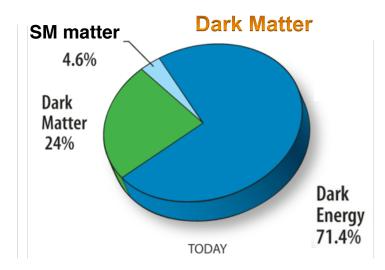
Searches for Beyond Standard Model Physics at the LHC: Run1 Summary and Run2 Prospects.

On behalf of the CMS and ATLAS Collaborations

Altan CAKIR DESY / ITU Flavor Physics and CP Violation Conference 2015, Nagoya, Japan

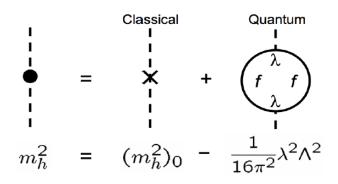
Introduction

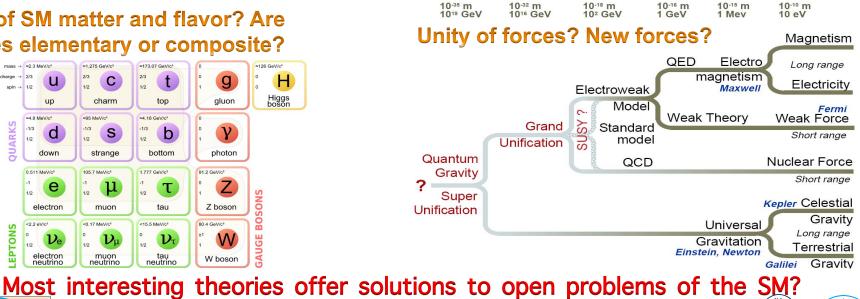
Despite all its successes, the SM is likely to be an effective theory, i.e. the limit (energies and effective couplings) of a more fundamental theory, with new degrees of freedom


The discovery of new physics beyond the Standard Model is one of the highest priorities for the current and future Large Hadron Collider (LHC) program

This talk: Discuss recent results for Beyond the Standard Model searches at the CMS and ATLAS collaborations

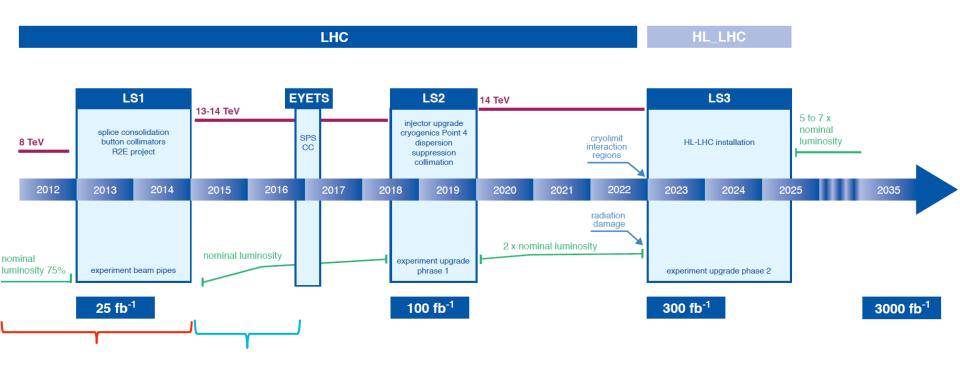



Overview of Beyond the Standard Model Searches



Origin of SM matter and flavor? Are particles elementary or composite?

Naturalness and fine tuning



Large Hadron Collider Schedule

Proton-Proton collisions in 2010-2012 at 50ns bunch spacing

□ 7 TeV in 2010, 2011: ~5.1/fb

□ 8 TeV in 2012 : ~ 21/fb → Excellent data quality for both experiments!

New physics can be just around corner!

Searches for Beyond the Standard Model at the LHC

Searches for Supersymmetry (SUSY)

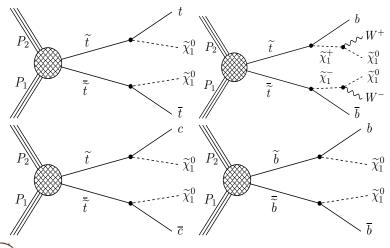
- □ Third generation squarks in fully hadronic final states at $\sqrt{s} = 8$ TeV
 - → CMS Collaboration arXiv: 1503.08037
- Same-flavor opposite-sign dilepton pair, jets, and large missing transverse momentum (MET) at √s = 8 TeV
 - → ATLAS Collaboration arXiv: 1503.03290

All public results, including some new ones I will not cover in this talk:

- https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsSUS
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ SupersymmetryPublicResults
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsEXO
- <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>ExoticsPublicResults</u>
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsB2G

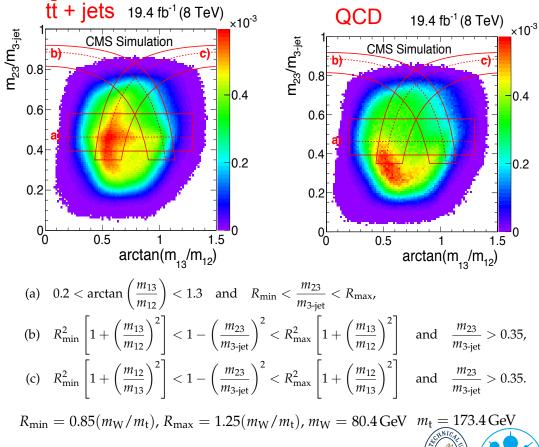
Searches for Exotics (EXO)

- Third generation scalar leptoquarks in the top-tau channel
 - → CMS Collaboration arXiv: 1503.09049
- □ b-jets and a pair of leptons of the same charge in pp collisions at $\sqrt{s} = 8$ TeV
 - → ATLAS Collaboration arXiv: 1504.04605
- High mass resonances decaying to Z and Higgs bosons
 - → CMS Collaboration arXiv: 1502.04994
- □ High-mass diphoton resonances in pp collisions at $\sqrt{s} = 8$ TeV
 - → ATLAS Collaboration arXiv: 1504.05511
- DM in association with top-quark pairs in the single lepton channel
 - → CMS Collaboration arXiv: 1504.03198

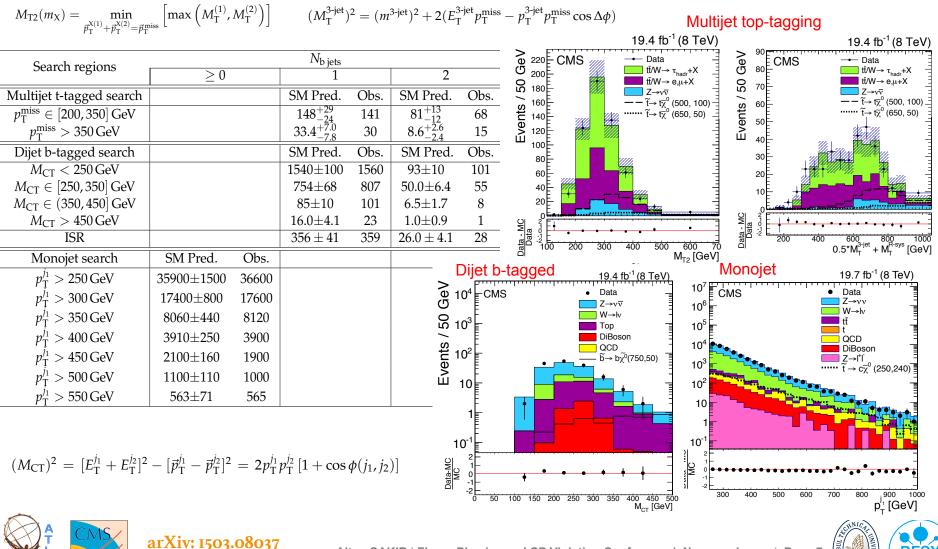


Motivation → Three mutually exclusive searches are discussed

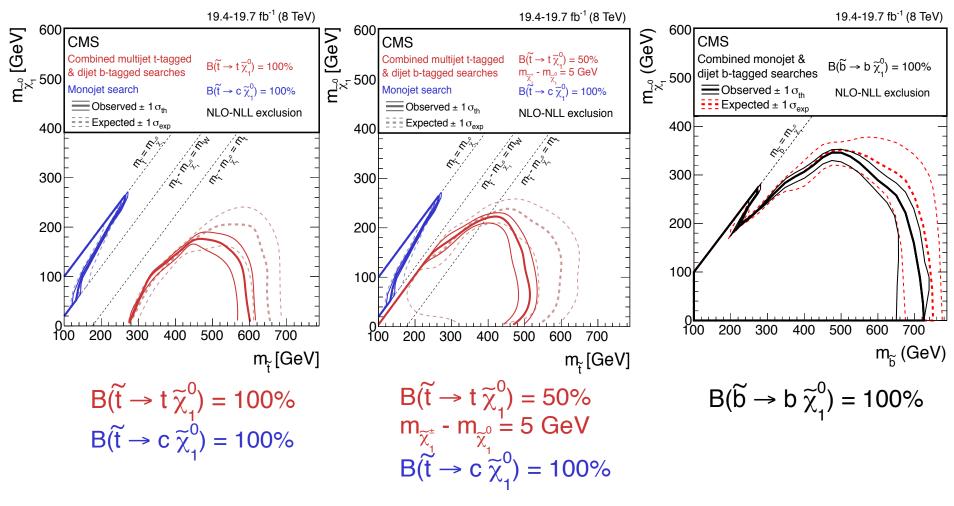
- ① multijet search requiring **one fully reconstructed top quark**
- ② dijet search requiring one or two jets originating from b quarks
- ③ monojet search


Signal Topologies and Top recons.

The collection of five or more jets is divided into all possible sets of three jets and a remnant, where the remnant must contain at least one b-tagged jet.



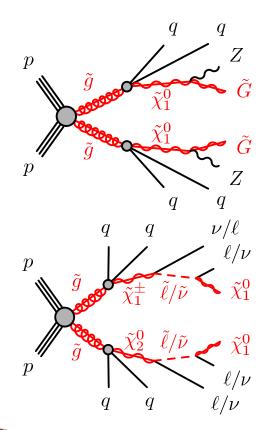
arXiv: 1503.08037 CMS Collaboration



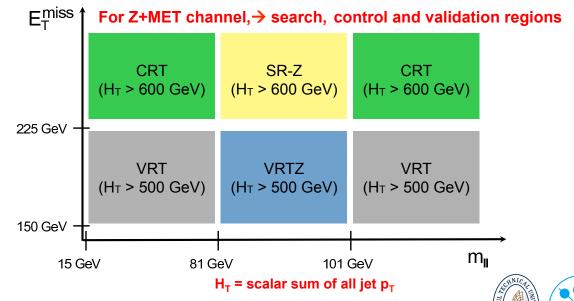
Results for Multijet Top tagging, dijet b-tagged and monojet

