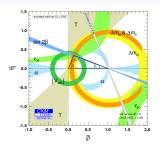
Conclusions and Outlook

Bounds on New Physics from EDMs

Martin Jung

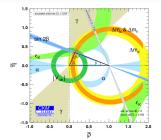

Introduction

Conclusions and Outlook

Motivation

Flavour and CP violation in the SM:

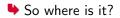
- CKM describes flavour and CP violation
- Extremely constraining, one phase
- Especially, K and B physics agree
- Only tensions so far $(R_K, P_5', B \rightarrow D^{(*)}\tau\nu, h \rightarrow \tau\mu, \ldots)$
- Works well!

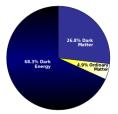

Introduction

Conclusions and Outlook

Motivation

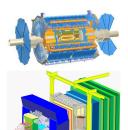
Flavour and CP violation in the SM:


- CKM describes flavour and CP violation
- Extremely constraining, one phase
- Especially, K and B physics agree
- Only tensions so far $(R_K, P_5', B \rightarrow D^{(*)}\tau\nu, h \rightarrow \tau\mu, \ldots)$
- Works too well!



We expect new physics (ideally at the (few-)TeV scale):

- Baryon asymmetry of the universe
- Hierarchy problem
- Dark matter and energy

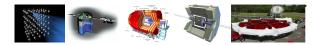

^{• ...}

The Quest for New Physics

Three of the main strategies (missing are e.g. ν , DM, astro,...):

A new era in particle physics!

Direct search:


- Tevatron, LHC (Run 2 is coming!)
- Maximal energy fixed

Indirect search, flavour violating:

- LHCb, Belle II, BES III, NA62, MEG, ...
- Maximal reach flexible

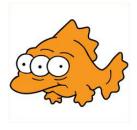
Indirect search, flavour diagonal:

- EDM experiments, g-2, ...
- Maximal reach flexible, complementary to flavour-violating searches

Introduction

Back to basics: EDMs

Classically: $\mathbf{d} = \int d^3 r \rho(\mathbf{r}) \mathbf{r}$, $U = \mathbf{d} \cdot \mathbf{E}$ QM: non-degenerate ground state implies $\mathbf{d} \sim \mathbf{j}$ $\mathbf{b} \mathbf{d} \neq \mathbf{0}$ implies T- and P-violation! \mathbf{b} CP-violation for conserved CPT \mathbf{b} Search for linear shift $U = d\mathbf{j} \cdot \mathbf{E}$


Non-relativistic neutral system of point-like particles:

- Potential EDMs of constituents are shielded! [Sandars'65]
- Sensitivity stems from violations of the assumptions
 - Paramagnetic systems: relativistic enhancement
 - Diamagnetic systems: finite-size effects

The curious case of the One-Higgs-Doublet Model

Flavour-sector of the SM is special (\rightarrow) :

- Unique connection between Flavourand CP-violation
- FCNCs highly suppressed
- FConservingNCs with CPV as well!

• $d_e^{SM} \lesssim 10^{-38} e \, {\rm cm}$ [Khriplovich/Pospelov '91] Well below foreseeable tests!

EDMs extremely sensitive tests for new sources of CPV:

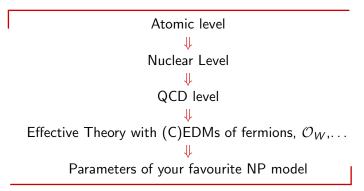
- Experimentally e.g. $d_n^{
 m exp} \lesssim 3 imes 10^{-26} e\,{
 m cm}$ [Baker et al. '06]
- Background-free precision-laboratory for NP!
 (For *n* assuming dynamical solution for strong CP)
- Probe energy scales beyond the reach of LHC!

EDMs and New Physics: Generalities

Sakharov's conditions ('67): NP models necessarily involve new sources of CPV!

