwin)

drielsma@slac.stanford.edu

November 18, 2020

mailto:drielsma@slac.stanford.edu

Day 4 Lecture Outline

1. Graph Neural Networks (GNNs): what are they good for?
I Motivation behind the creation of GNNs
I Introduction to graphs, graph-structured data
I Presentation of typical tasks on graphs

2. GNN feature learning: how does information flow in graphs ?
I Graph convolutions
I Message passing
I Graph pooling operations

3. GNN examples: what are common GNN architectures ?
A. Classifying people in a social network with a GCN + Tutorial
B. Particle clustering with MetaLayers + Tutorial
C. Protein graph classification with with DiffPool + Tutorial

4. Conclusions

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 2 / 40

Motivation Inductive Bias

Machine Learning: learning a transformation from data (classification, regression, etc.)

Inductive bias: assumptions about the model in a learning process (very good read)

. .

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 3 / 40

https://arxiv.org/pdf/1806.01261.pdf

Motivation Inductive Bias

Machine Learning: learning a transformation from data (classification, regression, etc.)

Inductive bias: assumptions about the model in a learning process (very good read)

. Hand-engineered function

Strong inductive bias

Extremely limited freedom

Strong potential for underfitting

Computationally cheap

.

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 3 / 40

https://arxiv.org/pdf/1806.01261.pdf

Motivation Inductive Bias

Machine Learning: learning a transformation from data (classification, regression, etc.)

Inductive bias: assumptions about the model in a learning process (very good read)

. Hand-engineered function

Strong inductive bias

Extremely limited freedom

Strong potential for underfitting

Computationally cheap

. Fully-connected Neural Network

Virtually no inductive bias

Arbitrarily infinite freedom

No by-design overfitting prevention

Computationally expensive for deep nets

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 3 / 40

https://arxiv.org/pdf/1806.01261.pdf

Motivation Inductive Bias

Machine Learning: learning a transformation from data (classification, regression, etc.)

Inductive bias: assumptions about the model in a learning process (very good read)

. Hand-engineered function

Strong inductive bias

Extremely limited freedom

Strong potential for underfitting

Computationally cheap

. Fully-connected Neural Network

Virtually no inductive bias

Arbitrarily infinite freedom

No by-design overfitting prevention

Computationally expensive for deep nets

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 3 / 40

https://arxiv.org/pdf/1806.01261.pdf

Motivation CNN

Convolutional Neural Networks: freedom of MLPs but locality and translation invariance
Inductive biases:

I Strong correlation between adjacent input pixels (receptive field small compared to full input)
I Model should not care about object position in the data (filters are shared)

State-of-the-art in Computer Vision, exclusively for data on a grid

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 4 / 40

Motivation CNN

Convolutional Neural Networks: freedom of MLPs but locality and translation invariance
Inductive biases:

I Strong correlation between adjacent input pixels (receptive field small compared to full input)
I Model should not care about object position in the data (filters are shared)

State-of-the-art in Computer Vision, exclusively for data on a grid

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 4 / 40

Motivation RNN

Recurrent Neural Network: freedom of MLPs but with locality and temporal invariance
Inductive biases:

I Strong correlation between successive inputs (hidden state ht takes ht−1 as input)
I Model should not care about absolute time but rather sequence

State-of-the-art in speech recognition, exclusively for time-ordered data

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 5 / 40

Motivation RNN

Recurrent Neural Network: freedom of MLPs but with locality and temporal invariance

Inductive biases:
I Strong correlation between successive inputs (hidden state ht takes ht−1 as input)
I Model should not care about absolute time but rather sequence

State-of-the-art in speech recognition, exclusively for time-ordered data

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 5 / 40

Motivation Beyond CNNs, RNNs

What if the data is structured but is neither spatially nor temporally ordered ?

Social network: people and relationships Referencing: papers and citation linkage

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 6 / 40

Graphs Definition

Graphs generalize concept of locality to arbitrarily-ordered data

A set of nodes, {vi}Nvi=1 (e.g. person in social network, paper in an arXiv, etc.)

A set of edges, {ek}Nek=1 (e.g. friendship in social network, citation, etc.)

A global state, u, associated with one realization of the data (full network, full arXiv, etc.)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 7 / 40

Graphs In Physics

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds

(b) Nodes: discrete masses

Edges: spring force
between masses

(c) Nodes: planets, molecules

Edges:
attractive/repulsive forces

(d) Nodes: molecules, walls

Edges:
attractive/repulsive forces

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 8 / 40

Graphs In Physics

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds

(b) Nodes: discrete masses

Edges: spring force
between masses

(c) Nodes: planets, molecules

Edges:
attractive/repulsive forces

(d) Nodes: molecules, walls

Edges:
attractive/repulsive forces

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 8 / 40

Graphs In Physics

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds

(b) Nodes: discrete masses

Edges: spring force
between masses

(c) Nodes: planets, molecules

Edges:
attractive/repulsive forces

(d) Nodes: molecules, walls

Edges:
attractive/repulsive forces

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 8 / 40

Graphs In Physics

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: atoms (Z, A, etc.)