CMS Collaboration

Interpretations of the results



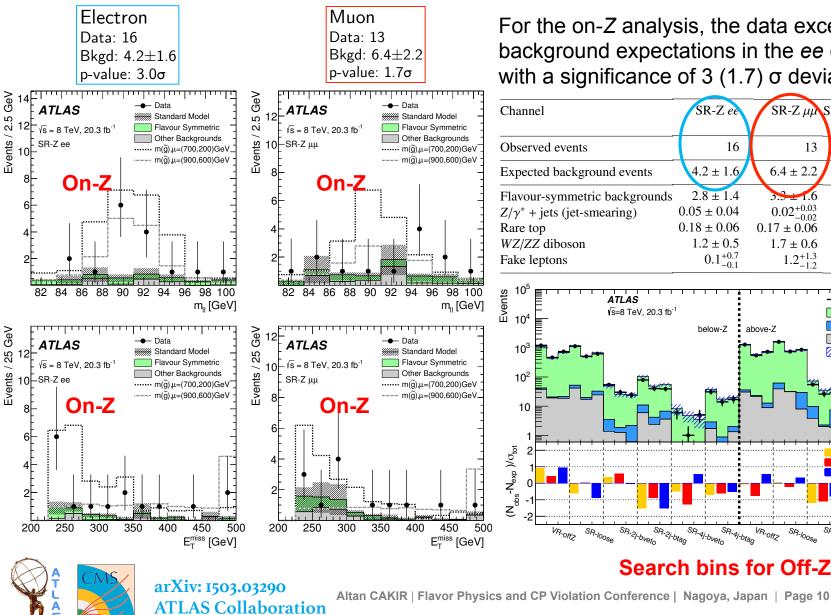
arXiv: 1503.08037 CMS Collaboration



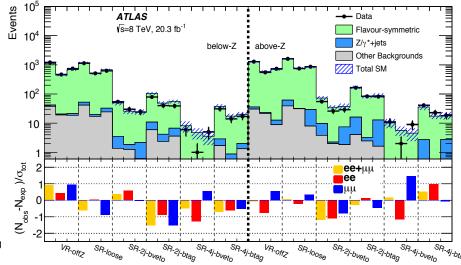
Motivation → Two leptonic production mechanism considered

- (1) decays of squarks and gluinos with Z bosons in the final state
- ② decays of neutralinos resulting in a kinematic endpoint in the dilepton invariant mass distribution

- Various decay chains can give 2I+jets+MET
- tt (main background) estimated from data using eµ events with the same cuts as the signal region (SR), cross checked using Z side-bands


Altan CAKIR | Flavor Physics and CP Violation Conference | Nagoya, Japan | Page 9

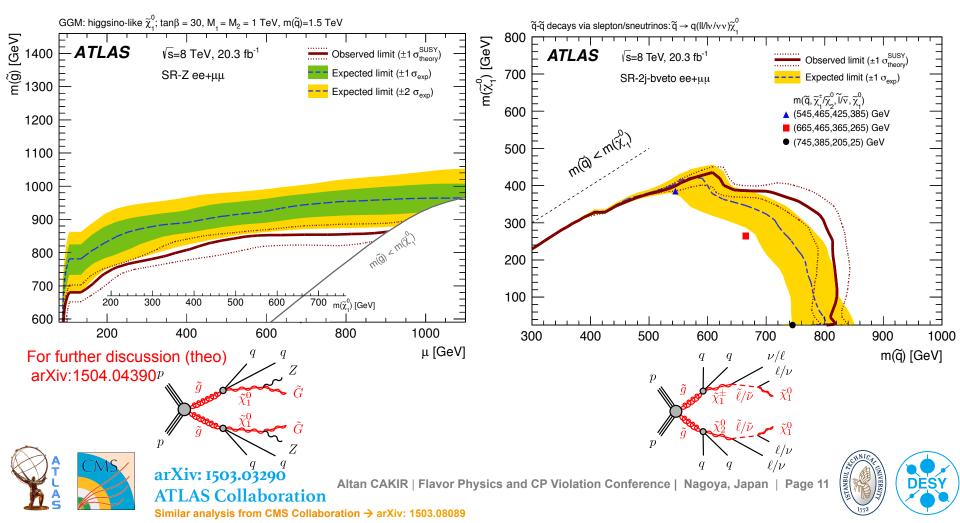
Similar analysis from CMS Collaboration → arXiv: 1502.06031


arXiv: 1503.03290

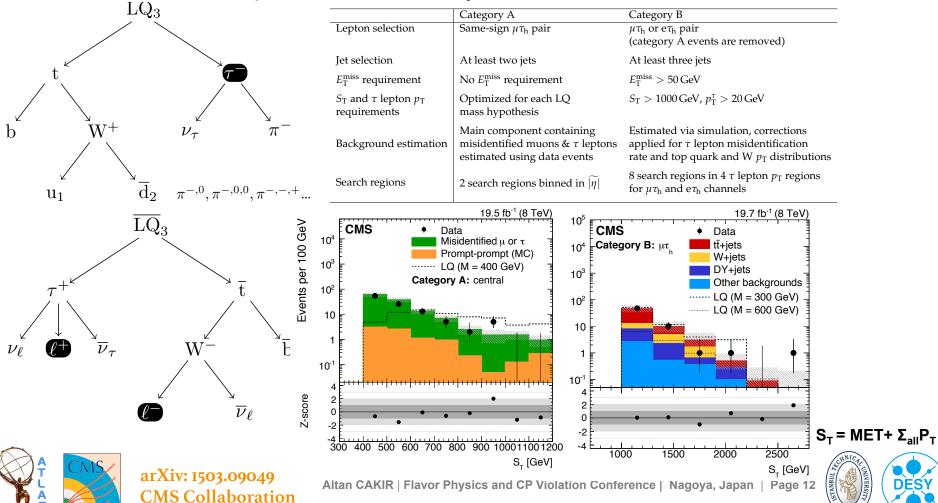
AS Collaboration

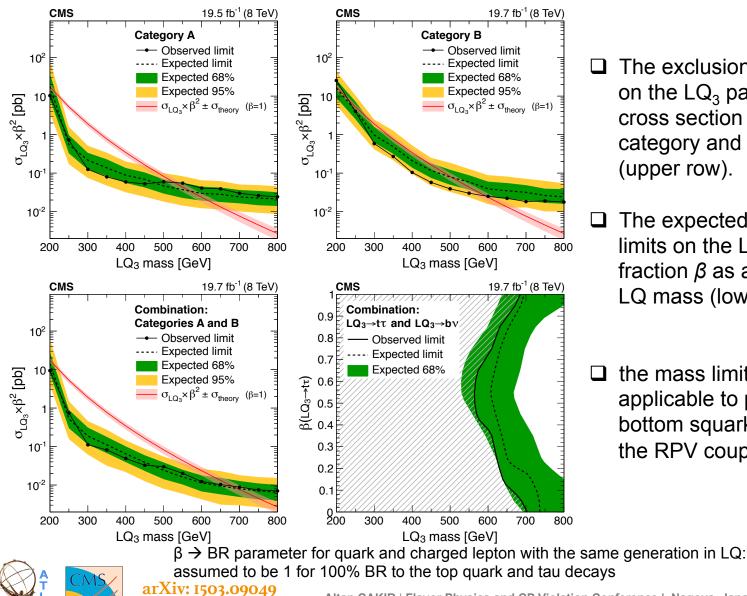
For the on-Z analysis, the data exceeds the background expectations in the $ee(\mu\mu)$ channel with a significance of 3 (1.7) σ deviations.

Channel	SR-Z ee	SR-Ζ μμ S	SR-Z same-flavour combined
Observed events	16	13	29
Expected background events	4.2 ± 1.6	6.4 ± 2.2	10.6 ± 3.2
Flavour-symmetric backgrounds Z/γ^* + jets (jet-smearing)	2.8 ± 1.4 0.05 ± 0.04	$3.3 \pm 1.6 \\ 0.02^{+0.03}_{-0.02}$	6.0 ± 2.6 0.07 ± 0.05
Rare top	0.18 ± 0.06	0.17 ± 0.02	0.35 ± 0.12
WZ/ZZ diboson Fake leptons	$\begin{array}{c} 1.2 \pm 0.5 \\ 0.1 \substack{+0.7 \\ -0.1} \end{array}$	$\begin{array}{c} 1.7 \pm 0.6 \\ 1.2^{+1.3}_{-1.2} \end{array}$	$\begin{array}{c} 2.9 \pm 1.0 \\ 1.3^{+1.7}_{-1.3} \end{array}$



Search bins for Off-Z

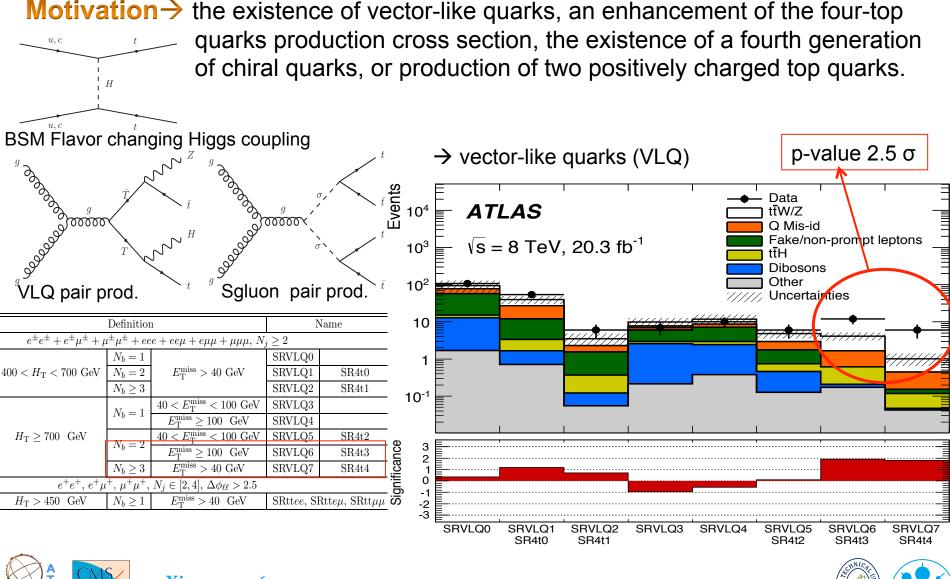

Similar analysis from CMS Collaboration → arXiv: 1503.08089


The results are interpreted in **a supersymmetric model of general gauge mediation** and the expected background contribution to the SR the number of events in data is higher than anticipated (left). The second search targets events with **a lepton pair with invariant mass** inconsistent with *Z* boson decay (right)

Motivation → pair production of third-generation scalar leptoquarks decaying to top quark and tau lepton pairs

Signal topology: an electron or a muon, a hadronically decaying tau lepton, and two or more jets.

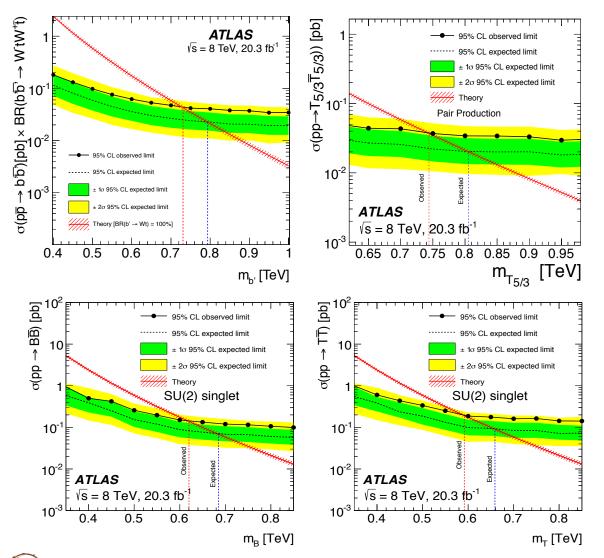
CMS Collaboration


□ The exclusion limits at 95% CL on the LQ₃ pair production cross section times β^2 in category and the combination (upper row).

The expected and observed limits on the LQ branching fraction β as a function of the LQ mass (lower right).

