Day 4: Introduction to Graph Neural Networks

(with Kazu and Aashwin)

drielsma@slac.stanford.edu

November 18, 2020

Day 4 Lecture

1. Graph Neural Networks (GNNs): what are they good for?

- Motivation behind the creation of GNNs
- Introduction to graphs, graph-structured data
- Presentation of typical tasks on graphs

2. GNN feature learning: how does information flow in graphs ?

- Graph convolutions
- Message passing
- Graph pooling operations

3. GNN examples: what are common GNN architectures ?

- A. Classifying people in a social network with a GCN + Tutorial
- B. Particle clustering with MetaLayers + Tutorial
- C. Protein graph classification with with DiffPool + Tutorial

4. Conclusions

Inductive Bias

Machine Learning: learning a transformation from data (classification, regression, etc.)

Inductive bias: assumptions about the model in a learning process (very good read)

Inductive Bias

Machine Learning: learning a transformation from data (classification, regression, etc.)

Inductive bias: assumptions about the model in a learning process (very good read)

Hand-engineered function

- Strong inductive bias
- Extremely limited freedom
- Strong potential for underfitting
- Computationally cheap

Inductive Bias

 $\label{eq:main} \textbf{Machine Learning: learning a transformation from data (classification, regression, etc.)}$

Inductive bias: assumptions about the model in a learning process (very good read)

Hand-engineered function

- Strong inductive bias
- Extremely limited freedom
- Strong potential for underfitting
- Computationally cheap

Fully-connected Neural Network

- Virtually no inductive bias
- Arbitrarily infinite freedom
- No by-design overfitting prevention
- Computationally expensive for deep nets

Inductive Bias

 $\label{eq:main} \textbf{Machine Learning: learning a transformation from data (classification, regression, etc.)}$

Inductive bias: assumptions about the model in a learning process (very good read)

Hand-engineered function

- Strong inductive bias
- Extremely limited freedom
- Strong potential for underfitting
- Computationally cheap

Fully-connected Neural Network

- Virtually no inductive bias
- Arbitrarily infinite freedom
- No by-design overfitting prevention
- Computationally expensive for deep nets

Convolutional Neural Networks: freedom of MLPs but locality and translation invariance

- Inductive biases:
 - Strong correlation between adjacent input pixels (receptive field small compared to full input)
 - Model should not care about object position in the data (filters are shared)

Convolutional Neural Networks: freedom of MLPs but **locality** and **translation invariance**

CNN

- Inductive biases:
 - Strong correlation between adjacent input pixels (receptive field small compared to full input)
 - Model should not care about object position in the data (filters are shared)
- State-of-the-art in Computer Vision, exclusively for data on a grid

Recurrent Neural Network: freedom of MLPs but with locality and temporal invariance

RNN

- Inductive biases:
 - Strong correlation between successive inputs (hidden state h_t takes h_{t-1} as input)
 - Model should not care about absolute time but rather sequence

Recurrent Neural Network: freedom of MLPs but with locality and temporal invariance

RNN

- Inductive biases:
 - Strong correlation between successive inputs (hidden state h_t takes h_{t-1} as input)
 - Model should not care about absolute time but rather sequence
- State-of-the-art in speech recognition, exclusively for time-ordered data

Beyond CNNs, RNNs SLAC ACCOUNT ACCOUNT

What if the data is structured but is neither spatially nor temporally ordered ?

Social network: people and relationships

Referencing: papers and citation linkage

François Drielsma (SLAC)

Introduction to Graph Neural Networks

Definition

Graphs generalize concept of locality to arbitrarily-ordered data

- A set of **nodes**, $\{v_i\}_{i=1}^{N_v}$ (e.g. person in social network, paper in an arXiv, etc.)
- A set of edges, $\{e_k\}_{k=1}^{N_e}$ (e.g. friendship in social network, citation, etc.)
- A global state, u, associated with one realization of the data (full network, full arXiv, etc.)

François Drielsma (SLAC)

Graphs are often the natural choice to represent correlations in a physical data set

In Physics

Graphs

(a) Nodes: atoms (Z, A, etc.) Edges: chemical bonds

Graphs are often the natural choice to represent correlations in a physical data set

In Physics

(a) Nodes: atoms (Z, A, etc.) Edges: chemical bonds
(b) Nodes: discrete masses Edges: spring force between masses

Graphs are often the natural choice to represent correlations in a physical data set

In Physics

(a) Nodes: atoms (Z, A, etc.) Edges: chemical bonds
(b) Nodes: discrete masses Edges: spring force between masses
(c) Nodes: planets, molecules Edges: attractive/repulsive forces

Graphs are often the natural choice to represent correlations in a physical data set

In Physics

(a) Nodes: atoms (Z, A, etc.) Edges: chemical bonds (b) **Nodes**: discrete masses Edges: spring force between masses (c) **Nodes**: planets, molecules Edges: attractive/repulsive forces Nodes: molecules, walls (d) Edges:

attractive/repulsive forces

SLAC NATIONAL ACCELERATOR LABORATORY

Graphs are often the natural choice to represent correlations in a physical data set