Edges: chemical bonds

(b) Nodes: discrete masses

Edges: spring force
between masses

(c) Nodes: planets, molecules

Edges:
attractive/repulsive forces

(d) Nodes: molecules, walls

Edges:
attractive/repulsive forces

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 8 / 40

Graphs In HEP

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: tracker hits

Edges: hit connections (tracks)

(b) Nodes: calorimeter cells

Edges: cell correlations (particles)

(c) Nodes: particle objects

Edges: particle correlations (events)

(d) Nodes: jet particles

Edges: correlations (jets)

(*) Nodes: particles

Edges: parentage or superstructure

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 9 / 40

Graphs In HEP

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: tracker hits

Edges: hit connections (tracks)

(b) Nodes: calorimeter cells

Edges: cell correlations (particles)

(c) Nodes: particle objects

Edges: particle correlations (events)

(d) Nodes: jet particles

Edges: correlations (jets)

(*) Nodes: particles

Edges: parentage or superstructure

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 9 / 40

Graphs In HEP

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: tracker hits

Edges: hit connections (tracks)

(b) Nodes: calorimeter cells

Edges: cell correlations (particles)

(c) Nodes: particle objects

Edges: particle correlations (events)

(d) Nodes: jet particles

Edges: correlations (jets)

(*) Nodes: particles

Edges: parentage or superstructure

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 9 / 40

Graphs In HEP

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: tracker hits

Edges: hit connections (tracks)

(b) Nodes: calorimeter cells

Edges: cell correlations (particles)

(c) Nodes: particle objects

Edges: particle correlations (events)

(d) Nodes: jet particles

Edges: correlations (jets)

(*) Nodes: particles

Edges: parentage or superstructure

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 9 / 40

Graphs In HEP

Graphs are often the natural choice to represent correlations in a physical data set

(a) Nodes: tracker hits

Edges: hit connections (tracks)

(b) Nodes: calorimeter cells

Edges: cell correlations (particles)

(c) Nodes: particle objects

Edges: particle correlations (events)

(d) Nodes: jet particles

Edges: correlations (jets)

(*) Nodes: particles

Edges: parentage or superstructure

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 9 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

2. Edge: edge classification, clustering

3. Graph: graph classification

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

2. Edge: edge classification, clustering
3. Graph: graph classification

Karate Club

Nodes: people in a club

Edges: friendship status

Club splits, who goes with
A and who with I ?

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

2. Edge: edge classification, clustering
3. Graph: graph classification

Karate Club

Nodes: people in a club

Edges: friendship status

Club splits, who goes with
A and who with I ?

ShapeNet

Nodes: point in cloud

Edges: proximity

Classify points into
different categories

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

2. Edge: edge classification, clustering
3. Graph: graph classification

Karate Club

Nodes: people in a club

Edges: friendship status

Club splits, who goes with
A and who with I ?

ShapeNet

Nodes: point in cloud

Edges: proximity

Classify points into
different categories

Particle classification

Nodes: particles

Edges: parentage

Identify particle type
(p, e, γ,µ,π)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering

3. Graph: graph classification

Link classification

Nodes: people in a group

Edges: potential links

Are Nate and Laura
friends, family, coworkers?

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering

3. Graph: graph classification

Link classification

Nodes: people in a group

Edges: potential links

Are Nate and Laura
friends, family, coworkers?

Scene comprehension

Nodes: objects in scene

Edges: all-to-all

Is object A the same
shape as B ? Is it bigger ?

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering

3. Graph: graph classification

Link classification

Nodes: people in a group

Edges: potential links

Are Nate and Laura
friends, family, coworkers?

Scene comprehension

Nodes: objects in scene

Edges: all-to-all

Is object A the same
shape as B ? Is it bigger ?

Particle clustering

Nodes: particles

Edges: all-to-all

Is this edge a true
parentage edge ?

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

2. Edge: edge classification, clustering

3. Graph: graph classification

Enzyme classification

Nodes: AA structures

Edges: spatial proximity

What is the purpose of
this enzyme (protein) ?

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering
3. Graph: graph classification

Enzyme classification

Nodes: AA structures

Edges: spatial proximity

What is the purpose of
this enzyme (protein) ?

Point cloud classification

Nodes: point in cloud

Edges: proximity

What class of object does
it belong to ?

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graphs Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)
2. Edge: edge classification, clustering
3. Graph: graph classification

Enzyme classification

Nodes: AA structures

Edges: spatial proximity

What is the purpose of
this enzyme (protein) ?

Point cloud classification

Nodes: point in cloud

Edges: proximity

What class of object does
it belong to ?

Interaction classification

Nodes: particles

Edges: parentage

What class of interaction
is this?

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 10 / 40

Graph Convolutional Network Analogy

To perform the aforementioned tasks, the graph needs to develop embeddings, i.e. map the
input features to a space in which the task can be performed.

The basic operation for CNNs is the convolution layer

Aggregate a the pixel features within some distance by multiplying it by shared filter

Formally: x
(l+1)
i,j = σ(

∑
k∈N (i)wj,kx

(l)
k,j)

with x
(l)
i,j the jth feature of pixel i at layer l and wj,k the kth cell of filter j

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 11 / 40

Graph Convolutional Network Introduction

Graph Convolutional Networks (GCNs) are an early implementation of GNNs which take:

An (N,Nv) matrix, V , of node features

An (N,N) adjacency matrix, A, only used for neighborhood aggregation

NB: The adjacency matrix is a dense formulation of edges, in which Aij = 1 if the
corresponding edge e{k|i=sk,j=rk} exists in the graph, Aij = 0 otherwise

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 12 / 40

Graph Convolutional Network Aggregation

GNNs don’t have regular neighborhoods, but why not use the adjacency matrix?

h
(l+1)
i = σ(

N∑
j=1

Ai,jh
(l)
j W

(l)), or H(l+1) = σ(AH(l)W (l)), (1)

where σ is an activation function, W (l) is an (N
(l−1)
v , N

(l)
v) weight matrix shared across all

nodes (similar to to the convolution filters of CNNs).