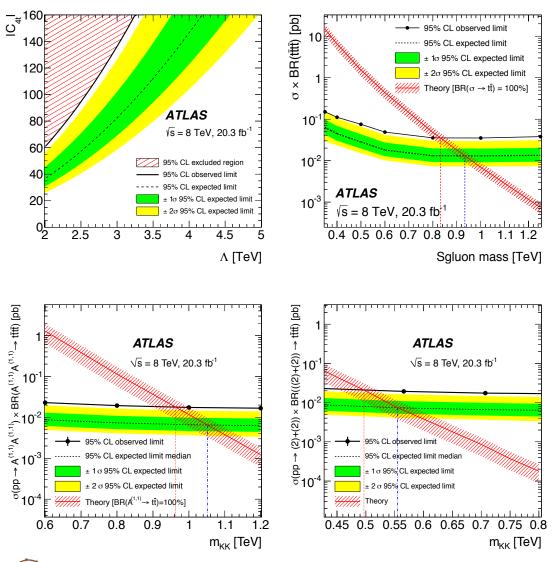
□ the mass limit can be directly applicable to pair produced bottom squarks decaying via the RPV coupling λ_{333}

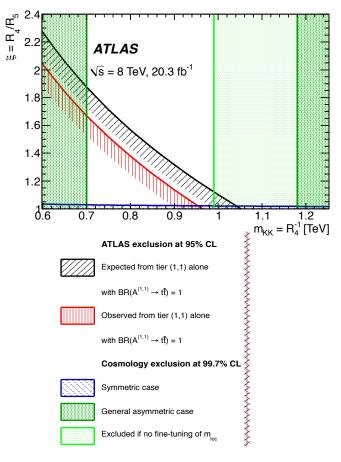
EXO: Events with b-jets and a pair of leptons of the same charge in proton-proton collisions



arXiv: 1504.04605 ATLAS Collaboration

EXO: Events with b-jets and a pair of leptons of the same charge in proton-proton collisions


- Observed and expected limits on the pair production cross section as a function of
 - mass for b`-quark pair
 - T5/3 pair production
 - vector-like B
 - vector-like T quarks
 - The vertical dashed lines indicate the expected and observed limits on the masses, and the shaded band around the theory cross section indicates the total uncertainty on the calculation

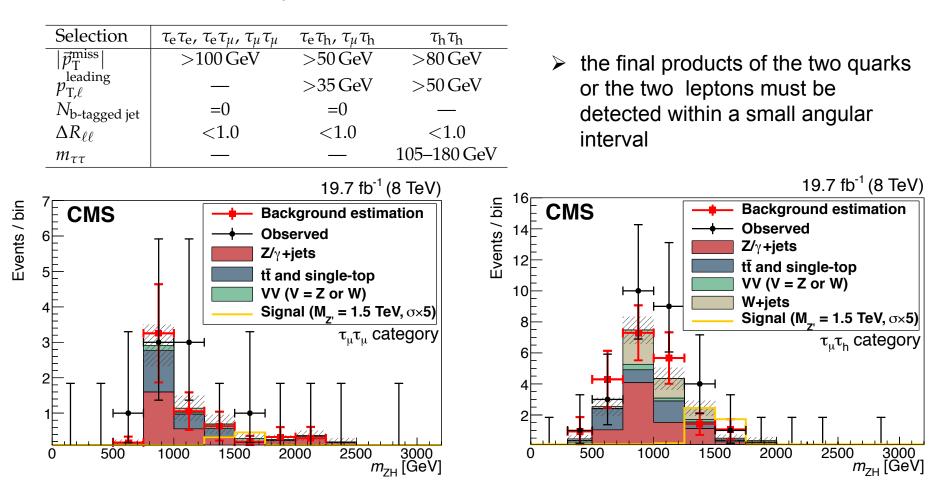


arXiv: 1504.04605 ATLAS Collaboration

EXO: Events with b-jets and a pair of leptons of the same charge in proton-proton collisions

Four fermion contact interaction

$$\mathcal{L}_{4t} = \frac{C_{4t}}{\Lambda^2} \left(\bar{t}_{\mathrm{R}} \gamma^{\mu} t_{\mathrm{R}} \right) \left(\bar{t}_{\mathrm{R}} \gamma_{\mu} t_{\mathrm{R}} \right)$$

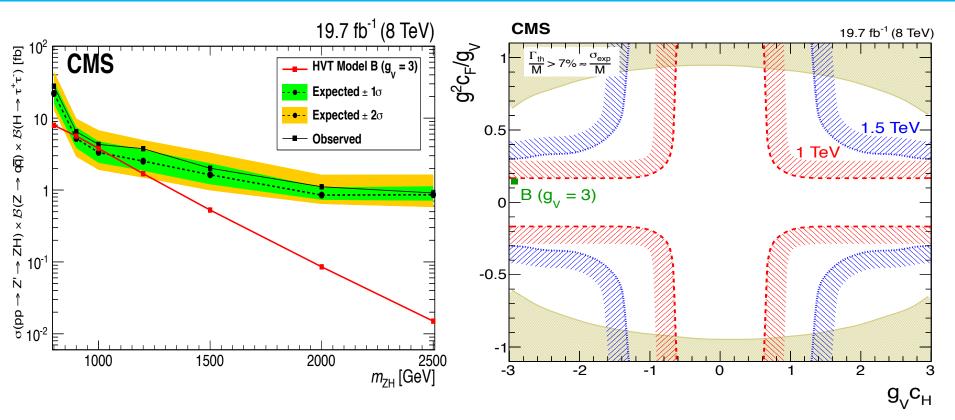


arXiv: 1504.04605 ATLAS Collaboration

EXO: Search for narrow high-mass resonances decaying to Z and Higgs bosons

Motivation \rightarrow The final state consists of a merged jet pair and a τ pair resulting from the decays of Z and H bosons

Altan CAKIR | Flavor Physics and CP Violation Conference | Nagoya, Japan | Page 17



Similar analysis from ATLAS Collaboration → arXiv: 1503.08089

arXiv: 1502.04994

CMS Collaboration

EXO: Search for narrow high-mass resonances decaying to Z and Higgs bosons

Expected and observed upper limit on the $\sigma(Z') \; \mathcal{B}(Z' \, \rightarrow \, Z \mathrm{H})$

for the six analysis channels combined

 $\tau_e \tau_e, \tau_e \tau_\mu, \tau_\mu \tau_\mu \quad \tau_e \tau_h, \tau_\mu \tau_h \quad \tau_h \tau_h$

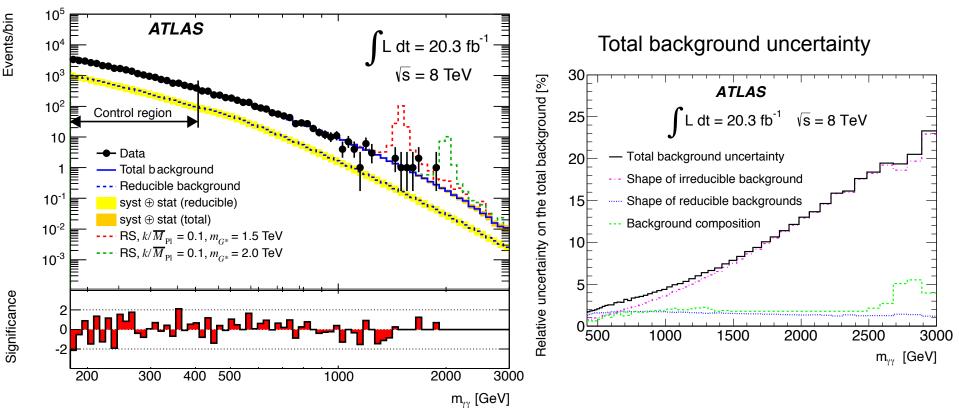
arXiv: 1502.04994

CMS Collaboration

Altan CAKIR | Flavor Physics and CP Violation Conference | Nagoya, Japan | Page 18

Exclusion regions in the plane of the HVT-

model coupling constants for two


resonance masses, 1.0 and 1.5 TeV

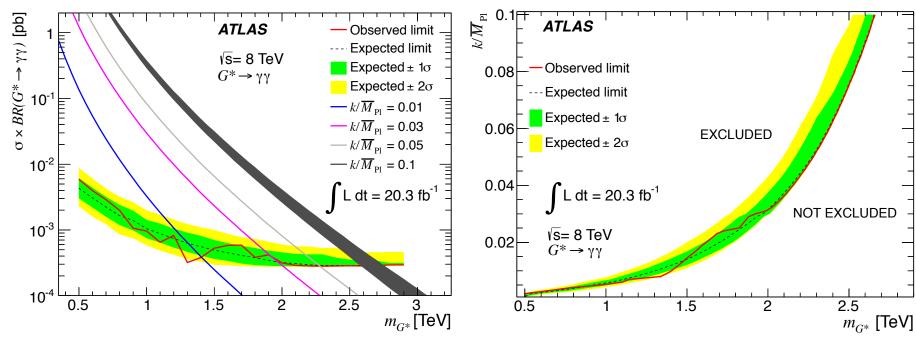
Similar analysis from ATLAS Collaboration → arXiv: 1503.08089

EXO: Search for high-mass diphoton resonances

Motivation→ Search for high mass resonances decaying to pair of photons
> a clean experimental signature: excellent mass resolution and modest backgrounds

RS → Randall-Sundum Model

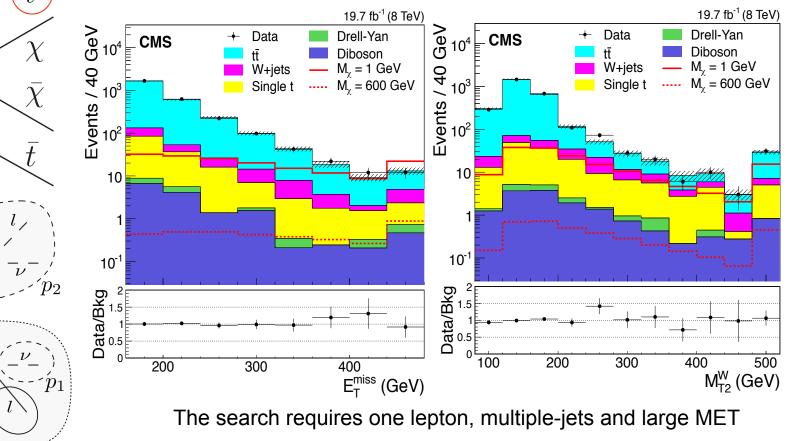
arXiv: 1505.05511


Altan CAKIR | Flavor Physics and CP Violation Conference | Nagoya, Japan | Page 19

Similar analysis from CMS Collaboration → arXiv: 1503.08089

EXO: Search for high-mass diphoton resonances

□ As no evidence for a signal is found, upper limits at 95% confidence level are set on the production cross section times branching ratio, $\sigma \times BR(G^* \rightarrow \gamma \gamma)$, for the lightest RS graviton


Expected and observed upper limits on σ × BR(G* $\rightarrow \gamma\gamma$) expressed at 95% CL, as a function of the assumed value of the graviton mass. Expected and observed upper limits on *k*/*M*PI expressed at 95% CL, as a function of the assumed value of the graviton mass.