In HEP

(a) Nodes: tracker hits Edges: hit connections (tracks)

Graphs are often the natural choice to represent correlations in a physical data set

- (a) Nodes: tracker hits Edges: hit connections (tracks)
- (b) Nodes: calorimeter cells Edges: cell correlations (particles)

Graphs are often the natural choice to represent correlations in a physical data set

- (a) Nodes: tracker hits Edges: hit connections (tracks)
- (b) Nodes: calorimeter cells Edges: cell correlations (particles)
- (c) Nodes: particle objects
 - Edges: particle correlations (events)

Graphs are often the natural choice to represent correlations in a physical data set

- (a) Nodes: tracker hits Edges: hit connections (tracks)
- (b) Nodes: calorimeter cells Edges: cell correlations (particles)
- (c) **Nodes**: particle objects

Edges: particle correlations (events)

(d) Nodes: jet particles Edges: correlations (jets)

Graphs are often the natural choice to represent correlations in a physical data set

- (a) Nodes: tracker hits
 Edges: hit connections (tracks)
- (b) Nodes: calorimeter cells Edges: cell correlations (particles)
- (c) Nodes: particle objects
 - Edges: particle correlations (events)
- (d) Nodes: jet particles Edges: correlations (jets)
- (*) Nodes: particles
 - Edges: parentage or superstructure

Task categories

Graph Neural Networks are used to infer information about their three main components:

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

Karate Club

- Nodes: people in a club
- Edges: friendship status
- Club splits, who goes with A and who with I ?

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

Karate Club

- Nodes: people in a club
- Edges: friendship status
- Club splits, who goes with A and who with I ?

ShapeNet

- Nodes: point in cloud
- Edges: proximity
- Classify points into different categories

Task categories

Graph Neural Networks are used to infer information about their three main components:

1. Nodes: node classification, segmentation(, clustering)

Karate Club

- Nodes: people in a club
- Edges: friendship status
- Club splits, who goes with A and who with I ?

ShapeNet

- Nodes: point in cloud
- Edges: proximity
- Classify points into different categories

Particle classification

- Nodes: particles
- Edges: parentage
- Identify particle type
 (p, e, γ, μ, π)

François Drielsma (SLAC)

Introduction to Graph Neural Networks

November 18, 2020 10 / 40

Task categories

Graph Neural Networks are used to infer information about their three main components:

- 1. Nodes: node classification, segmentation(, clustering)
- 2. Edge: edge classification, clustering

Link classification

- Nodes: people in a group
- Edges: potential links
- Are Nate and Laura friends, family, coworkers?

Task categories

Graph Neural Networks are used to infer information about their three main components:

- 1. Nodes: node classification, segmentation(, clustering)
- 2. Edge: edge classification, clustering

Link classification

- Nodes: people in a group
- Edges: potential links
- Are Nate and Laura friends, family, coworkers?

Francois Drielsma (SLAC)

Scene comprehension

- Nodes: objects in scene
- Edges: all-to-all
- Is object A the same shape as B ? Is it bigger ?

Task categories

Graph Neural Networks are used to infer information about their three main components:

- 1. Nodes: node classification, segmentation(, clustering)
- 2. Edge: edge classification, clustering

Link classification

- Nodes: people in a group
- Edges: potential links
- Are Nate and Laura friends, family, coworkers?

Scene comprehension

- Nodes: objects in scene
- Edges: all-to-all
- Is object A the same shape as B ? Is it bigger ?

Particle clustering

- Nodes: particles
- Edges: all-to-all
- Is this edge a true parentage edge ?

François Drielsma (SLAC)

Introduction to Graph Neural Networks

November 18, 2020 10 / 40

Task categories

Graph Neural Networks are used to infer information about their three main components:

- 1. Nodes: node classification, segmentation(, clustering)
- 2. Edge: edge classification, clustering
- 3. Graph: graph classification

Enzyme classification

- Nodes: AA structures
- Edges: spatial proximity
- What is the purpose of this enzyme (protein) ?

Task categories

Graph Neural Networks are used to infer information about their three main components:

- 1. Nodes: node classification, segmentation(, clustering)
- 2. Edge: edge classification, clustering
- 3. Graph: graph classification

Enzyme classification

- Nodes: AA structures
- Edges: spatial proximity
- What is the purpose of this enzyme (protein) ?

Francois Drielsma (SLAC)

Point cloud classification

- Nodes: point in cloud
- Edges: proximity
- What class of object does it belong to ?

Task categories

Graph Neural Networks are used to infer information about their three main components:

- 1. Nodes: node classification, segmentation(, clustering)
- 2. Edge: edge classification, clustering
- 3. Graph: graph classification

Enzyme classification

- Nodes: AA structures
- Edges: spatial proximity
- What is the purpose of this enzyme (protein) ?

Francois Drielsma (SLAC)

Point cloud classification

- Nodes: point in cloud
- Edges: proximity
- What class of object does it belong to ?