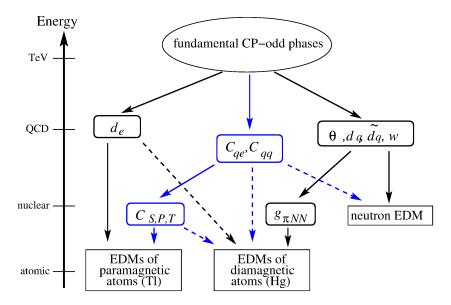
- This does not *imply* sizable EDMs
- However, typically (too) large EDMs in NP models
- Generic one-loop contributions excluded (→ SUSY CP-problem)
- EDMs test combination of flavour- and CPV-structure

EDMs important on two levels:


- "Smoking-Gun-level": Visible EDMs proof for NP
- Quantitative level:

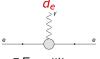
Setting limits/determining parameters

Theory uncertainties are important!


Relating NP parameters and experiment

- Most stringent constraints from neutron, atoms and molecules
- shielding applies
- Limits usually displayed as allowed regions
- Conservative uncertainty-estimates important

- Each step potentially involves large uncertainties!
- 4/5 steps model-independent \Rightarrow series of EFTs

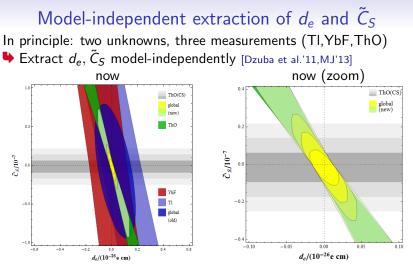

Schematic EFT framework [Pospelov/Ritz'05]

The EDM in heavy paramagnetic systems

Two main contributions, enhanced by Z^3 : [Sandars'65, Flambaum'76]

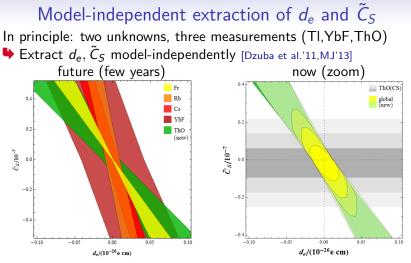
- \tilde{C}_S : CP-odd Electron-Nucleon interaction
- Atoms: typically polarized in external field
- Molecules: aligned in external field
 - Exploit huge internal field

$$\bar{e}F_{\mu\nu}\sigma^{\mu\nu}\gamma_5 e$$


For molecules: energy shift $\Delta E = \hbar \omega$ with

$$\omega = 2\pi \left(rac{W_d^M}{2} d_e + rac{W_c^M}{2} ilde{C}_S
ight) \, .$$

Molecule	$W_d^M/10^{25} \mathrm{Hz}/e\mathrm{cm}$	W_c^M/kHz
YbF	-1.3 ± 0.1	-92 ± 9
ThO	-3.67 ± 0.18	-598 ± 90



[Results entering: Nayak/Chaudhuri'07,'08,'09; Dzuba et al.'11, Meyer/Bohn'08,Skripnikov et al.'13, Fleig/Nayak'14;Averages: MJ'13, MJ/Pich'14]

Problems: Aligned theory bounds, ThO precision unmatched

- Option: impose ω_{ThO}(*C̃_S*)|_{de=0} ≤ n × ω^{exp}_{ThO}, n = 1, 2, 3...
 ▶ n=1 restriction: |d_e| ≤ 0.16 × 10⁻²⁷ e cm (95% CL)
- In the future: use additional measurements

Problems: Aligned theory bounds, ThO precision unmatched

- Option: impose ω_{ThO}(*C̃_S*)|_{d_e=0} ≤ n × ω^{exp}_{ThO}, n = 1, 2, 3...
 ▶ n=1 restriction: |d_e| ≤ 0.16 × 10⁻²⁷ e cm (95% CL)
- In the future: use additional measurements

EDMs of Mercury and the neutron

Situation more complicated than for paramagnetic systems:

- Potential SM contribution: θ
 (→ strong CP puzzle)