B2G: Dark Matter in association with top-quark pairs in the single lepton final state

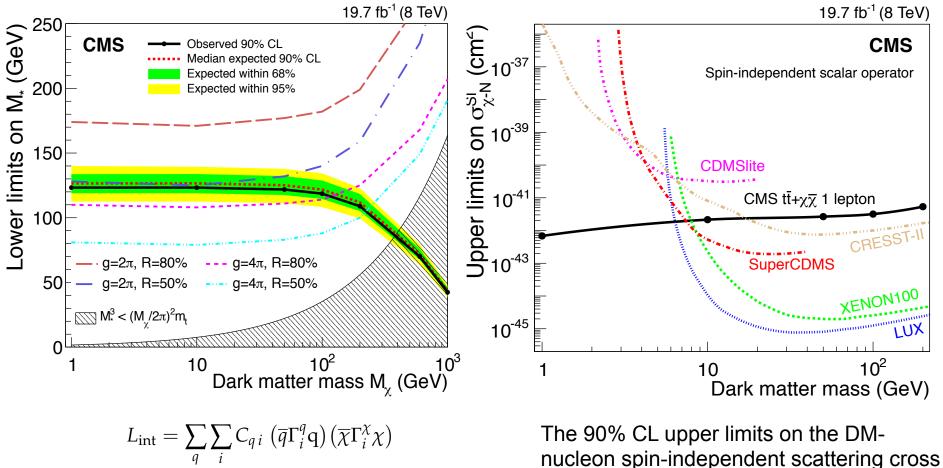
Motivation \rightarrow Search for the production of DM particles in association with a pair of top quarks, and consider only the scalar contact interaction between fermionic dark matter and top quarks

 $M_{\text{T2}}^{\text{W}} = \min\left(m_{\text{y}} \text{ consistent with: } \begin{cases} \vec{p}_{1}^{\text{T}} + \vec{p}_{2}^{\text{T}} = \vec{p}_{\text{T}}^{\text{miss}}, p_{1}^{2} = 0, (p_{1} + p_{\ell})^{2} = p_{2}^{2} = M_{\text{W}}^{2}, \\ (p_{1} + p_{\ell} + p_{\text{b1}})^{2} = (p_{2} + p_{\text{b2}})^{2} = m_{\text{y}}^{2} \end{cases} \right) \rightarrow \text{arXiv: 1203.4813}$ arXiv: 1504.03198

 b_1

W

9 00000000


Altan CAKIR | Flavor Physics and CP Violation Conference | Nagoya, Japan | Page 21

Similar analysis from ATLAS → arXiv: 1410.4031

Collaboration

B2G: Dark Matter in association with top-quark pairs in the single lepton final state

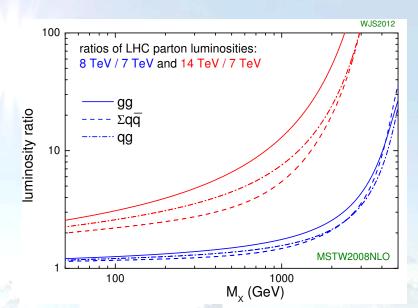
$$L_{\rm int} = \frac{m_{\rm q}}{M_*^3} \overline{q} q \overline{\chi} \chi$$

arXiv: 1504.03198

The 90% CL upper limits on the DMnucleon spin-independent scattering cross section as a function of the DM particle mass for the scalar operator

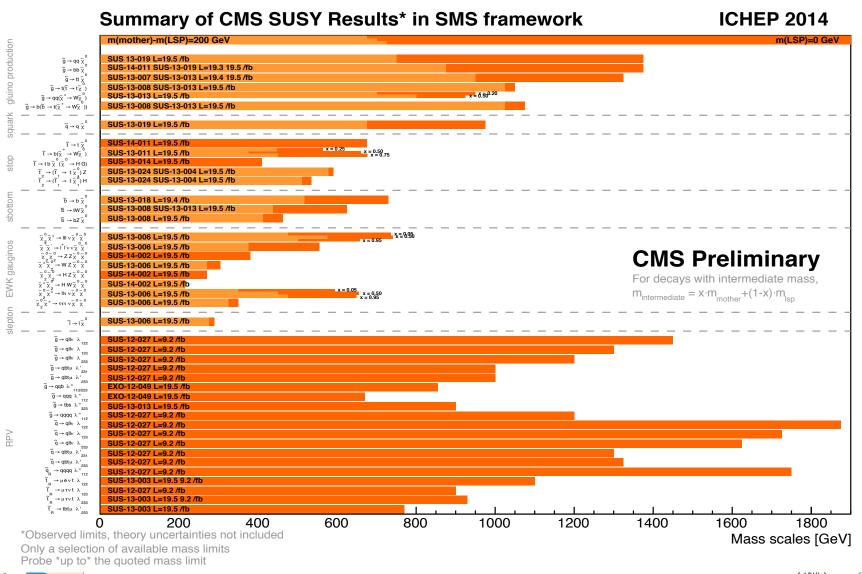
Summary

- Search for physics beyond the Standard Model is one of the main motivations for the LHC experiments
- □ The CMS and ATLAS Collaborations have very rich new physics programs
- □ So far, no significant deviation from the Standard Model observed
 - → Stringent limits on almost all SUSY scenarios and Exotic particles
 - → Great progress in addressing "missing holes" as well as new models
 - → There are some indications that Run 2 may show new physics just around the corner!
- In June 2015, the LHC will restart at a centre-of-mass energy of 13 TeV almost double that used for Run 1. This will affect the cross-sections of all physics processes, both Standard Model and Beyond Standard Model.
 - → The ratio of cross sections 2-2.5 times larger for Higgs processes, 4-5 times larger for ttbar
 - → Stop pair production expects to see a boost of around a factor 10, and gluino production even higher ~20-30 times the cross section in Run 1.
 - \rightarrow BSM signatures Z`, excited quarks etc. are predicted a factor between 10-100


New era will greatly improve the discovery potential of many BSM searches, giving a very optimistic outlook for the LHC Run 2!

Outlook and Prospects for Run II

- High expectations from dramatic energy and luminosity increase
- □ Challenges for the new era (TeV leptons boosted objects, higher pile-up etc.)
- ❑ Will need to start with the foundations (detector conditions, physics objects)
 → continue the SM precision measurements effort, focus on Higgs and the Top quark
- Look fast for new physics hints in the obvious directions once enough data collected