Introduction to Graph Neural Network

Interaction classification

- Nodes: particles
- Edges: parentage
- What class of interaction is this?

November 18, 2020 10 / 40

Graph Convolutional Network | Analogy

To perform the aforementioned tasks, the graph needs to develop **embeddings**, i.e. map the input features to a space in which the task can be performed.

The basic operation for CNNs is the convolution layer

- Aggregate a the pixel features within some distance by multiplying it by shared filter
- Formally: $\boldsymbol{x}_{i,j}^{(l+1)} = \sigma(\sum_{k \in \mathcal{N}(i)} \boldsymbol{w}_{j,k} \boldsymbol{x}_{k,j}^{(l)})$ with $x_{i,j}^{(l)}$ the j^{th} feature of pixel i at layer l and $w_{j,k}$ the k^{th} cell of filter j

Graph Convolutional Network | Introduction

Graph Convolutional Networks (GCNs) are an early implementation of GNNs which take:

- An (N, N_v) matrix, V, of node features
- An (N, N) adjacency matrix, A, only used for neighborhood aggregation
 NB: The adjacency matrix is a dense formulation of edges, in which A_{ij} = 1 if the corresponding edge e_{k|i=s_k,j=r_k} exists in the graph, A_{ij} = 0 otherwise

Graph Convolutional Network | Aggregation

GNNs don't have regular neighborhoods, but why not use the adjacency matrix?

$$h_i^{(l+1)} = \sigma(\sum_{j=1}^N A_{i,j} h_j^{(l)} W^{(l)}), \quad \text{or} \quad H^{(l+1)} = \sigma(A H^{(l)} W^{(l)}), \quad (1)$$

where σ is an activation function, $W^{(l)}$ is an $(N_v^{(l-1)}, N_v^{(l)})$ weight matrix shared across all nodes (similar to to the convolution filters of CNNs).

Graph Convolutional Network | Aggregation

GNNs don't have regular neighborhoods, but why not use the adjacency matrix?

$$h_i^{(l+1)} = \sigma(\sum_{j=1}^N A_{i,j} h_j^{(l)} W^{(l)}), \quad \text{or} \quad H^{(l+1)} = \sigma(A H^{(l)} W^{(l)}), \quad (1)$$

where σ is an activation function, $W^{(l)}$ is an $(N_v^{(l-1)}, N_v^{(l)})$ weight matrix shared across all nodes (similar to to the convolution filters of CNNs).

Two caveats:

- A must contain self-loops (otherwise no self-preservation): $\hat{A} = A + I$
- The nodes with more connections (higher degree) have larger features. That is not desirable, so divide by degree matrix \hat{D} of \hat{A} .

$$h_i^{(l+1)} = \sigma(\frac{1}{\hat{d}_i} \sum_{j=1}^N \hat{A}_{i,j} h_j^{(l)} W^{(l)}), \quad \text{or} \quad H^{(l+1)} = \sigma(\hat{D}^{-1} \hat{A} H^{(l)} W^{(l)}), \quad (2)$$

François Drielsma (SLAC)

Graph Neural Networks

Message Passing

The GCN neighborhood aggregation method, while elegant in its one-to-one similarity with pixel convolutions in CNN, is inherently limited:

- It does not support edge-specific features
- It does not support explicit graph-specific features
- It does not support other neighborhood aggregation strategies than a simple sum

 \rightarrow How can we build features with a graph in all its complexity ?

The most general for GNNs is called message passing

(a) Edge update

(b) Node update

François Drielsma (SLAC)

Introduction to Graph Neural Networks

(c) Global update

November 18, 2020 14 / 40

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge

 $m{e}_k'=\phi_e(m{e}_k,m{v}_{r_k},m{v}_{s_k},m{u})$, with ϕ_e a learnable function

Message Passing

François Drielsma (SLAC)

Introduction to Graph Neural Networks

November 18, 2020 14 / 40

Message Passing

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge

 $m{e}_k'=\phi_e(m{e}_k,m{v}_{r_k},m{v}_{s_k},m{u})$, with ϕ_e a learnable function

2. Node update: fold adjacent edge features and global features into a node

 $v'_i = \phi_v(\rho_{e,v}(E'_i), x_i, u)$, with ϕ_v a learnable function, $\rho_{e,v}$ an aggregator and $E_i = \{\mathbf{e}_k\}_{k \in \mathcal{N}(i)}$

François Drielsma (SLAC)

Introduction to Graph Neural Networks

Message Passing

The most general for GNNs is called message passing

1. Edge update: fold adjacent node features and global features into an edge

 $m{e}_k'=\phi_e(m{e}_k,m{v}_{r_k},m{v}_{s_k},m{u})$, with ϕ_e a learnable function

2. Node update: fold adjacent edge features and global features into a node

 $v'_i = \phi_v(\rho_{e,v}(E'_i), x_i, u)$, with ϕ_v a learnable function, $\rho_{e,v}$ an aggregator and $E_i = \{\mathbf{e}_k\}_{k \in \mathcal{N}(i)}$