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 13 / 40

Graph Convolutional Network Aggregation

GNNs don’t have regular neighborhoods, but why not use the adjacency matrix?

h
(l+1)
i = σ(

N∑
j=1

Ai,jh
(l)
j W

(l)), or H(l+1) = σ(AH(l)W (l)), (1)

where σ is an activation function, W (l) is an (N
(l−1)
v , N

(l)
v) weight matrix shared across all

nodes (similar to to the convolution filters of CNNs).

Two caveats:

A must contain self-loops (otherwise no self-preservation): Â = A+ I
The nodes with more connections (higher degree) have larger features. That is not
desirable, so divide by degree matrix D̂ of Â.

h
(l+1)
i = σ(

1

d̂i

N∑
j=1

Âi,jh
(l)
j W

(l)), or H(l+1) = σ(D̂−1ÂH(l)W (l)), (2)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 13 / 40

Graph Neural Networks Message Passing

The GCN neighborhood aggregation method, while elegant in its one-to-one similarity with
pixel convolutions in CNN, is inherently limited:

It does not support edge-specific features

It does not support explicit graph-specific features

It does not support other neighborhood aggregation strategies than a simple sum

→ How can we build features with a graph in all its complexity ?

1. Edge update: fold adjacent node features and global features into an edge

e′k = φe(ek,vrk ,vsk ,u), with φe a learnable function

2. Node update: fold adjacent edge features and global features into a node

v′i = φv(ρe,v(E
′
i),xi,u), with φv a learnable function, ρe,v an aggregator and Ei = {ek}k∈N (i)

3. Global update: fold all node and edge features to update the global state

u′ = φu(ρe,u(E
′), ρv,u(V

′),u), with φu a learnable function, E′ = {ek}Ne

k=1 and E′ = {vi}Nv
i=1

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 14 / 40

Graph Neural Networks Message Passing

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge

e′k = φe(ek,vrk ,vsk ,u), with φe a learnable function

2. Node update: fold adjacent edge features and global features into a node

v′i = φv(ρe,v(E
′
i),xi,u), with φv a learnable function, ρe,v an aggregator and Ei = {ek}k∈N (i)

3. Global update: fold all node and edge features to update the global state

u′ = φu(ρe,u(E
′), ρv,u(V

′),u), with φu a learnable function, E′ = {ek}Ne

k=1 and E′ = {vi}Nv
i=1

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 14 / 40

Graph Neural Networks Message Passing

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge

e′k = φe(ek,vrk ,vsk ,u), with φe a learnable function

2. Node update: fold adjacent edge features and global features into a node

v′i = φv(ρe,v(E
′
i),xi,u), with φv a learnable function, ρe,v an aggregator and Ei = {ek}k∈N (i)

3. Global update: fold all node and edge features to update the global state

u′ = φu(ρe,u(E
′), ρv,u(V

′),u), with φu a learnable function, E′ = {ek}Ne

k=1 and E′ = {vi}Nv
i=1

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 14 / 40

Graph Neural Networks Message Passing

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge

e′k = φe(ek,vrk ,vsk ,u), with φe a learnable function

2. Node update: fold adjacent edge features and global features into a node

v′i = φv(ρe,v(E
′
i),xi,u), with φv a learnable function, ρe,v an aggregator and Ei = {ek}k∈N (i)

3. Global update: fold all node and edge features to update the global state

u′ = φu(ρe,u(E
′), ρv,u(V

′),u), with φu a learnable function, E′ = {ek}Ne

k=1 and E′ = {vi}Nv
i=1

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 14 / 40

Graph Neural Networks Message Passing

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge

e′k = φe(ek,vrk ,vsk ,u), with φe a learnable function

2. Node update: fold adjacent edge features and global features into a node

v′i = φv(ρe,v(E
′
i),xi,u), with φv a learnable function, ρe,v an aggregator and Ei = {ek}k∈N (i)

3. Global update: fold all node and edge features to update the global state

u′ = φu(ρe,u(E
′), ρv,u(V

′),u), with φu a learnable function, E′ = {ek}Ne

k=1 and E′ = {vi}Nv
i=1

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 14 / 40

Graph Neural Networks Message Passing

The basic operation for GNNs is called neighborhood aggregation or message passing

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 15 / 40

Graph Neural Networks Message Passing

The basic operation for GNNs is called neighborhood aggregation or message passing

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 15 / 40

Graph Neural Networks Message Passing

The basic operation for GNNs is called neighborhood aggregation or message passing

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 15 / 40

Graph Neural Networks Message Passing

The basic operation for GNNs is called neighborhood aggregation or message passing

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 15 / 40

Graph Neural Networks Symmetries

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 16 / 40

Graph Neural Networks Symmetries

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 16 / 40

Graph Neural Networks Symmetries

MLP

GNN

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 16 / 40

Graph Neural Networks Graph Construction

From nodes, sometimes the graph edges come naturally...