ありがとうございます

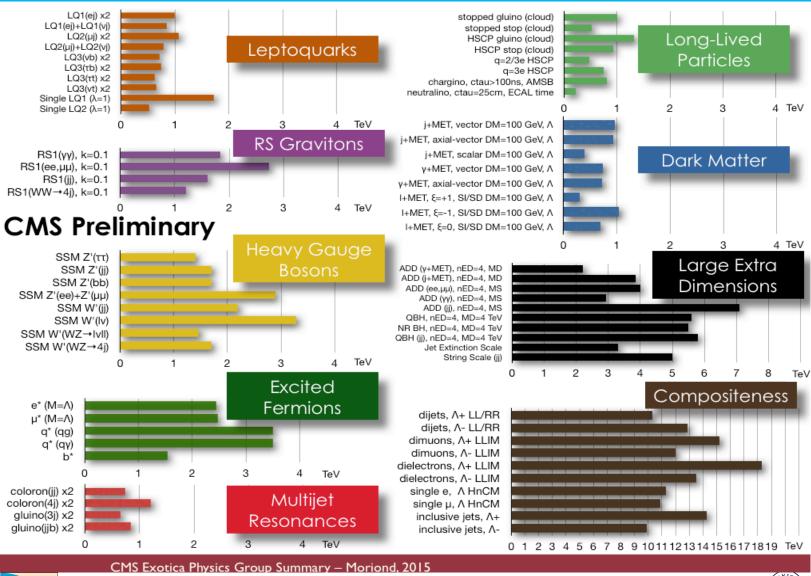
SUSY Summary: The CMS Collaboration

SUSY Summary: The ATLAS Collaboration

ATLAS SUSY Searches* - 95% CL Lower Limits

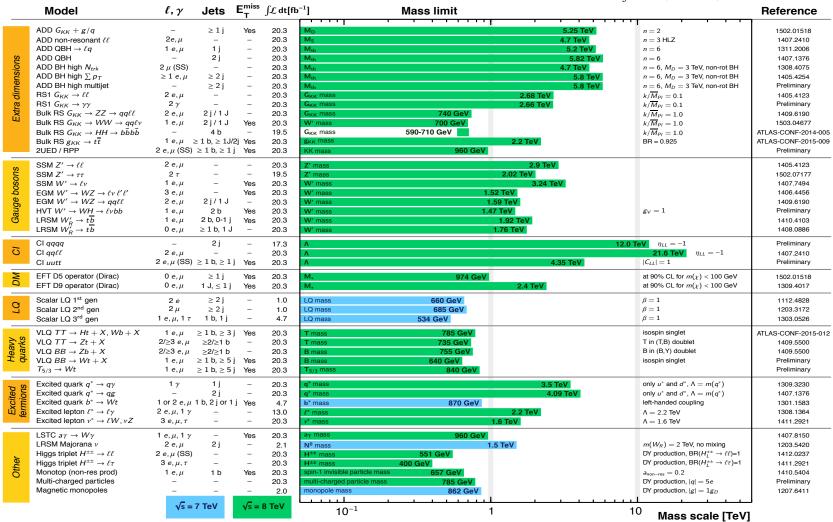
Status: Feb 2015

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{c} MSUGRA/CMSSM \\ \bar{q}q, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{q}\bar{q}\bar{\gamma}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{1} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{1} \rightarrow q q W^{\pm} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q (\mathcal{U}(t_{1}/v_{1}) \bar{\chi}_{1}^{1}) \\ GMSB (\bar{\ell} \ NLSP) \\ GGM (\text{bino NLSP}) \\ GGM (\text{bino NLSP}) \\ \end{array} $	$0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 1 - 2 \tau + 0 - 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20.3 20.3 20.3	\bar{q}, \bar{g} 1.7 TeV $m(\bar{q})=m(\bar{g})$ \bar{q} 850 GeV $m(\bar{\chi}_1^0) = O \text{ GeV}, m(\mathbb{1}^u \text{ gen.} \bar{q}) = m(2^{ud} \text{ gen.} \bar{q})$ \bar{q} 250 GeV $m(\bar{\chi}_1^0) = O \text{ GeV}, m(\mathbb{1}^u \text{ gen.} \bar{q}) = m(2^{ud} \text{ gen.} \bar{q})$ \bar{g} 1.33 TeV $m(\bar{\chi}_1^0) = O \text{ GeV}$ \bar{g} 1.33 TeV $m(\bar{\chi}_1^0) = O \text{ GeV}$ \bar{g} 1.2 TeV $m(\bar{\chi}_1^0) = 0 \text{ GeV}$ \bar{g} 1.6 TeV $m(\bar{\chi}_1^0) > 50 \text{ GeV}$ \bar{g} 1.28 TeV $m(\bar{\chi}_1^0) > 50 \text{ GeV}$ \bar{g} 619 GeV $m(\bar{\chi}_1^0) > 50 \text{ GeV}$	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144
3 rd gen. ẽ med.	GGM (higgsino-bino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{array}{c} 0, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1 <i>b</i> 0-3 jets mono-jet 3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes Yes Yes Yes	4.8 5.8 20.3 20.1 20.3 20.1 20.1 20.1	š 900 GeV Im(x1)>200 GeV ĝ 900 GeV Im(x1)>200 GeV ĝ 690 GeV m(X1)>200 GeV r/1² scale 865 GeV m(X1)>200 GeV ĝ 1.25 TeV m(X1) 400 GeV ĝ 1.1 TeV m(X1) 350 GeV ĝ 1.34 TeV m(X1) 400 GeV ĝ 1.31 TeV m(X1) 400 GeV	1211.1167 ATLAS-CONF-2012-152 1502.01518 1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow \delta\tilde{k}_{1}^{+} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow \tilde{k}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow \tilde{k}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow \tilde{k}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \alpha tural GMSB) \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} + Z \end{split} $	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 0-1 e, µ	2 b 0-3 b 1-2 b 0-2 jets 1-2 b 1-2 b 1-b 1 b 1 b	Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.3 20.3 20.3 20.3	\tilde{b}_1 100-620 GeV $m(\tilde{c}_1^0) < 500 \text{ GeV}$ \tilde{b}_1 275-440 GeV $m(\tilde{c}_1^0) < 50 \text{ GeV}$ \tilde{i}_1 275-440 GeV $m(\tilde{c}_1^0) < 50 \text{ GeV}$ \tilde{i}_1 110-167 GeV $m(\tilde{c}_1^0) < 50 \text{ GeV}$ \tilde{i}_1 90-191 GeV $m(\tilde{c}_1^0) = 2m(\tilde{c}_1^0)$ \tilde{i}_1 90-240 GeV $m(\tilde{c}_1^0) = 1 \text{ GeV}$ \tilde{i}_1 90-240 GeV $m(\tilde{c}_1^0) = 55 \text{ GeV}$ \tilde{i}_1 90-240 GeV $m(\tilde{c}_1^0) = 1 \text{ GeV}$ \tilde{i}_2 290-600 GeV $m(\tilde{c}_1^0) = 200 \text{ GeV}$	1308.2631 1404.2500 1209.2102,1407.0583 1403.4853,1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_{L\nu} \tilde{\ell}_{L}(\ell \tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} \nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 \mu \tilde{\chi}_1^0, h \rightarrow b \tilde{b} / W W / \tau \tau / \tau \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ γγ e,μ,γ 4 e,μ	0 0 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{x}_1^+ \tilde{x}_1^-$ prod., long-lived \tilde{x}_1^+ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{x}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \tilde{g})$ GMSB, $\tilde{x}_1^0 \rightarrow \gamma \tilde{G}$, long-lived \tilde{x}_1^0 $\tilde{q}\tilde{q}, \tilde{x}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - - -	Yes Yes - - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{split} LFV & pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e + \mu \\ LFV & pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear & RPV & CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e \tilde{v}_\mu, e \mu \tilde{v}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}_\tau \\ \tilde{g} \rightarrow q q q \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow b s \end{split} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_r\$ 1.61 TeV $\lambda'_{11}=0.10, \lambda_{132}=0.05$ \$\vec{v}_r\$ 1.1 TeV $\lambda'_{11}=0.10, \lambda_{122}=0.05$ \$\vec{v}_r\$ 1.1 TeV $\lambda'_{11}=0.10, \lambda_{122}=0.05$ \$\vec{v}_r\$ 1.35 TeV m(\vec{v})=0.05, \vec{v}_{123}=0.05 \$\vec{v}_r\$ 1.35 TeV m(\vec{v})=0.02, \vec{v}_{132}=0.05 \$\vec{v}_r\$ 1.35 TeV m(\vec{v})=0.02, \vec{v}_{132}=0.05 \$\vec{v}_r\$ 1.35 TeV m(\vec{v})=0.02, \vec{v}_{132}=0.05 \$\vec{v}_r\$ 450 GeV m(\vec{v})=0.2, \vec{v}_{13}(\vec{v}), \vec{v}_{12}=0) \$\vec{v}_r\$ 916 GeV BR(r)=BR(b)=BR(c)=0% \$\vec{v}_r\$ 850 GeV BR(r)=BR(b)=BR(c)=0%	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	$\sqrt{s} = 7 \text{ TeV}$	$\frac{0}{\sqrt{s} = 8 \text{ TeV}}$		Yes 8 TeV data	20.3 1	ε 490 GeV m(k ⁰)<200 GeV -1 1 Mass scale [TeV]	1501.01325


*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

EXOTICA Summary: The CMS Collaboration



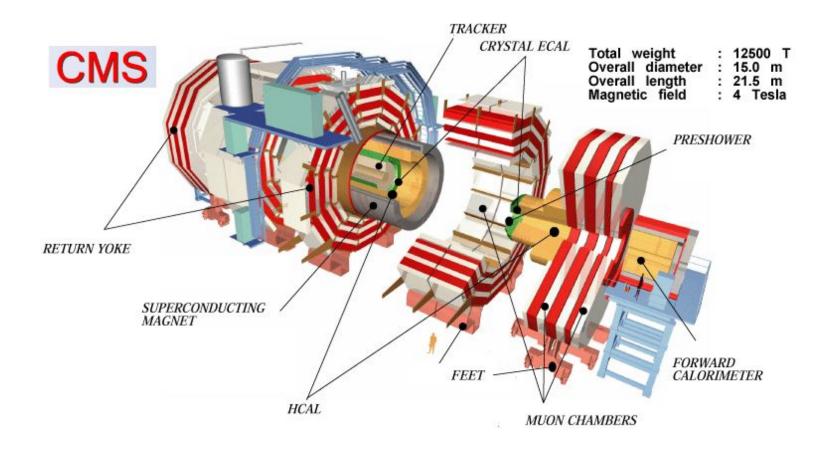
EXOTICA Summary: The ATLAS Collaboration

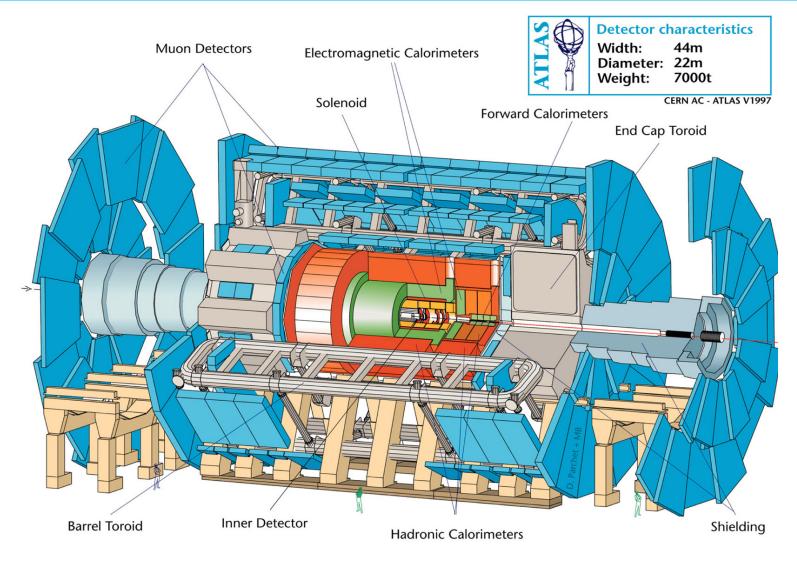
ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2015

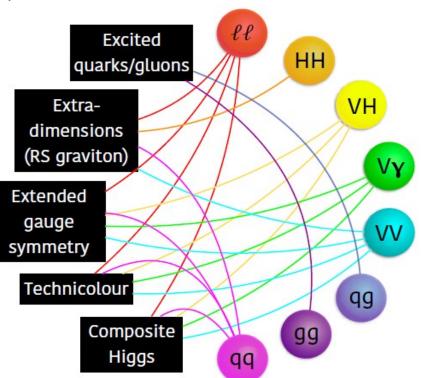
*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary


 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$


The CMS Detector

The ATLAS Detector

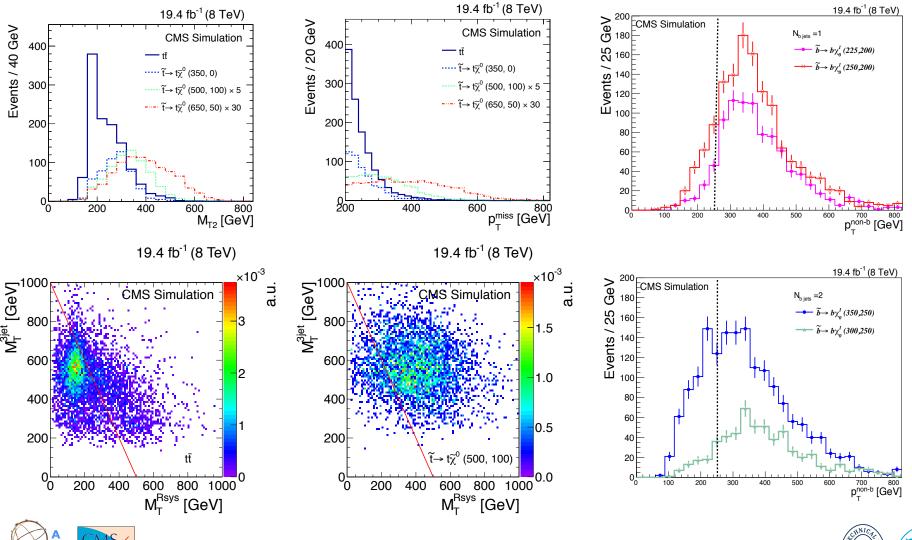


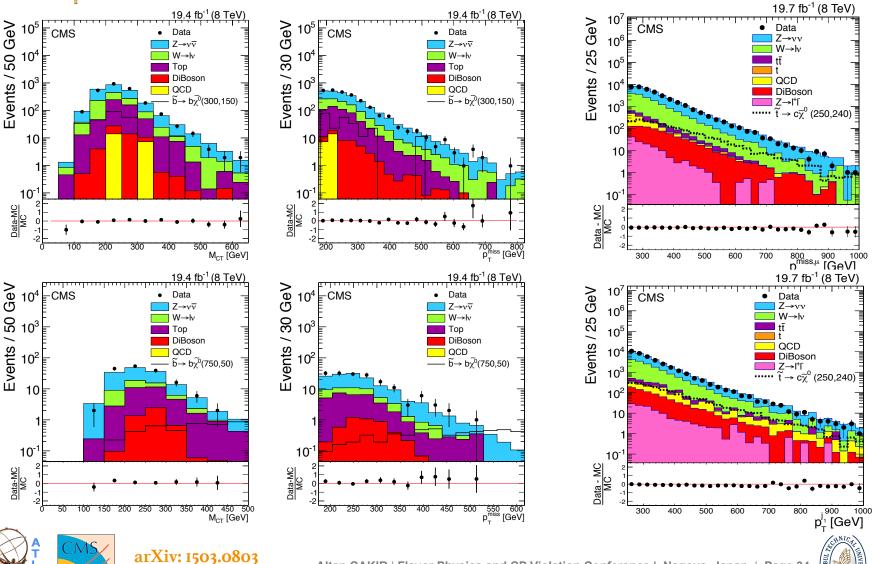


Other models

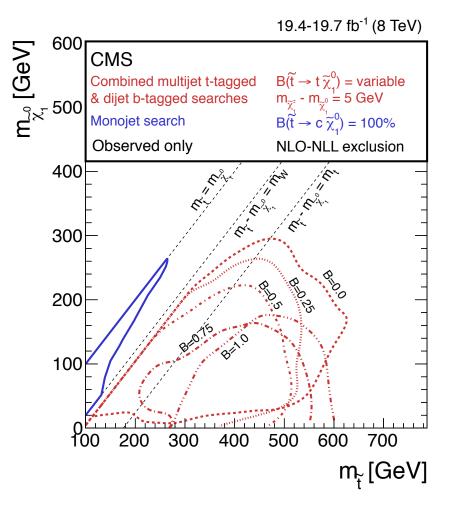
- Composite Higgs / Little Higgs \rightarrow Vector-like quarks (T,B)
 - Can cancel Higgs mass divergences from top loops
 - Color-triplet spin-1/2 fermions
 - Left and right handed under SU(2)

- These and other models can also predict **new resonances**
- Great way to find BSM!