3. Global update: fold all node and edge features to update the global state

$$m{u}'=\phi_u(
ho_{e,u}(E'),
ho_{v,u}(V'),m{u})$$
, with ϕ_u a learnable function, $E'=\{m{e}_k\}_{k=1}^{N_e}$ and $E'=\{m{v}_i\}_{i=1}^{N_v}$

(a) Edge update

(b) Node update

François Drielsma (SLAC)

Introduction to Graph Neural Networks

November 18, 2020 14 / 40

(c) Global update

The basic operation for GNNs is called neighborhood aggregation or message passing

The basic operation for GNNs is called neighborhood aggregation or message passing

m = 0

m = 1

m = 2

The basic operation for GNNs is called neighborhood aggregation or message passing

m = 1

m = 0

The basic operation for GNNs is called neighborhood aggregation or message passing

Message Passing

Symmetries

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
$\operatorname{Convolutional}$	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations
	Sharring in space		Sharing in time	
(a) Fully connection	cted	(b) Convol	utional	(c) Recurrent

Symmetries

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations
				Attributes
	\mathbf{e}_k	u	<u>v</u>	
	52		\mathbf{v}_i	
			$\mathbf{v}_{s_k} \xrightarrow{\mathbf{e}_k} \mathbf{v}_{r_k}$	

SLAC NATIONAL ACCELERATOR LABORATORY

Graph Neural Networks

 $\exists \pi \in \mathfrak{S}_n, f(x_1, x_2, \dots, x_M) \neq f(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(M)})$

Symmetries

François Drielsma (SLAC)

Introduction to Graph Neural Networks

Graph Construction

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
- ... and sometimes they do not:
 - Point clouds, particle clustering, etc.

Graph Construction

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
- ... and sometimes they do not:
 - Point clouds, particle clustering, etc.
- Strategy depends on individual cases:
 - **Distance-based** graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
- ... and sometimes they do not:
 - Point clouds, particle clustering, etc.
- Strategy depends on individual cases:
 - **Distance-based** graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)
 - **Complete** graphs offer maximum information flow when no prior knowledge of correlations (e.g. edge prediction)

Graph Construction

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
- ... and sometimes they do not:
 - Point clouds, particle clustering, etc.

Strategy depends on individual cases:

- **Distance-based** graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)
- **Complete** graphs offer maximum information flow when no prior knowledge of correlations (e.g. edge prediction)
- **Directed** graphs are preferred over **undirected** graph if edge direction is meaningful (e.g. particle flow)

Graph Construction

From nodes, sometimes the graph edges come naturally...

- Bonds on a molecule, springs in physical system, etc.
- ... and sometimes they do not:
 - Point clouds, particle clustering, etc.

Strategy depends on individual cases:

- Distance-based graphs are common for Euclidean data (max edge length equivalent to CNN receptive field)
- **Complete** graphs offer maximum information flow when no prior knowledge of correlations (e.g. edge prediction)
- Directed graphs are preferred over undirected graph if edge direction is meaningful (e.g. particle flow)

Introduction to Graph Neural Networks

• Edges can also **dynamically** evolve during training

H₂C

CH₂

Graph Construction

Training regiment

GNNs have the peculiarity of supporting either **transductive** of **inductive inference**

• Semi-supervised learning: some of the nodes in the input graph(s) are unlabeled

GNNs have the peculiarity of supporting either transductive of inductive inference

• Semi-supervised learning: some of the nodes in the input graph(s) are unlabeled

Training regiment

• Supervised learning: all of the nodes in the input graphs(s) are labeled

Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is **single-step aggregation**:

• Recall from earlier: $\boldsymbol{u} = \phi_u(\rho_{e,u}(E'), \rho_{v,u}(V'))$

with ϕ_u a learnable function, $\rho_{e,u}$, $\rho_{v,u}$ edge and node feature aggregators, respectively

Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is **single-step aggregation**:

• Recall from earlier: $\boldsymbol{u} = \phi_u(\rho_{e,u}(E'), \rho_{v,u}(V'))$

with ϕ_u a learnable function, $\rho_{e,u}\text{, }\rho_{v,u}$ edge and node feature aggregators, respectively

• The aggregators are typically one of sum, mean or max

Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is **single-step aggregation**:

• Recall from earlier: $\boldsymbol{u} = \phi_u(\rho_{e,u}(E'), \rho_{v,u}(V'))$

with ϕ_u a learnable function, $ho_{e,u}$, $ho_{v,u}$ edge and node feature aggregators, respectively

- The aggregators are typically one of sum, mean or max
- Function ϕ_u is typically an MLP

Single-step

After developing node (+edge) features, if one wants to infer graph-wide properties, the features must be pooled. The simplest method is **single-step aggregation**:

• Recall from earlier: $\boldsymbol{u} = \phi_u(\rho_{e,u}(E'), \rho_{v,u}(V'))$

with ϕ_u a learnable function, $ho_{e,u}$, $ho_{v,u}$ edge and node feature aggregators, respectively

- The aggregators are typically one of sum, mean or max
- Function ϕ_u is typically an MLP

Example: PointNet used to classifify 3D shapes (arXiv:1612.00593)

Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN, one wants to progressively extract more / features. **Hierarchical pooling** iteratively uses:

- Sampling: reduce the number of nodes between layers
- Grouping: aggregate the features of the nodes that are gone

Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN, one wants to progressively extract more / features. **Hierarchical pooling** iteratively uses:

- Sampling: reduce the number of nodes between layers
- Grouping: aggregate the features of the nodes that are gone

Example 1: PointNet++ for point cloud classification

- Iterative farthest point sampling
- Max-pool grouping over neighborhood of new nodes

Hierarchical

Single-step not the SOTA because it only convolves local neighborhood of nodes. As in CNN, one wants to progressively extract more / features. Hierarchical pooling iteratively uses:

- Sampling: reduce the number of nodes between layers
- Grouping: aggregate the features of the nodes that are gone

Example 2: DiffPool for arbitrary graph classification

• At each step, let the network learn a $(N_v^{(l)}, N_v^{(l+1)})$ assignment matrix $S^{(l)}$ (w/ GNN): $H^{(l+1)} = S^{(l)^T} H^{(l)}$, $A^{(l+1)} = S^{(l)^T} A^{(l)} S^{(l)}$

Example A: Social network Task

Dataset: Zachary's Karate club, famous early (70s) example of a social network problem

- Consists of N = 34 nodes (individuals), with no node features (no information)
- Has 78 edges, corresponding to pairs of people who talk to each other outside of the club
- The group splits (in this example four ways), who goes with in what group ?

Goal: Some nodes are known, some are unknown, classify unknown nodes (semi-supervised)

t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The *t*-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$
, with $p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)}$, and σ_i adpatative to local density

t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The *t*-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of N points in d dimensions:

 $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$, with $p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)}$, and σ_i adpatative to local density

2. Defines a new set of point, $\{ \boldsymbol{y}_i \}_{i=1}^N$, in a new, smaller dimensional d'-space

t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The *t*-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of ${\cal N}$ points in d dimensions:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$
, with $p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)}$, and σ_i adpatative to local density

- 2. Defines a new set of point, $\{m{y}_i\}_{i=1}^N$, in a new, smaller dimensional d'-space
- 3. Defines the *t*-distributed (strong tails) similarity of points in the new space as $q_{ij} = \frac{(1+||\mathbf{y}_i \mathbf{y}_j||^2)^{-1}}{\sum_k \sum_{l \neq k} (1+||\mathbf{y}_k \mathbf{y}_l||^2)^{-1}}$

t-SNE

An aside: how to represent point in a feature space of dimension > 3 ?

The *t*-distributed Stochastic Neighbor Embedding is a transformation which:

1. Computes the similarity between every pair of ${\cal N}$ points in d dimensions:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$
, with $p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)}$, and σ_i adpatative to local density

- 2. Defines a new set of point, $\{m{y}_i\}_{i=1}^N$, in a new, smaller dimensional d'-space
- 3. Defines the *t*-distributed (strong tails) similarity of points in the new space as $q_{ij} = \frac{(1+||\mathbf{y}_i \mathbf{y}_j||^2)^{-1}}{\sum_k \sum_{l \neq k} (1+||\mathbf{y}_k \mathbf{y}_l||^2)^{-1}}$
- 4. Minimize the KL-divergence (see Kazu day 1) between the two set of similarities using gradient decent (optimization)
 KL (P || Q) = ∑_{i≠j} p_{ij} log ^{p_{ij}}/_{q_i}

t-SNE

Fundamentally different approach (albeit much more complex) to PCA:

• PCA maximizes variance in the lower-dimensional space

François Drielsma (SLAC)

Fundamentally different approach (albeit much more complex) to PCA:

- PCA maximizes variance in the lower-dimensional space
- ullet t-SNE preserves data point similarity (close in original space \rightarrow close in lower dimension)

t-SNE

François Drielsma (SLAC)

Karate Club

Training regiment

These are the steps of the feedforward network:

- Pass the nodes through two GCN layers
 - 1. Increase node features from 1 (blank) to 16
 - 2. Maintain 16 features in the convolution
- Pass the nodes features through a fully connected linear classification layer (16 \rightarrow 4)
- Apply the class-wise mean cross-entropy loss on node scores

$$L = -\frac{1}{N_c} \frac{1}{N} \sum_i \sum_c s_{i,c} \times \ln(s_{i,c}), \qquad s_i = \operatorname{softmax}(x_i)$$

• Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video

Karate Club

Training regiment

These are the steps of the feedforward network:

- Pass the nodes through two GCN layers
 - 1. Increase node features from 1 (blank) to 16
 - 2. Maintain 16 features in the convolution
- Pass the nodes features through a fully connected linear classification layer (16 \rightarrow 4)
- Apply the class-wise mean cross-entropy loss on node scores