 Several measurements necessary
- Contributions from θ, dq, dq, w, C_{S,P,T}, C_{qq}
 ▶ Interpretation usually model-dependent (for model-independent prospects: [Chupp/Ramsey-Musolf'14])
- |d_{Hg}| ≤ 3.1 × 10⁻²⁹ e cm [Griffith et al. '09] very constraining Problem: QCD and nuclear theory uncertainties (x00%!)
 ▶ No conservative constraint on CEDMs left! [MJ/Pich'13]
- $|d_n| \leq 3.3 \times 10^{-26} e$ cm [Baker et al.'06] (prospects: next talk) Theory in better shape, still $\mathcal{O}(100\%)$ uncertainties [Pospelov/Ritz'01,Hisano et al'12,Demir et al'03,'04,de Vries et al'11]
- Progress in theory necessary to fully exploit these measurements!
 Several measurements necessary to extract different contributions

EDMs in NP Models

EDM constraints forbid generic CPV contributions up to two loops huge scales or highly specific structure!

- hardly testable elsewhere
- simple power-counting insufficient (UV sensitivity)
- Model-independent analyses difficult
- strong (model-dependent) constaints of related observables

EDMs unique, both blessing and curse

Remainder of this talk: 2HDMs as an example

Framework for 2HDM contributions

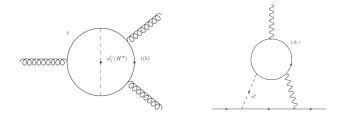
The CPV interactions of the 2nd doublet can generate EDMs

General parametrization for H^{\pm} Yukawas, ς_i complex matrices: $\mathcal{L}_{Y}^{H^{\pm}} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[V_{\varsigma_d} M_d \mathcal{P}_R - \varsigma_u M_u^{\dagger} V \mathcal{P}_L \right] d + \bar{\nu} \varsigma_l M_l \mathcal{P}_R l \right\} + \text{h.c.}$

- Easily matched on your favourite model
 M_i only choice of normalization
- *_i* → numbers: Aligned 2HDM [Pich/Tuzon'09,MJ/Pich/Tuzon'10]

 Comparisons with flavour data in this model

Neutral Higgs exchanges: couplings y_i⁰ (s_i, V)
Additional CPV contributions from the potential
Analysis depends on many unknown parameters


EDMs in 2HDMs

From necessary flavour suppression for a viable model:

- One-loop (C)EDMs: controlled (not tiny) [e.g. Buras et al. '10]
- 4-quark operators small (no $tan^3\beta$ -enhancement)
- Two-loop graphs dominant

[Weinberg '89, Dicus '90, Barr/Zee '90, Gunion/Wyler '90,...]

- Weinberg diagram important for neutron EDM
- Barr-Zee(-like) diagrams dominate other EDMs

Paramagnetic systems: tree-level can be relevant ($C_S \times Z^3$) (light-quark mass \times tree) vs. (top mass \times two-loop)

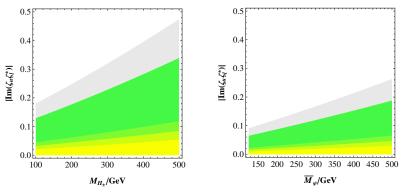
Neutral Higgs contributions in general 2HDMs [MJ/Pich'13]

Contributions typically involve the following sum: $(f_{i}^{(1)}, f_{i}^{(2)}) \in \Gamma(f_{i}^{(2)})$

(f,f': fermions, F(f): family of the fermion)

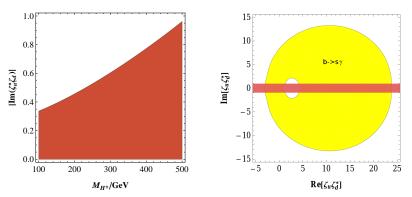
$$\sum_{i} \operatorname{Re}\left(y_{f}^{\varphi_{i}^{0}}\right) \operatorname{Im}\left(y_{f'}^{\varphi_{i}^{0}}\right) = \pm \operatorname{Im}\left[\left(\varsigma_{F(f)}^{*}\right)_{ff}\left(\varsigma_{F(f')}\right)_{f'f'}\right]$$