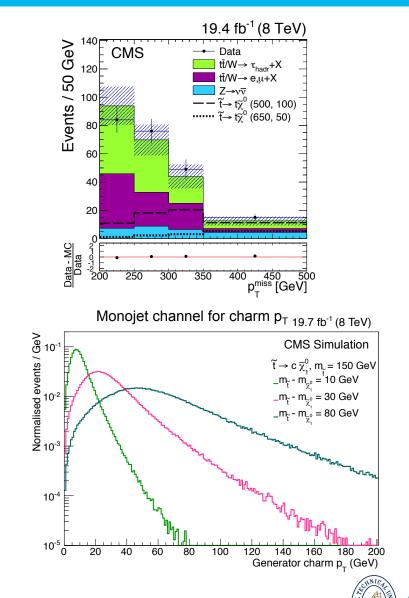

Backup slides

Backup slides

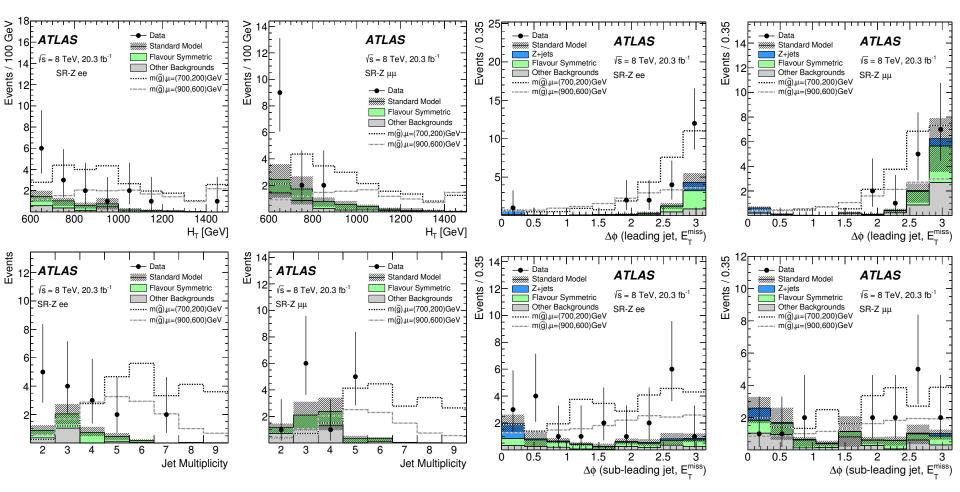


arXiv: 1503.0803 CMS Collaboration

Altan CAKIR | Flavor Physics and CP Violation Conference | Nagoya, Japan | Page 34

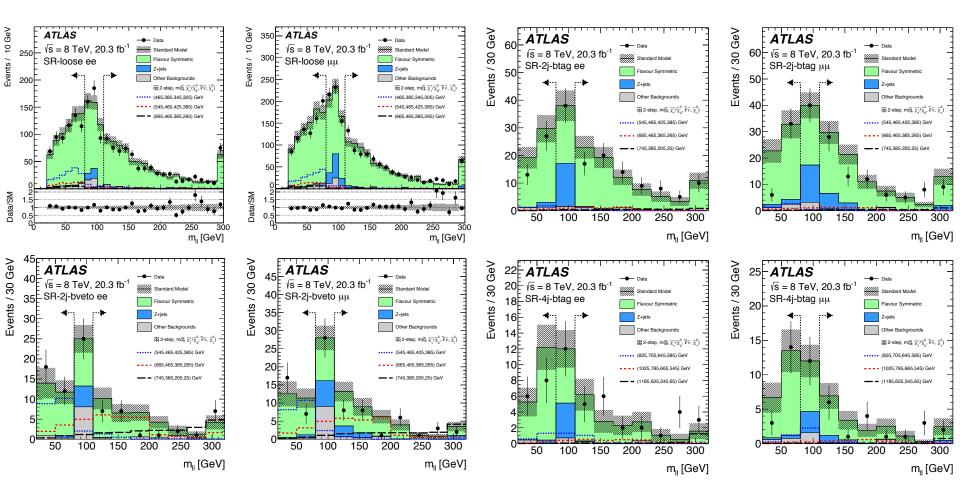

DES

Backup slides


arXiv: 1503.0803

CMS Collaboration

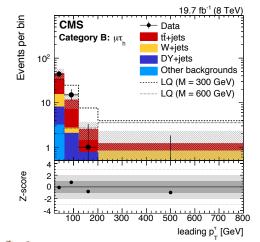
Backup slides

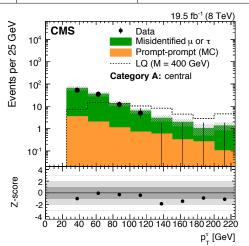


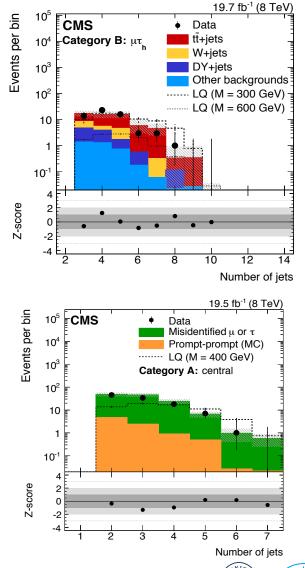
arXiv: 1503.03290 ATLAS Collaboration

Backup slides

AT CMS


arXiv: 1503.03290 ATLAS Collaboration


Bac	kup sli	ide	S						5	GGM: higgsino-	like $\tilde{\chi}_1^0$; tan β = 30, M ₁ = M ₂ = 1 TeV	, m(q̃)=1.5 TeV
On-Z Region	1	H _T GeV]	<i>n</i> _{jets}	<i>m_{tt}</i> [GeV]	SF/DF	$E_{\rm T}^{\rm miss}$ sig. [$\sqrt{\rm GeV}$]	fsт	$\Delta \phi(\text{jet}_{12}, E_{\text{T}}^{\text{miss}})$	— ອິງ 1400 ອິງ 1400 ພິ 1300		√s=8 TeV, 20.3 fb ⁻¹ SR-Z ee+μμ	Observed limit (±1 Expected limit (±1 Expected limit (±1
Signal regions										-		
SR-Z	> 225 >	600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	-	-	> 0.4		F		
Control regions	s								— 1100			
Seed region	- >	600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	< 0.9	< 0.6	-	1000			
CReµ	> 225 >	600	≥ 2	$81 < m_{\ell\ell} < 101$	DF	-	-	> 0.4		E		
CRT	> 225 >	600	≥ 2	$m_{\ell\ell} \notin [81,101]$	SF	-	-	> 0.4	900			0
Validation regi	ons								800			m@zml
VRZ	< 150 >	600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	-	-	-				mus
		500	≥ 2	$m_{\ell\ell} \notin [81,101]$	SF	-	-	> 0.4	700			<u></u>
VRTZ	150-225 >	500	≥ 2	$81 < m_{\ell\ell} < 101$	SF	-	-	> 0.4	600	200		0 700 m($\tilde{\chi}_{1}^{0}$) [GeV]
)ff-Z	$E_{ m T}^{ m miss}$	s		n _{jets} n _t	-jets	m _{tt}		SF/DF	_	200	400 600	800
Region	[GeV	7]		jeu .	. jeu	[GeV]		,		~~ de eque vie ele	pton/sneutrinos:g̃g → qqqqq(IIII/IIIv	n. n. (
Signal regions											<pre>pion/sneutrinos.gg → qqqqq(iii/iii/i/</pre>	
R-2j-bveto	> 20	0		≥ 2 =	= 0	$m_{\ell\ell} \notin [80, 11]$	0]	SF	– 1200 95] (1200 سلام) 1000		√s=8 TeV, 20.3 fb ⁻¹	Observed limit (±1
R-2j-btag	> 20	0		≥ 2 ≥	2 1	$m_{\ell\ell} \notin [80, 11]$	0]	SF		-	SR-4j-bveto ee+μμ	Expected limit (±1
R-4j-bveto	> 20	0		≥ 4 =	= 0	$m_{\ell\ell} \notin [80, 11]$	0]	SF	্র 1000	-		
R-4j-btag	> 20				21	$m_{\ell\ell} \notin [80, 11]$	0]	SF	E			m($\tilde{g}, \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}, \tilde{l}/\tilde{v}, \tilde{\chi}_{1}^{0}$)
R-loose	> (150,	100)	($(2, \geq 3)$	-	$m_{\ell\ell} \notin [80, 11]$	0]	SF		F		▲ (825,705,645,585) G ■ (1025,785,665,545)
Control regions	5								800	 -	8	• (1185,625,345,65) G
CRZ-2j-bveto	> 20				= 0	$80 < m_{\ell\ell} < 1$		SF		- - m@~	mELT	
RZ-2j-btag	> 20				2 1	$80 < m_{\ell\ell} < 1$		SF	600	- n@-	and a second	in a start of the
CRZ-4j-bveto	> 20				= 0	$80 < m_{\ell\ell} < 1$		SF	600			
CRZ-4j-btag	> 20				2 1	$80 < m_{\ell\ell} < 1$		SF		L		and the second
CRZ-loose	> (150,	100)	((2,≥3)	-	$80 < m_{\ell\ell} < 1$	10	SF				A CONTRACT OF A
RT-2j-bveto	> 20				= 0	$m_{\ell\ell} \notin [80,11$		DF	400			
CRT-2j-btag	> 20				2 1	$m_{\ell\ell} \notin [80, 11]$		DF		-		
RT-4j-bveto	> 20				= 0	$m_{\ell\ell} \notin [80, 11]$	-	DF		┝		
CRT-4j-btag	> 20				<u>2</u> 1	$m_{\ell\ell} \notin [80, 11]$		DF	200	┣─		
CRT-loose	> (150,	100)	($(2, \geq 3)$	-	$m_{\ell\ell} \notin [80, 11]$	0]	DF		F F		
Validation regio	ons								40	0 500	600 700 800 900	1000 1100 1200
/R-offZ	100-1	50		= 2	-	$m_{\ell\ell} \notin [80, 11]$	0]	SF				
									_			HNIC



Pookup olidoo		Catego	ory A		0	ory B	
Backup slides				$\mu \tau_{\rm h}$	ch.	$e\tau_h$	ch.
Systematic uncertainty	Magnitude (%)	B (%)	S (%)	B (%)	S (%)	B (%)	S (%)
Integrated luminosity	2.6	0.4/1.2	2.6	2.6	2.6	2.6	2.6
Electron reco/ID/iso & trigger	$p_{\rm T}$, η dependent		—			1.4	2.2
Muon reco/ID/iso & trigger	1.1	0.1/0.5	1.1	0.9	0.9	_	_
τ lepton reco/ID/iso	6.0	0.8/2.8	6.0	1.5	3.0	0.6	3.1
Muon momentum scale & resolution	$p_{\rm T}$ dependent	0.1/0.3	0.4			_	_
au lepton energy scale	3.0	1.2/4.1	2.0	2.3	2.7	0.6	1.5
τ lepton energy resolution	10.0	0.2/0.8	0.9	1.2	1.3	0.2	0.1
Jet energy scale	$p_{\rm T}$, η dependent	0.9/3.2	1.9	4.2	1.9	5.6	2.7
Jet energy resolution	η dependent	0.4/1.2	1.0	0.8	0.3	1.6	0.8
Pileup	5.0	0.1/1.2	1.0/2.5	0.8	0.3	0.9	0.5
PDF (on acceptance)			$^{+2.9}_{-4.3}/^{+2.4}_{-6.2}$	—	0.7	_	0.9
PDF (on background)	—			8.7		8.3	_
Matrix method	—	23.1/15.3	—			_	_
Jet $ ightarrow au$ misidentification rate	$p_{\rm T}$ dependent		—	8.2	1.0	10.9	0.8
$\mathrm{e} ightarrow au$ misidentification rate	η dependent		—	0.1	0.1	0.1	0.1
tt factorization/renormalization	+100 -50		—	$^{+6.1}_{-5.9}$	—	$^{+2.9}_{-2.7}$	_
Top quark $p_{\rm T}$ re-weighting	$p_{\rm T}$ dependent	_	_	0.1		0.1	_
W+jets factorization/renormalization	$+100 \\ -50$		—	4.3		0.3	_
W+jets matching threshold	$+100 \\ -50$		_	1.3	_	2.5	