 $L = -\frac{1}{N_c} \frac{1}{N} \sum_i \sum_c s_{i,c} \times \ln(s_{i,c}), \qquad s_i = \text{softmax}(x_i)$

• Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video

The GNN learns to separate classes in the feature hyperspace

Karate Club

Training regiment

These are the steps of the feedforward network:

- Pass the nodes through two GCN layers
 - 1. Increase node features from 1 (blank) to 16
 - 2. Maintain 16 features in the convolution
- Pass the nodes features through a fully connected linear classification layer (16 \rightarrow 4)
- Apply the class-wise mean cross-entropy loss on node scores

 $L = -\frac{1}{N_c} \frac{1}{N} \sum_i \sum_c s_{i,c} \times \ln(s_{i,c}), \qquad s_i = \text{softmax}(x_i)$

• Apply storchastic gradient decent 300 times

Watch the embeddings before the classification layer evolve: video

The GNN learns to separate classes in the feature hyperspace

 $\boldsymbol{W}\xspace{ill}$ use this technique for another task in the tutorial!

Example B: Clustering

SLAC NATIONAL ACCELERATOR LABORATORY

 $\ensuremath{\textbf{H}}\xspace{\ensuremath{\textbf{e}}\xspace{\ensuremath{\textbf{c}}\xspace{\ensuremath{\s}}\xspace{\s}\xspace{\ensuremath{\s}}\xs$

• Nodes are particles, edges are connections.

Task

François Drielsma (SLAC)
Clustering

 $\ensuremath{\textbf{H}}\xspace{\ensuremath{\textbf{e}}\xspace{\ensuremath{\textbf{c}}\xspace{\ensuremath{\e}}\xspace{\ensuremath{\e}}\xspace{\ensuremath{\e}\xspace{\ensuremath{\e}}\xspace{\ensuremath{\e}\xspace{\ensuremath{\textbf{c}}\xspace{\ensuremath{\e}}\xspace{\ensuremath{\e}\xspace{\ensuremath{\e}}\xspace{\ensuremath{\e}\xspace{\ensuremath{$

• Nodes are particles, edges are connections.

Paper: arXiv:2007.01335

François Drielsma (SLAC)

Network input

Input:

• Fragmented EM showers

Network input

Input:

• Fragmented EM showers

 \mathbf{N} ode features:

- Centroid
- Covariance matrix, PCA
- Start point, direction (PPN)

Network input

Input:

• Fragmented EM showers

 $\mathbf{N} \text{ode features:} \\$

- Centroid
- Covariance matrix, PCA
- Start point, direction (PPN)

Input graph:

• Connect every node with every other node (complete graph)

Network input

Input:

• Fragmented EM showers

 \mathbf{N} ode features:

- Centroid
- Covariance matrix, PCA
- Start point, direction (PPN)

Input graph:

• Connect every node with every other node (complete graph)

Edge features:

- Displacement vector (+variations)
- Closest points of approach

At each message passing step (MetaLayer: arXiv:1806.01261):

- Edge update
 - $\boldsymbol{e}_k' = \mathsf{MLP}(\boldsymbol{v}_{s_k},\,\boldsymbol{v}_{r_k},\,\boldsymbol{e}_k)$
- Node update

$$\begin{split} \boldsymbol{m}_{ji} &= \mathsf{MLP}(\boldsymbol{v}_j, \, \boldsymbol{e}'_{\{k \mid s_k = j, r_k = i\}}) \\ \boldsymbol{v}'_i &= \mathsf{MLP}(\boldsymbol{v}_i, \, \Box_{i \in \mathcal{N}(i)} \boldsymbol{m}_{ji}) \end{split}$$

- After n = 3 node+edge updates:
 - Edge binary classification

Edge classification

At each message passing step (MetaLayer: arXiv:1806.01261):

- Edge update
 - $\boldsymbol{e}_k' = \mathsf{MLP}(\boldsymbol{v}_{s_k},\,\boldsymbol{v}_{r_k},\,\boldsymbol{e}_k)$
- Node update

$$\begin{split} \boldsymbol{m}_{ji} &= \mathsf{MLP}(\boldsymbol{v}_j, \, \boldsymbol{e}'_{\{k \mid s_k = j, r_k = i\}}) \\ \boldsymbol{v}'_i &= \mathsf{MLP}(\boldsymbol{v}_i, \, \Box_{i \in \mathcal{N}(i)} \boldsymbol{m}_{ji}) \end{split}$$

- After n = 3 node+edge updates:
 - Edge binary classification

Target:

- Predict adjacency matrix $A_{ij} = \delta_{g_i,g_j}$ with \boldsymbol{g} the true partition of the set
- Apply cross-entropy loss

François Drielsma (SLAC)

The network predicts a score matrix $\boldsymbol{S},$ estimate of the true adjacency matrix \boldsymbol{A}

• How to recover a set partition \hat{g} ?