Bonds on a molecule, springs in physical system, etc.

... and sometimes they do not:

Point clouds, particle clustering, etc.

Distance-based graphs are common for Euclidean data
(max edge length equivalent to CNN receptive field)

Complete graphs offer maximum information flow when
no prior knowledge of correlations (e.g. edge prediction)

Directed graphs are preferred over undirected graph if
edge direction is meaningful (e.g. particle flow)

Edges can also dynamically evolve during training

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 17 / 40

Graph Neural Networks Graph Construction

From nodes, sometimes the graph edges come naturally...

Bonds on a molecule, springs in physical system, etc.

... and sometimes they do not:

Point clouds, particle clustering, etc.

Strategy depends on individual cases:

Distance-based graphs are common for Euclidean data
(max edge length equivalent to CNN receptive field)

Complete graphs offer maximum information flow when
no prior knowledge of correlations (e.g. edge prediction)

Directed graphs are preferred over undirected graph if
edge direction is meaningful (e.g. particle flow)

Edges can also dynamically evolve during training

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 17 / 40

Graph Neural Networks Graph Construction

From nodes, sometimes the graph edges come naturally...

Bonds on a molecule, springs in physical system, etc.

... and sometimes they do not:

Point clouds, particle clustering, etc.

Strategy depends on individual cases:

Distance-based graphs are common for Euclidean data
(max edge length equivalent to CNN receptive field)

Complete graphs offer maximum information flow when
no prior knowledge of correlations (e.g. edge prediction)

Directed graphs are preferred over undirected graph if
edge direction is meaningful (e.g. particle flow)

Edges can also dynamically evolve during training

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 17 / 40

Graph Neural Networks Graph Construction

From nodes, sometimes the graph edges come naturally...

Bonds on a molecule, springs in physical system, etc.

... and sometimes they do not:

Point clouds, particle clustering, etc.

Strategy depends on individual cases:

Distance-based graphs are common for Euclidean data
(max edge length equivalent to CNN receptive field)

Complete graphs offer maximum information flow when
no prior knowledge of correlations (e.g. edge prediction)

Directed graphs are preferred over undirected graph if
edge direction is meaningful (e.g. particle flow)

Edges can also dynamically evolve during training

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 17 / 40

Graph Neural Networks Graph Construction

From nodes, sometimes the graph edges come naturally...

Bonds on a molecule, springs in physical system, etc.

... and sometimes they do not:

Point clouds, particle clustering, etc.

Strategy depends on individual cases:

Distance-based graphs are common for Euclidean data
(max edge length equivalent to CNN receptive field)

Complete graphs offer maximum information flow when
no prior knowledge of correlations (e.g. edge prediction)

Directed graphs are preferred over undirected graph if
edge direction is meaningful (e.g. particle flow)

Edges can also dynamically evolve during training

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 17 / 40

Graph Neural Networks Training regiment

GNNs have the peculiarity of supporting either transductive of inductive inference

Semi-supervised learning: some of the nodes in the input graph(s) are unlabeled

Supervised learning: all of the nodes in the input graphs(s) are labeled

Semi-supervised

Transduction Induction

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 18 / 40

Graph Neural Networks Training regiment

GNNs have the peculiarity of supporting either transductive of inductive inference

Semi-supervised learning: some of the nodes in the input graph(s) are unlabeled

Supervised learning: all of the nodes in the input graphs(s) are labeled

Semi-supervised

Transduction Induction

Supervised

Induction

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 18 / 40

Graph Pooling Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the
features must be pooled. The simplest method is single-step aggregation:

Recall from earlier: u = φu(ρe,u(E
′), ρv,u(V

′))

with φu a learnable function, ρe,u, ρv,u edge and node feature aggregators, respectively

The aggregators are typically one of sum, mean or max

Function φu is typically an MLP

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 19 / 40

Graph Pooling Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the
features must be pooled. The simplest method is single-step aggregation:

Recall from earlier: u = φu(ρe,u(E
′), ρv,u(V

′))

with φu a learnable function, ρe,u, ρv,u edge and node feature aggregators, respectively

The aggregators are typically one of sum, mean or max

Function φu is typically an MLP

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 19 / 40

Graph Pooling Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the
features must be pooled. The simplest method is single-step aggregation:

Recall from earlier: u = φu(ρe,u(E
′), ρv,u(V

′))

with φu a learnable function, ρe,u, ρv,u edge and node feature aggregators, respectively

The aggregators are typically one of sum, mean or max

Function φu is typically an MLP

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 19 / 40

Graph Pooling Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the
features must be pooled. The simplest method is single-step aggregation:

Recall from earlier: u = φu(ρe,u(E
′), ρv,u(V

′))

with φu a learnable function, ρe,u, ρv,u edge and node feature aggregators, respectively

The aggregators are typically one of sum, mean or max

Function φu is typically an MLP

Example: PointNet used to classifify 3D shapes (arXiv:1612.00593)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 19 / 40

https://arxiv.org/pdf/1612.00593.pdf

Graph Pooling Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN,
one wants to progressively extract more / features. Hierarchical pooling iteratively uses:

Sampling: reduce the number of nodes between layers

Grouping: aggregate the features of the nodes that are gone

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 20 / 40

Graph Pooling Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN,
one wants to progressively extract more / features. Hierarchical pooling iteratively uses:

Sampling: reduce the number of nodes between layers

Grouping: aggregate the features of the nodes that are gone

Example 1: PointNet++ for point cloud classification

Iterative farthest point sampling

Max-pool grouping over neighborhood of new nodes

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 20 / 40

Graph Pooling Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN,
one wants to progressively extract more / features. Hierarchical pooling iteratively uses:

Sampling: reduce the number of nodes between layers

Grouping: aggregate the features of the nodes that are gone

Example 2: DiffPool for arbitrary graph classification

At each step, let the network learn a (N
(l)
v , N

(l+1)
v) assignment matrix S(l) (w/ GNN):

H(l+1) = S(l)TH(l), A(l+1) = S(l)TA(l)S(l)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 20 / 40

Example A: Social network Task

Dataset: Zachary’s Karate club, famous early (70s) example of a social network problem

Consists of N = 34 nodes (individuals), with no node features (no information)

Has 78 edges, corresponding to pairs of people who talk to each other outside of the club

The group splits (in this example four ways), who goes with in what group ?

Goal: Some nodes are known, some are unknown, classify unknown nodes (semi-supervised)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 21 / 40

Embedding visualization t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:

pij =
pj|i+pi|j

2N , with pj|i =
exp(−‖xi−xj‖2/2σ2

i)∑
k 6=i exp(−‖xi−xk‖2/2σ2

i)
, and σi adpatative to local density

2. Defines a new set of point, {yi}Ni=1, in a new, smaller dimensional d′-space

3. Defines the t-distributed (strong tails) similarity of points in the new space as

qij =
(1+‖yi−yj‖2)−1∑

k

∑
l6=k(1+‖yk−yl‖2)−1

4. Minimize the KL-divergence (see Kazu day 1) between the two set of similarities using
gradient decent (optimization)

KL (P ‖ Q) =
∑

i 6=j pij log
pij
qij

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 22 / 40

Embedding visualization t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:

pij =
pj|i+pi|j

2N , with pj|i =
exp(−‖xi−xj‖2/2σ2

i)∑
k 6=i exp(−‖xi−xk‖2/2σ2

i)
, and σi adpatative to local density

2. Defines a new set of point, {yi}Ni=1, in a new, smaller dimensional d′-space

3. Defines the t-distributed (strong tails) similarity of points in the new space as

qij =
(1+‖yi−yj‖2)−1∑

k

∑
l6=k(1+‖yk−yl‖2)−1

4. Minimize the KL-divergence (see Kazu day 1) between the two set of similarities using
gradient decent (optimization)

KL (P ‖ Q) =
∑

i 6=j pij log
pij
qij

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 22 / 40

Embedding visualization t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:

pij =
pj|i+pi|j

2N , with pj|i =
exp(−‖xi−xj‖2/2σ2

i)∑
k 6=i exp(−‖xi−xk‖2/2σ2

i)
, and σi adpatative to local density

2. Defines a new set of point, {yi}Ni=1, in a new, smaller dimensional d′-space

3. Defines the t-distributed (strong tails) similarity of points in the new space as

qij =
(1+‖yi−yj‖2)−1∑

k

∑
l6=k(1+‖yk−yl‖2)−1

4. Minimize the KL-divergence (see Kazu day 1) between the two set of similarities using
gradient decent (optimization)

KL (P ‖ Q) =
∑

i 6=j pij log
pij
qij

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 22 / 40

Embedding visualization t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The t-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:

pij =
pj|i+pi|j

2N , with pj|i =
exp(−‖xi−xj‖2/2σ2

i)∑
k 6=i exp(−‖xi−xk‖2/2σ2

i)
, and σi adpatative to local density

2. Defines a new set of point, {yi}Ni=1, in a new, smaller dimensional d′-space

3. Defines the t-distributed (strong tails) similarity of points in the new space as

qij =
(1+‖yi−yj‖2)−1∑

k

∑
l6=k(1+‖yk−yl‖2)−1

4. Minimize the KL-divergence (see Kazu day 1) between the two set of similarities using
gradient decent (optimization)

KL (P ‖ Q) =
∑

i 6=j pij log
pij
qij

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 22 / 40

Embedding visualization t-SNE

Fundamentally different approach (albeit much more complex) to PCA:

PCA maximizes variance in the lower-dimensional space

t-SNE preserves data point similarity (close in original space → close in lower dimension)

.
François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 23 / 40

Embedding visualization t-SNE

Fundamentally different approach (albeit much more complex) to PCA:

PCA maximizes variance in the lower-dimensional space

t-SNE preserves data point similarity (close in original space → close in lower dimension)

.
François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 23 / 40

Karate Club Training regiment

These are the steps of the feedforward network:

Pass the nodes through two GCN layers

1. Increase node features from 1 (blank) to 16
2. Maintain 16 features in the convolution

Pass the nodes features through a fully connected linear
classification layer (16→ 4)

Apply the class-wise mean cross-entropy loss on node scores

L = − 1
Nc

1
N

∑
i

∑
c si,c × ln(si,c), si = softmax(xi)

Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 24 / 40

https://tkipf.github.io/graph-convolutional-networks/images/video.mp4

Karate Club Training regiment

These are the steps of the feedforward network:

Pass the nodes through two GCN layers

1. Increase node features from 1 (blank) to 16
2. Maintain 16 features in the convolution

Pass the nodes features through a fully connected linear
classification layer (16→ 4)

Apply the class-wise mean cross-entropy loss on node scores

L = − 1
Nc

1
N

∑
i

∑
c si,c × ln(si,c), si = softmax(xi)

Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video

The GNN learns to separate classes in the feature hyperspace

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 24 / 40

https://tkipf.github.io/graph-convolutional-networks/images/video.mp4

Karate Club Training regiment

These are the steps of the feedforward network:

Pass the nodes through two GCN layers

1. Increase node features from 1 (blank) to 16
2. Maintain 16 features in the convolution

Pass the nodes features through a fully connected linear
classification layer (16→ 4)

Apply the class-wise mean cross-entropy loss on node scores

L = − 1
Nc

1
N

∑
i

∑
c si,c × ln(si,c), si = softmax(xi)

Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video

The GNN learns to separate classes in the feature hyperspace

Will use this technique for another task in the tutorial!

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 24 / 40

https://tkipf.github.io/graph-convolutional-networks/images/video.mp4

Example B: Clustering Task

Here the goal is to cluster multiple particle traces into superstructures

Nodes are particles, edges are connections.

Fragments in
Euclidean space

Showers in
Euclidean space

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 25 / 40

Clustering Architecture

Here the goal is to cluster multiple particle traces into superstructures

Nodes are particles, edges are connections.

Input

Fragments

DBSCAN

...

Input Graph

Feature
extraction ...

...

Edge Update

EdgeLayer

...

Node Update

NodeLayer

EdgeLayer

...

Output graph

Edge
selection

Groups

Node
selection

Primaries

Paper: arXiv:2007.01335
François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 26 / 40

https://arxiv.org/abs/2007.01335

Shower clustering Network input

Input:

Fragmented EM showers

Fragments in
Euclidean space

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 27 / 40

Shower clustering Network input

Input:

Fragmented EM showers

Node features:

Centroid

Covariance matrix, PCA

Start point, direction (PPN)

Fragment
geometric features

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 27 / 40

Shower clustering Network input

Input:

Fragmented EM showers

Node features:

Centroid

Covariance matrix, PCA

Start point, direction (PPN)

Input graph:

Connect every node with every other
node (complete graph)

Complete graph
on the fragments

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 27 / 40

Shower clustering Network input

Input:

Fragmented EM showers

Node features:

Centroid

Covariance matrix, PCA

Start point, direction (PPN)

Input graph:

Connect every node with every other
node (complete graph)

Edge features:

Displacement vector (+variations)

Closest points of approach
Distance between

fragments

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 27 / 40

Shower clustering Edge classification
At each message passing step
(MetaLayer: arXiv:1806.01261):

Edge update

e′k = MLP(vsk , vrk , ek)

Node update

mji = MLP(vj , e
′
{k|sk=j,rk=i})

v′i = MLP(vi, �i∈N (i)mji)

After n = 3 node+edge updates:

Edge binary classification

Input graph

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 28 / 40

https://arxiv.org/pdf/1806.01261.pdf

Shower clustering Edge classification
At each message passing step
(MetaLayer: arXiv:1806.01261):

Edge update

e′k = MLP(vsk , vrk , ek)

Node update

mji = MLP(vj , e
′
{k|sk=j,rk=i})

v′i = MLP(vi, �i∈N (i)mji)

After n = 3 node+edge updates:

Edge binary classification

Target:

Predict adjacency matrix Aij = δgi,gj
with g the true partition of the set

Apply cross-entropy loss

Group labels and
target edges

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 28 / 40

https://arxiv.org/pdf/1806.01261.pdf

Shower clustering Example

Group labels and
target edges

Predicted edge
scores (> 0.5)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 29 / 40

Shower clustering Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

How to recover a set partition ĝ?

Bell number, huge (B20 ' 5× 1013),
cannot brute force, how to optimize?

Start with an empty graph

Iteratively attempt to add most likely
edges until edge score < 0.5

True partition

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 30 / 40

Shower clustering Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

How to recover a set partition ĝ?

Bell number, huge (B20 ' 5× 1013),
cannot brute force, how to optimize?

Start with an empty graph

Iteratively attempt to add most likely
edges until edge score < 0.5

Edge scores

0.9

0.10.9

0.6

0.9

0.8
0.7

0.9

0.9

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 30 / 40

Shower clustering Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

How to recover a set partition ĝ?

We want the partition ĝ that minimizes the CE
loss, given Âij = δĝi,ĝj , e.g.

L(S|g) = −
1

Ne

∑
(i,j)∈E

δgi,gj ln(sij) + (1− δgi,gj) ln(1− sij)

Bell number, huge (B20 ' 5× 1013),
cannot brute force, how to optimize?

Start with an empty graph

Iteratively attempt to add most likely
edges until edge score < 0.5

Thresholded graph

L ' 3.92

0.9

0.10.9

0.6

0.9

0.8
0.7

0.9

0.9

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 30 / 40

Shower clustering Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

How to recover a set partition ĝ?

We want the partition ĝ that minimizes the CE
loss, given Âij = δĝi,ĝj , e.g.