Altan CAKIR | Flavor Physics and CP Violation Conference | Nagoya, Japan | Page 39

arXiv: 1503.09049 CMS Collaboration

Backup slides

M _{LQ3} (GeV)	$p_{\rm T}^{\tau}$ (GeV)	S _T (GeV)	$N_{ m Bkg}^{ m PP} \pm (m stat)$	Total $N_{\rm Bkg}^{\rm Exp}$	N^{Obs}	Z-score	$N_{ m LQ_3}^{ m Exp} \pm$ (stat)	ϵ_{LQ_3} (%)	Process	$p_{\mathrm{T}}^{\tau} < 60 \mathrm{GeV}$	$60 < p_{\mathrm{T}}^\tau < 120\mathrm{GeV}$	$120 < p_{\rm T}^{\tau} < 200 { m GeV}$	$p_{\rm T}^{\tau} > 200{\rm GeV}$	ϵ_{LQ} OS	₃ (%) SS
(Gev)	(Gev)	(Gev)	\pm (Stat)	\pm (stat) \pm (syst)		\sim	\pm (stat)	(/0)	LQ ₃ (200 GeV)	$21 \pm 12^{+7}_{-2}$	$0.0 \pm 0.1 \pm 0.0$	$0.0 \pm 0.1 \pm 0.1$	$0.0 \pm 0.1 \pm 0.1$	0.01	
				Central ch									$0.0 \pm 0.1 \pm 0.1$ $0.0 \pm 0.1 \pm 0.1$	0.09	
200	35	410	8.5 ± 1.0	$128\pm5\pm25$	105	-1.0	53 ± 21	0.04	LQ ₃ (250 GeV)	$31.0\pm8.2^{+6.6}_{-3.4}$	$13.1 \pm 5.5^{+1.1}_{-2.9}$	$0.0 \pm 0.1 \pm 0.1$			
250	35	410	8.5 ± 1.0	$128\pm5\pm25$	105	-1.0	252 ± 24	0.58	LQ3 (300 GeV)	$33.1 \pm 5.3^{+2.8}_{-3.8}$	$24.6 \pm 4.6 ^{+2.8}_{-2.1}$	$7.6\pm2.6^{+1.1}_{-1.7}$	$3.9 \pm 1.8^{+0.9}_{-0.3}$	0.35	
300	50	470	4.2 ± 0.5	$39.9\pm2.9\pm8.3$	27	-1.5	153 ± 11	0.98	LQ3 (350 GeV)	$18.1\pm2.6^{+1.8}_{-1.4}$	$13.3\pm2.2^{+1.0}_{-1.1}$	$7.2\pm1.6^{+0.8}_{-0.7}$	$2.9\pm0.9^{+0.5}_{-1.4}$	0.57	0.08
350	50	490	4.0 ± 0.5	$34.6\pm2.7\pm7.1$	25	-1.2	92.4 ± 5.6	1.45	LQ3 (400 GeV)	$13.9 \pm 1.4^{+1.1}_{-2.6}$	$13.4 \pm 1.4^{+1.0}_{-1.1}$	$7.8 \pm 1.1^{+0.8}_{-0.6}$	$4.1\pm0.8^{+0.6}_{-0.8}$	1.30	0.12
400	65	680	0.9 ± 0.2	$7.2\pm1.2\pm1.7$	4	-1.0	28.4 ± 2.1	1.00	LQ3 (450 GeV)	$10.1\pm0.9^{+0.8}_{-1.9}$	$8.6\pm0.8^{+0.8}_{-0.8}$	$7.1 \pm 0.7^{+0.5}_{-0.6}$	$5.8 \pm 0.6^{+0.7}_{-0.6}$	2.05	0.27
450	65	700	0.8 ± 0.2	$6.3\pm1.1\pm1.6$	4	-0.8	17.3 ± 1.1	1.27	LQ ₃ (500 GeV)	$5.2\pm0.4^{+0.5}_{-0.9}$	$6.0 \pm 0.5 \pm 0.5$	$5.3 \pm 0.4^{+0.4}_{-0.5}$	$4.4 \pm 0.4^{+0.7}_{-0.5}$	2.75	0.27
500	65	770	0.5 ± 0.2	$3.2\pm0.8\pm0.8$	4	+0.5	9.8 ± 0.6	1.43	LQ ₃ (550 GeV)	$^{-0.9}_{-0.6}$	$4.4\pm0.3^{+0.4}_{-0.3}$	$4.3 \pm 0.3^{+0.5}_{-0.4}$	$4.0 \pm 0.3 \pm 0.4$	4.04	0.36
550	65	800	0.4 ± 0.1	$2.7\pm0.8\pm0.6$	4	+0.7	6.1 ± 0.3	1.71	LQ ₃ (600 GeV)	$2.0 \pm 0.1^{+0.2}_{-0.5}$	$2.7 \pm 0.2 \pm 0.2$	$2.7 \pm 0.2 \pm 0.2$	$3.5 \pm 0.2 \pm 0.4$		0.43
600	65	850	0.2 ± 0.1	$1.8\pm0.6\pm0.4$	3	+0.9	3.6 ± 0.2	1.85	LQ ₃ (650 GeV)	0.0	$1.8 \pm 0.1^{+0.1}_{-0.2}$	$2.0 \pm 0.1 \pm 0.2$	$3.5 \pm 0.2 \pm 0.4$ $2.5 \pm 0.1^{+0.3}_{-0.2}$	6.07	
650	65	850	0.2 ± 0.1	$1.8\pm0.6\pm0.4$	3	+0.9	2.2 ± 0.1	1.99		$1.3\pm0.1^{+0.1}_{-0.3}$	•		0.2		
700	85	850	0.1 ± 0.1	$1.1\pm0.5\pm0.3$	2	+0.8	1.3 ± 0.1	2.02	LQ ₃ (700 GeV)	$0.7\pm0.1\pm0.1$	$1.1\pm0.1\pm0.1$	$1.1\pm0.1\pm0.1$	$1.6\pm0.1^{+0.2}_{-0.1}$		0.57
750	85	850	0.1 ± 0.1	$1.1\pm0.5\pm0.3$	2	+0.8	0.8 ± 0.1	2.20	LQ3 (750 GeV)	$0.4\pm0.1\pm0.1$	$0.5\pm0.1\pm0.1$	$0.7\pm0.1\pm0.1$	$1.1\pm0.1\pm0.1$	6.71	0.59
800	85	850	0.1 ± 0.1	$1.1\pm0.5\pm0.3$	2	+0.8	0.5 ± 0.1	2.80	LQ3 (800 GeV)	$0.2\pm0.1\pm0.1$	$0.4\pm0.1\pm0.1$	$0.5\pm0.1\pm0.1$	$0.8\pm0.1\pm0.1$	7.77	0.61
				Forward c	hannel:	$ \widetilde{\eta} > 0.9$			tī+jets	$29.9 \pm 2.9^{+7.3}_{-7.2}$	$8.8 \pm 1.3^{+3.2}_{-3.4}$	$1.7\pm0.6^{+0.6}_{-0.6}$	$0.4\pm0.3^{+0.9}_{-0.4}$		
200	35	410	4.2 ± 0.5	$72\pm4\pm15$	87	+1.1	_	_	W+jets	$7.4 \pm 1.7^{+5.1}_{-5.1}$	$0.6\pm0.5\pm0.6$	$0.0\pm0.1\pm0.1$	$0.4\pm0.4\pm0.4$		
250	35	410	4.2 ± 0.5	$72\pm4\pm15$	87	+1.1	50 ± 11	0.11	DY+jets	$4.8\pm0.7\pm2.5$	$1.8\pm0.4^{+1.1}_{-0.9}$	$0.5\pm0.2\pm0.3$	$0.4\pm0.2\pm0.2$		
300	50	470	1.8 ± 0.3	$20.3\pm2.2\pm3.9$	23	+0.5	33.4 ± 5.2	0.21	Other backgrounds	$3.1\pm0.9^{+1.8}_{-1.9}$	$0.2\pm0.1^{+0.8}_{-0.3}$	$0.2\pm0.1\pm0.4$	$0.1\pm0.1^{+0.1}_{-0.2}$		
350	50	490	1.7 ± 0.3	$18.2\pm2.0\pm3.5$	19	+0.2	18.5 ± 2.5	0.29	Total N_{Bkg}^{Exp}	$45.2 \pm 3.5^{+9.4}_{-9.3}$	$11.5 \pm 1.4^{+3.4}_{-3.6}$	$2.5\pm0.6\pm0.8$	$1.2\pm0.5^{+1.0}_{-0.6}$		
400	65	680	0.7 ± 0.2	$2.7\pm0.7\pm0.6$	1	-0.9	6.1 ± 1.0	0.21	N ^{Obs}	44	15	1	0		
450	65	700	0.7 ± 0.2	$2.3\pm0.6\pm0.4$	1	-0.7	3.8 ± 0.5	0.28	Z-score	-0.1	+0.7	+0.8	-1.0		
500	65	770	0.5 ± 0.1	$1.2\pm0.4\pm0.2$	1	0.0	1.6 ± 0.2	0.24	2 50010	011	100	1010	110		
550	65	800	0.4 ± 0.1	$0.9\pm0.4\pm0.2$	1	+0.3	1.2 ± 0.2	0.32							
600	65	850	0.3 ± 0.1	$0.6\pm0.3\pm0.1$	1	+0.6	0.6 ± 0.1	0.29							
650	65	850	0.3 ± 0.1	$0.6\pm0.3\pm0.1$	1	+0.6	0.3 ± 0.1	0.26							
700	85	850	0.1 ± 0.1	$0.4\pm0.2\pm0.1$	0	-0.4	0.2 ± 0.1	0.28							
750	85	850	0.1 ± 0.1	$0.4\pm0.2\pm0.1$	0	-0.4	0.1 ± 0.1	0.35							