The network predicts a score matrix \boldsymbol{S} , estimate of the true adjacency matrix \boldsymbol{A}

• How to recover a set partition \hat{g} ?

Inference

The network predicts a score matrix \boldsymbol{S} , estimate of the true adjacency matrix \boldsymbol{A}

• How to recover a set partition \hat{g} ?

We want the partition \hat{g} that minimizes the CE loss, given $\hat{A}_{ij}=\delta_{\hat{g}_i,\hat{g}_j}$, e.g.

$$L(S|g) = -\frac{1}{N_e} \sum_{(i,j) \in E} \delta_{g_i,g_j} \ln(s_{ij}) + (1 - \delta_{g_i,g_j}) \ln(1 - s_{ij})$$

Inference

The network predicts a score matrix $m{S}$, estimate of the true adjacency matrix $m{A}$

• How to recover a set partition \hat{g} ?

We want the partition \hat{g} that minimizes the CE loss, given $\hat{A}_{ij}=\delta_{\hat{g}_i,\hat{g}_j}$, e.g.

$$L(S|g) = -\frac{1}{N_e} \sum_{(i,j) \in E} \delta_{g_i,g_j} \ln(s_{ij}) + (1 - \delta_{g_i,g_j}) \ln(1 - s_{ij})$$

 \boldsymbol{G} is the set of all possible partitions

- Bell number, huge ($B_{20} \simeq 5 \times 10^{13}$), cannot brute force, how to optimize?
- Start with an empty graph

Francois Drielsma (SLAC)

Empty graph

Inference

 $L \sim 15.35$

The network predicts a score matrix \boldsymbol{S} , estimate of the true adjacency matrix \boldsymbol{A}

• How to recover a set partition \hat{g} ?

We want the partition \hat{g} that minimizes the CE loss, given $\hat{A}_{ij}=\delta_{\hat{g}_i,\hat{g}_j}$, e.g.

$$L(S|g) = -\frac{1}{N_e} \sum_{(i,j) \in E} \delta_{g_i,g_j} \ln(s_{ij}) + (1 - \delta_{g_i,g_j}) \ln(1 - s_{ij})$$

 ${\boldsymbol{G}}$ is the set of all possible partitions

- Bell number, huge ($B_{20} \simeq 5 \times 10^{13}$), cannot brute force, how to optimize?
- Start with an empty graph
- $\bullet\,$ Iteratively attempt to add most likely edges until edge score $< 0.5\,$

 $L \sim 13.15$

François Drielsma (SLAC)

The network predicts a score matrix \boldsymbol{S} , estimate of the true adjacency matrix \boldsymbol{A}

• How to recover a set partition \hat{g} ?

We want the partition \hat{g} that minimizes the CE loss, given $\hat{A}_{ij}=\delta_{\hat{g}_i,\hat{g}_j}$, e.g.

$$L(S|g) = -\frac{1}{N_e} \sum_{(i,j) \in E} \delta_{g_i,g_j} \ln(s_{ij}) + (1 - \delta_{g_i,g_j}) \ln(1 - s_{ij})$$

 ${\boldsymbol{G}}$ is the set of all possible partitions

- Bell number, huge ($B_{20} \simeq 5 \times 10^{13}$), cannot brute force, how to optimize?
- Start with an empty graph
- $\bullet\,$ Iteratively attempt to add most likely edges until edge score $< 0.5\,$

 $L \sim 10.95$

Second edge

Francois Drielsma (SLAC)

Inference

The network predicts a score matrix \boldsymbol{S} , estimate of the true adjacency matrix \boldsymbol{A}

• How to recover a set partition \hat{g} ?

We want the partition \hat{g} that minimizes the CE loss, given $\hat{A}_{ij}=\delta_{\hat{g}_i,\hat{g}_j}$, e.g.

$$L(S|g) = -\frac{1}{N_e} \sum_{(i,j) \in E} \delta_{g_i,g_j} \ln(s_{ij}) + (1 - \delta_{g_i,g_j}) \ln(1 - s_{ij})$$

 ${\boldsymbol{G}}$ is the set of all possible partitions

- Bell number, huge ($B_{20} \simeq 5 \times 10^{13}$), cannot brute force, how to optimize?
- Start with an empty graph
- $\bullet\,$ Iteratively attempt to add most likely edges until edge score $< 0.5\,$

 $L \simeq 2.13$

Inference

Performance

Clustering

- $\mathbf{Purity} = \frac{1}{N} \sum_{i=1}^{n_p} \max_j |c_i \cap t_j|$
 - c_i predicted cluster
 - t_j true cluster with highest count in c_i

Efficiency = $\frac{1}{N} \sum_{i=0}^{n_t} \max_j |c_j \cap t_i|$

- c_j pred. cluster with highest count in t_i
- t_i true cluster

Clustering

- \mathbf{P} urity = $rac{1}{N}\sum_{i=1}^{n_p} \max_j |c_i \cap t_j|$
 - c_i predicted cluster
 - t_j true cluster with highest count in c_i