L(S|g) = −
1

Ne

∑
(i,j)∈E

δgi,gj ln(sij) + (1− δgi,gj) ln(1− sij)

G is the set of all possible partitions

Bell number, huge (B20 ' 5× 1013),
cannot brute force, how to optimize?

Start with an empty graph

Iteratively attempt to add most likely
edges until edge score < 0.5

Empty graph

L ' 15.35

0.9

0.10.9

0.6

0.9

0.8
0.7

0.9

0.9

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 30 / 40

Shower clustering Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

How to recover a set partition ĝ?

We want the partition ĝ that minimizes the CE
loss, given Âij = δĝi,ĝj , e.g.

L(S|g) = −
1

Ne

∑
(i,j)∈E

δgi,gj ln(sij) + (1− δgi,gj) ln(1− sij)

G is the set of all possible partitions

Bell number, huge (B20 ' 5× 1013),
cannot brute force, how to optimize?

Start with an empty graph

Iteratively attempt to add most likely
edges until edge score < 0.5

First edge

L ' 13.15

0.9

0.10.9

0.6

0.9

0.8
0.7

0.9

0.9

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 30 / 40

Shower clustering Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

How to recover a set partition ĝ?

We want the partition ĝ that minimizes the CE
loss, given Âij = δĝi,ĝj , e.g.

L(S|g) = −
1

Ne

∑
(i,j)∈E

δgi,gj ln(sij) + (1− δgi,gj) ln(1− sij)

G is the set of all possible partitions

Bell number, huge (B20 ' 5× 1013),
cannot brute force, how to optimize?

Start with an empty graph

Iteratively attempt to add most likely
edges until edge score < 0.5

Second edge

L ' 10.95

0.9

0.10.9

0.6

0.9

0.8
0.7

0.9

0.9

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 30 / 40

Shower clustering Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

How to recover a set partition ĝ?

We want the partition ĝ that minimizes the CE
loss, given Âij = δĝi,ĝj , e.g.

L(S|g) = −
1

Ne

∑
(i,j)∈E

δgi,gj ln(sij) + (1− δgi,gj) ln(1− sij)

G is the set of all possible partitions

Bell number, huge (B20 ' 5× 1013),
cannot brute force, how to optimize?

Start with an empty graph

Iteratively attempt to add most likely
edges until edge score < 0.5

Optimized partition

L ' 2.13

0.9

0.10.9

0.6

0.9

0.8
0.7

0.9

0.9

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 30 / 40

Shower clustering Performance

Group labels and
edge labels

Group inferred
and edge scores

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 31 / 40

Clustering Metrics

Purity = 1
N

∑np
i=1maxj |ci ∩ tj |

ci predicted cluster

tj true cluster with highest count in ci

Efficiency = 1
N

∑nt
i=0maxj |cj ∩ ti|

cj pred. cluster with highest count in ti

ti true cluster

g ĝ

t1

t2

c1

c2

••
•

••

N N

N
N

N

••
•

••

N N

N
N

N

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 32 / 40

Clustering Metrics

Purity = 1
N

∑np
i=1maxj |ci ∩ tj |

ci predicted cluster

tj true cluster with highest count in ci

Efficiency = 1
N

∑nt
i=0maxj |cj ∩ ti|

cj pred. cluster with highest count in ti

ti true cluster

Adjusted Rand Index (ARI)

Measure of overlap of prediction and
truth, adjusted for random chance

RI = a+b
a+b+c+d

ARI = RI−E(RI)
1−E(RI)

g ĝ

t1

t2

c1

c2

••
•

••

N N

N
N

N

••
•

••

N N

N
N

N

a a

b b

c c

d d

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 32 / 40

Shower clustering Performance

Shower clustering accuracy:

0.96 0.97 0.98 0.99 1.00

Efficiency
Purity

ARI

0.0 0.2 0.4 0.6 0.8 1.0

Metric

101

103

ARI
Purity
Efficiency

Group inferred
and edge scores

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 33 / 40

Shower Clustering Start identification

Shower primary accuracy (99.8 %):

0.0 0.2 0.4 0.6 0.8 1.0

Primary

Secondary

0.0 0.2 0.4 0.6 0.8 1.0

Primary score

101

102

103

104

105 Secondary
Primary

Shower primary
scores

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 34 / 40

Interaction Clustering Performance

Particle labels in a
2 ν-like event

The shower clustering task can be extended to
interaction clustering:

Interaction group = particles that
originate from the same vertex

Fragment ID → Particle ID

Particle ID → Interaction ID

Useful to:

Separate signal from background

Resolve pileup

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 35 / 40

Interaction Clustering Performance

Interaction labels
in a 2 ν-like event

Interaction preds
in a 2 ν-like event

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 35 / 40

Interaction Clustering Performance

Interaction clustering performance:

1–5 6–10 11–15 16–20 > 20

Number of interactions

0.97

0.98

0.99

1.00

M
et

ri
c

ARI
Efficiency
Purity

Interaction preds
in a 2 ν-like event

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 35 / 40

GNN Clustering Optimization studies

A lot of work in optimizing the different com-
ponents of the GNN chain:

Feature extractor
I Geometric (w/ or w/o PPN)
I CNN

Receptive field (graph)
I Complete, Delaunay, MST, kNN

Architecture
I Node updater
I Number of message passings

Target adjacency matrix
I Cluster graph
I Forest

Epochs

0.1

0.2

0.3

L
o
ss

Geo
Geo NI

CNN
Geo+CNN

0 5 10 15 20 25

Epochs

0.925

0.950

0.975

A
cc

u
ra

cy
François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 36 / 40

GNN Clustering Optimization studies

A lot of work in optimizing the different com-
ponents of the GNN chain:

Feature extractor
I Geometric (w/ or w/o PPN)
I CNN

Receptive field (graph)
I Complete, Delaunay, MST, kNN

Architecture
I Node updater
I Number of message passings

Target adjacency matrix
I Cluster graph
I Forest

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

MST
5NN

Delaunay
Complete

0.0 0.2 0.4 0.6 0.8 1.0

Essential edge fraction

101

103

105
Complete
Delaunay
5NN
MST

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 36 / 40

GNN Clustering Optimization studies

A lot of work in optimizing the different com-
ponents of the GNN chain:

Feature extractor
I Geometric (w/ or w/o PPN)
I CNN

Receptive field (graph)
I Complete, Delaunay, MST, kNN

Architecture
I Node updater
I Number of message passings

Target adjacency matrix
I Cluster graph
I Forest

Epochs

0.1

0.2

0.3

L
o
ss

Meta
Edge

NN
GAT

AGNN

0 5 10 15 20 25

Epochs

0.950

0.975

A
cc

u
ra

cy

Epochs

0.1

0.2

0.3

L
o
ss

1 MP
2 MP

3 MP
4 MP

5 MP

0 5 10 15 20 25

Epochs

0.925

0.950

0.975

A
cc

u
ra

cy
François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 36 / 40

GNN Clustering Optimization studies

A lot of work in optimizing the different com-
ponents of the GNN chain:

Feature extractor
I Geometric (w/ or w/o PPN)
I CNN

Receptive field (graph)
I Complete, Delaunay, MST, kNN

Architecture
I Node updater
I Number of message passings

Target adjacency matrix
I Cluster graph
I Forest

0.96 0.97 0.98 0.99 1.00

Forest

Cluster

0.0 0.2 0.4 0.6 0.8 1.0

Adjusted Rand Index

100

101

102

103

104 Cluster
Forest

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 36 / 40

GNN Clustering Optimization studies

A lot of work in optimizing the different com-
ponents of the GNN chain:

Feature extractor
I Geometric (w/ or w/o PPN)
I CNN

Receptive field (graph)
I Complete, Delaunay, MST, kNN

Architecture
I Node updater
I Number of message passings

Target adjacency matrix
I Cluster graph
I Forest

See paper: arXiv:2007.01335

0.96 0.97 0.98 0.99 1.00

Forest

Cluster

0.0 0.2 0.4 0.6 0.8 1.0

Adjusted Rand Index

100

101

102

103

104 Cluster
Forest

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 36 / 40

https://arxiv.org/abs/2007.01335

Example C: Proteins Task

Dataset: PROTEINS is a dataset of graph-encoded proteins

There are 1113 graphs, one per protein

The nodes are secondary structure elements (essentially turns, twists, folds, etc.)

Edges connect adjacent structures (either in the chain, or in space)

Goal: Predict whether the protein is a enzyme, or not

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 37 / 40

Protein Classification Architecture

For this example, there are two main ingredients:
A 3-layer message passing function: SAGEConv

I x
(l+1)
i =W

(l)
1 x

(l)
i +W

(l)
2 ·meanj∈N (i)x

(l)
j

A linear layer combining the 3 node embeddings into a set of N ′v features
I x′i =W ′(x

(1)
i , x

(2)
i , x

(3)
i)

Two-layer graph pooling operation: Diffpool
I First, reduce the number of nodes to N/4, then to N/16

Aggregate the remaining node features to a 1D array
Reduce to two features (one score for enzyme=NO, one for YES)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 38 / 40

Protein Classification Architecture

For this example, there are two main ingredients:
A 3-layer message passing function: SAGEConv

I x
(l+1)
i =W

(l)
1 x

(l)
i +W

(l)
2 ·meanj∈N (i)x

(l)
j

A linear layer combining the 3 node embeddings into a set of N ′v features
I x′i =W ′(x

(1)
i , x

(2)
i , x

(3)
i)

Two-layer graph pooling operation: Diffpool
I First, reduce the number of nodes to N/4, then to N/16

Aggregate the remaining node features to a 1D array
Reduce to two features (one score for enzyme=NO, one for YES)

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 38 / 40

Protein Classification Training regiment

Given the 2-channel output of the network:

The binary cross entropy loss is computed for each score pair:

− 1
N (s0 ln(s0) + s1 ln(s1), (s0, s1) = softmax(x′0, x

′
1)

Update the model weights

Repeat this for 10 epochs
→ Let’s move to the notebook!

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 39 / 40

Conclusions

1. What are Graph Neural Networks (GNNs) good for ?

Generalize the concept of receptive field in CNNs and
succession in RNNs to any structured data

Infer about objects in an ensemble, but also about their
correlations and superstructures

2. How does information flow in a graph ?

GNNs are Neural Networks with a shared neighborhood
aggregation rule: message passing

The adjacency matrix determines information flow

The message passing rule is extremely flexible... as long
as it is learnable!

Thank you for your attention!

François Drielsma (SLAC) Introduction to Graph Neural Networks November 18, 2020 40 / 40