Category A

 0.1 ± 0.1

85

850

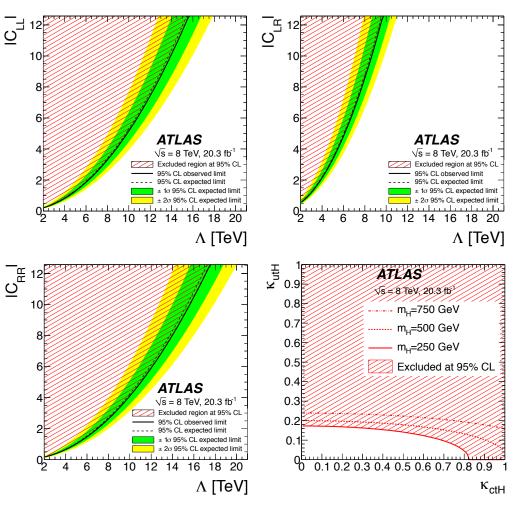
800

arXiv: 1503.09049 CMS Collaboration

 $0.4\pm0.2\pm0.1$

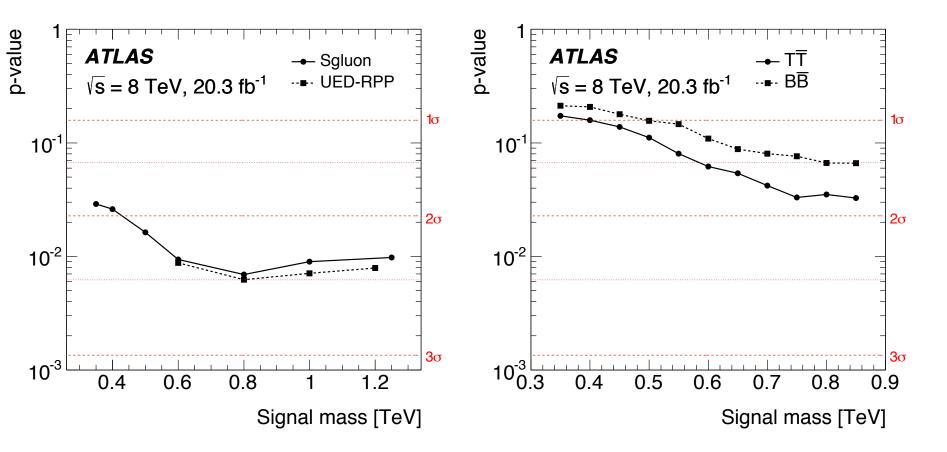
0

-0.4


 0.1 ± 0.1 0.36

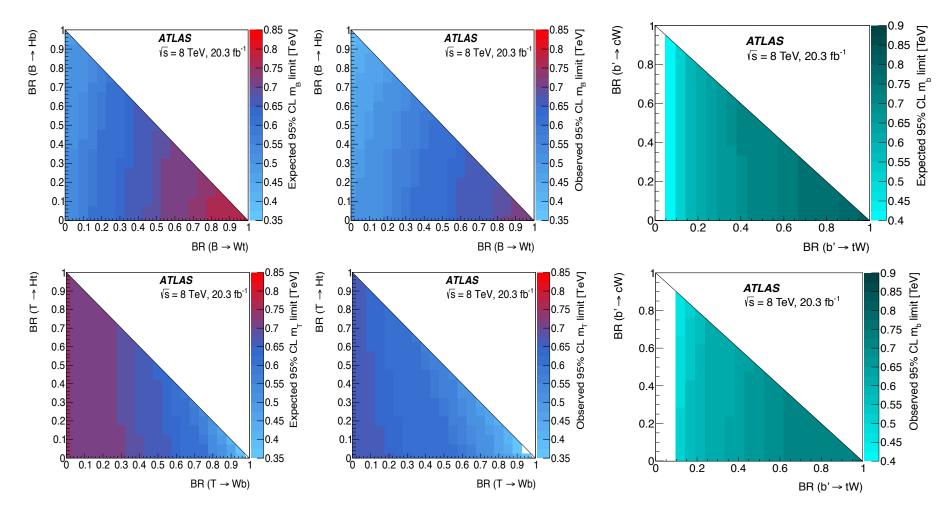
Category B

Backup slides


$$\begin{aligned} \mathcal{L}_{tt} &= \frac{1}{2} \frac{C_{\mathrm{LL}}}{\Lambda^2} (\bar{u}_{\mathrm{L}} \gamma^{\mu} t_{\mathrm{L}}) (\bar{u}_{\mathrm{L}} \gamma_{\mu} t_{\mathrm{L}}) + \frac{1}{2} \frac{C_{\mathrm{RR}}}{\Lambda^2} (\bar{u}_{\mathrm{R}} \gamma^{\mu} t_{\mathrm{R}}) (\bar{u}_{\mathrm{R}} \gamma_{\mu} t_{\mathrm{R}}) \\ &- \frac{1}{2} \frac{C_{\mathrm{LR}}}{\Lambda^2} (\bar{u}_{\mathrm{L}} \gamma^{\mu} t_{\mathrm{L}}) (\bar{u}_{\mathrm{R}} \gamma_{\mu} t_{\mathrm{R}}) - \frac{1}{2} \frac{C_{'\mathrm{LR}}}{\Lambda^2} (\bar{u}_{\mathrm{La}} \gamma^{\mu} t_{\mathrm{Lb}}) (\bar{u}_{\mathrm{Rb}} \gamma_{\mu} t_{\mathrm{Rab}}) + \mathrm{h.c.} \end{aligned}$$

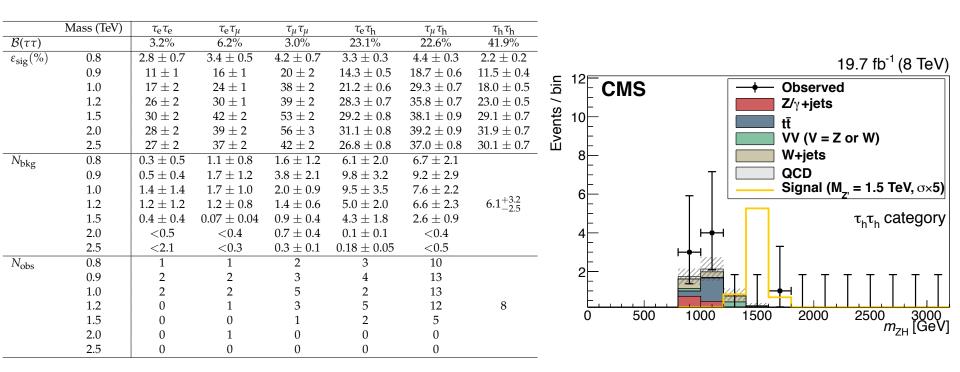
 $\mathcal{L}_{\text{FCNC}} = \kappa_{utH} \bar{t} H u + \kappa_{ctH} \bar{t} H c + \text{h.c.}$

Backup slides


Probability for the data in the four-top-quark signal regions (SR4t0-SR4t4)

arXiv: 1504.04605 ATLAS Collaboration

Backup slides

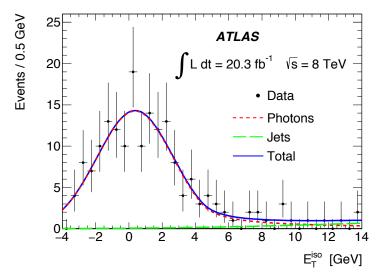


arXiv: 1504.04605

EXO: Search for narrow high-mass resonances decaying to Z and Higgs bosons

Backup slides

arXiv: 1502.04994 CMS Collaboration

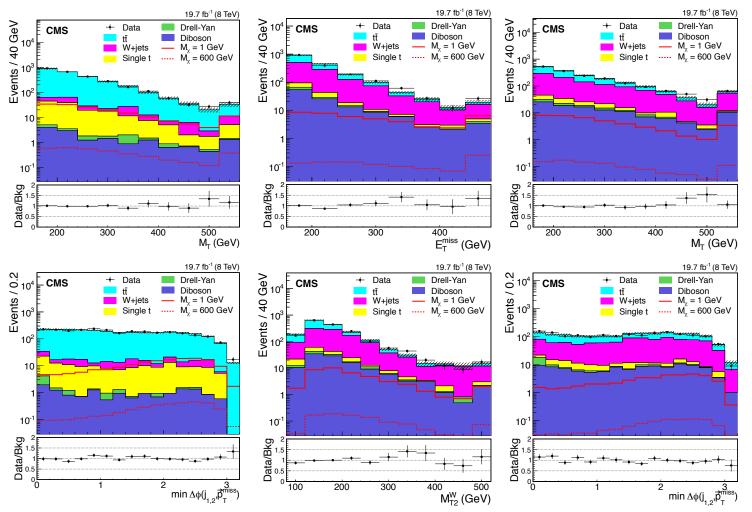


EXO: Search for high-mass diphoton resonances

Backup slides

Source	Uncertainty in signal yield [%]
Integrated luminosity	2.8
MC statistics	1.0
Trigger efficiency	1.0
Photon ID efficiency	3.0
Photon isolation	0.3–2.1
efficiency	(for $m_{G^*} = 500-3000 \text{ GeV}$)
Total	≈5

Mass window	Background ex	Background expectation (number of events)							
[GeV]	Irreducible	Reducible	Total	events					
[179, 409]	23800 ± 2400	9100 ± 2400	32866	22866					
Control region	23800 ± 2400	9100 + 2400	52800	32866					
[409, 513]	1070 ± 110	400 ± 100	1463 ± 27	1465					
[513, 596]	369 ± 37	129 ± 34	498 ± 12	524					
[596, 719]	240 ± 24	74 ± 20	314.4 ± 8.8	335					
[719, 805]	75.8 ± 7.7	20.6 ± 5.5	96.4 ± 3.2	99					
[805,901]	46.6 ± 4.8	11.5 ± 3.2	58.1 ± 2.1	60					
[901, 1009]	28.2 ± 3.0	6.3 ± 1.8	34.5 ± 1.5	33					
[1009, 1129]	16.8 ± 1.9	3.4 ± 1.0	20.2 ± 1.0	15					
[1129, 1217]	6.92 ± 0.89	1.35 ± 0.46	8.27 ± 0.45	7					
[1217, 1312]	4.85 ± 0.73	0.88 ± 0.39	5.74 ± 0.36	3					
[1312, 1415]	3.11 ± 0.54	0.58 ± 0.28	3.69 ± 0.25	0					
[1415, 1644]	3.39 ± 0.59	0.61 ± 0.29	4.00 ± 0.32	5					
[1644, 3000]	2.12 ± 0.61	0.41 ± 0.22	2.52 ± 0.30	3					

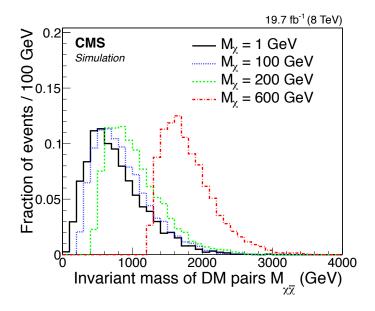

=			Observed				
_	$k/\overline{M}_{\rm Pl}$	-2σ	-1σ	central	+1 σ	$+2\sigma$	limit [TeV]
_	0.010	1.45	1.38	1.30	1.20	1.11	1.41
	0.020	1.80	1.78	1.70	1.60	1.49	1.62
	0.030	2.02	2.01	1.96	1.86	1.77	1.92
	0.040	2.17	2.16	2.14	2.04	1.94	2.15
	0.050	2.29	2.28	2.27	2.17	2.08	2.28
	0.060	2.38	2.38	2.37	2.27	2.19	2.38
	0.070	2.47	2.46	2.45	2.37	2.27	2.46
	0.080	2.54	2.54	2.53	2.46	2.38	2.54
	0.090	2.61	2.60	2.60	2.53	2.45	2.60
_	0.100	2.67	2.66	2.66	2.60	2.51	2.66

B2G: Dark Matter in association with top-quark pairs in the single lepton final state

Backup slides

arXiv: 1504.03198 CMS Collaboration

B2G: Dark Matter in association with top-quark pairs in the single lepton final state


Backup slides

Source of systematic uncertainties	Relative uncertainty on	Source	Yield (\pm stat \pm syst)
5	total background (%)	tt	$8.2 \pm 0.6 \pm 1.9$
50% normalization uncert. of other bkg in deriving SFs	10	W	$5.2 \pm 1.8 \pm 2.1$
SF _{W+jets} (CR tests)	13		
tt+jets top-quark $p_{\rm T}$ reweighting	3.9	Single top	$2.3\pm1.1\pm1.1$
Jet energy scale	4.0	Diboson	$0.5\pm0.2\pm0.2$
Jet energy resolution	3.0	Drell-Yan	$0.3\pm0.3\pm0.1$
b-tagging correction factor (heavy flavour)	1.0	Total Bkg	$16.4 \pm 2.2 \pm 2.9$
b-tagging correction factor (light flavour)	1.8	U	
Pileup model	2.0	Signal	$38.3 \pm 0.7 \pm 2.1$
PDF	2.6	Data	18

$$L_{\text{int}} = \sum_{q} \sum_{i} C_{q\,i} \left(\overline{q} \Gamma_{i}^{q} q \right) \left(\overline{\chi} \Gamma_{i}^{\chi} \chi \right)$$

$$L_{\rm int} = \frac{m_{\rm q}}{M_*^3} \overline{q} q \overline{\chi} \chi$$

CMS Collaboration