Efficiency = $\frac{1}{N} \sum_{i=0}^{n_t} \max_j |c_j \cap t_i|$

- c_j pred. cluster with highest count in t_i
- t_i true cluster
- Adjusted Rand Index (ARI)
 - Measure of overlap of prediction and truth, adjusted for random chance

$$RI = \frac{a+b}{a+b+c+d}$$
$$ARI = \frac{RI - E(RI)}{1 - E(RI)}$$

Performance

33 / 40

Start identification

Interaction Clustering

Francois Drielsma (SLAC)

Performance

The shower clustering task can be extended to interaction clustering:

- Interaction group = particles that originate from the same vertex
- $\bullet \ \ \mathsf{Fragment} \ \mathsf{ID} \to \mathsf{Particle} \ \mathsf{ID}$
- $\bullet \ \ \mathsf{Particle} \ \ \mathsf{ID} \to \mathsf{Interaction} \ \ \mathsf{ID}$

Useful to:

Introduction to Graph Neural Networks

- Separate signal from background
- Resolve pileup

Interaction Clustering

Performance

Interaction Clustering

Performance

Interaction clustering performance:

Introduction to Graph Neural Networks

Optimization studies

- Feature extractor
 - ► Geometric (w/ or w/o PPN)
 - CNN

Optimization studies

- Feature extractor
 - ► Geometric (w/ or w/o PPN)
 - CNN
- Receptive field (graph)
 - Complete, Delaunay, MST, kNN

Optimization studies

- Feature extractor
 - ► Geometric (w/ or w/o PPN)
 - CNN
- Receptive field (graph)
 - Complete, Delaunay, MST, kNN
- Architecture
 - Node updater
 - Number of message passings

Optimization studies

- Feature extractor
 - ► Geometric (w/ or w/o PPN)
 - CNN
- Receptive field (graph)
 - Complete, Delaunay, MST, kNN
- Architecture
 - Node updater
 - Number of message passings
- Target adjacency matrix
 - Cluster graph
 - Forest

Optimization studies

A lot of work in optimizing the different components of the GNN chain:

- Feature extractor
 - ► Geometric (w/ or w/o PPN)
 - CNN
- Receptive field (graph)
 - Complete, Delaunay, MST, kNN
- Architecture
 - Node updater
 - Number of message passings
- Target adjacency matrix
 - Cluster graph
 - Forest

See paper: arXiv:2007.01335

Example C: Proteins

Dataset: PROTEINS is a dataset of graph-encoded proteins

- There are 1113 graphs, one per protein
- The nodes are secondary structure elements (essentially turns, twists, folds, etc.)
- Edges connect adjacent structures (either in the chain, or in space)

Goal: Predict whether the protein is a enzyme, or not

Protein Classification

Architecture

For this example, there are two main ingredients:

• A 3-layer message passing function: SAGEConv

•
$$x_i^{(l+1)} = W_1^{(l)} x_i^{(l)} + W_2^{(l)} \cdot \text{mean}_{j \in \mathcal{N}(i)} x_j^{(l)}$$

• A linear layer combining the 3 node embeddings into a set of N'_v features

$$\bullet \ x'_i = W'(x_i^{(1)}, x_i^{(2)}, x_i^{(3)})$$

François Drielsma (SLAC)

Protein Classification

Architecture

For this example, there are two main ingredients:

• A 3-layer message passing function: SAGEConv

•
$$x_i^{(l+1)} = W_1^{(l)} x_i^{(l)} + W_2^{(l)} \cdot \text{mean}_{j \in \mathcal{N}(i)} x_j^{(l)}$$

• A linear layer combining the 3 node embeddings into a set of N^\prime_v features

•
$$x'_i = W'(x_i^{(1)}, x_i^{(2)}, x_i^{(3)})$$

- Two-layer graph pooling operation: Diffpool
 - First, reduce the number of nodes to N/4, then to N/16
- Aggregate the remaining node features to a 1D array
- Reduce to two features (one score for enzyme=NO, one for YES)

François Drielsma (SLAC)

Protein Classification

Training regiment

Given the 2-channel output of the network:

- The binary cross entropy loss is computed for each score pair:
 - $-\tfrac{1}{N}(s_0\ln(s_0)+s_1\ln(s_1), \qquad (s_0,s_1) = \mathrm{softmax}(x_0',x_1')$
- Update the model weights
- Repeat this for 10 epochs
 - \rightarrow Let's move to the notebook!

Conclusions

- 1. What are Graph Neural Networks (GNNs) good for ?
 - Generalize the concept of receptive field in CNNs and succession in RNNs to any structured data
 - Infer about objects in an ensemble, but also about their correlations and superstructures
- 2. How does information flow in a graph ?
 - GNNs are Neural Networks with a shared neighborhood aggregation rule: message passing
 - The adjacency matrix determines information flow
 - The message passing rule is extremely **flexible**... as long as it is **learnable**!

Thank you for your attention!