- R.h.s. independent of the Higgs potential
- Vanishes for equal fermions (universality: equal family)
- Modified by mass-dependent weight factors...
 - but holds for degenerate masses and decoupling limit


CPV in the potential tends to have smaller impact

Approximation for phenomenological analysis:

$$\sum_{i} f(M_{\varphi_{i}^{0}}) \operatorname{Re}\left(y_{f}^{\varphi_{i}^{0}}\right) \operatorname{Im}\left(y_{f'}^{\varphi_{i}^{0}}\right) \to \pm f(\overline{M}_{\varphi}) \operatorname{Im}\left[(\varsigma_{F(f)}^{*})_{ff}(\varsigma_{F(f')})_{f'f'}\right]$$


Bounds from the electron EDM

- Contributions via Barr-Zee diagrams [Bowser-Chao et al.'97]
- Sensitivity to $d_e \sim \operatorname{Im}(\varsigma_{u,33}^* \varsigma_{l,11})$
- Bounds $\operatorname{Im}(\varsigma_u^*\varsigma_l) \lesssim \mathcal{O}(0.05)$
 - Strong despite two-loop suppression and mass factors
- Implies $\text{Im}(\varsigma_l \varsigma_u^*) / M_{H^{\pm}}^2 \le \times 10^{-5} \text{GeV}^{-2}$ (universal ς_l 's)
 - A factor 1000 stronger than (semi)leptonic constraints!

Bounds from the neutron EDM

- Size of Weinberg (charged) and Barr-Zee (neutral) similar
- So far no fine-tuning necessary
- Next-generation experiments will test critical parameter space
- Constraint from Hg potentially a few times stronger
- Comparison with b → sγ: large impact![MJ/Pich'14,MJ/Li/Pich'12]
 EDMs restrict CPV in other modes

Conclusions and outlook

- CPV-sector of NP models uniquely constrained by EDMs
- Difficult to set model-independent constrains
- Quantitative results require close look at theory uncertainties
 Use conservative limits, allowing for cancellations
- Robust, model-independent limit on electron EDM $(\tilde{C}_S \text{ not model-independently negligible})$:

 $|d_e| \le 1.0(0.16) \times 10^{-27} e \,\mathrm{cm}$ (95% CL, Hg/n = 1)

Issue: 2nd competitive measurement missing

- General discussion of 2HDM constraints possible
 \$\varsigma_i\$ key parameters, CPV from potential suppressed
- Very strong constraints from EDMs
 Flavour suppression just sufficient
 CPV in other observables strongly restricted
- Lots of new EDM-results to come (atoms and molecules)
 Might turn limits into determinations!

Conclusions and Outlook

Backup slides

- EDM EFT framework
- 2HDM Framework
- Limits on $|d_e|$ and $|\tilde{C}_S|$
- Expected limits from paramagnetic systems

Framework

Effective Lagrangian at a hadronic scale:

$$\mathcal{L} = -\sum_{f=u,d,e} \left[\frac{d_f^{\gamma}}{2} \mathcal{O}_f^{\gamma} + \frac{d_f^C}{2} \mathcal{O}_f^C \right] + C_W \mathcal{O}_W + \sum_{i,j=(q,l)} C_{ij} \mathcal{O}_{ij}^{4f} ,$$

in the operator basis

$$\mathcal{O}_{f}^{\gamma} = i e \bar{\psi}_{f} F^{\mu\nu} \sigma_{\mu\nu} \gamma_{5} \psi_{f} , \qquad \mathcal{O}_{f}^{C} = i g_{s} \bar{\psi}_{f} G^{\mu\nu} \sigma_{\mu\nu} \gamma_{5} \psi_{f} , \\ \mathcal{O}_{W} = + \frac{1}{3} f^{abc} G^{a}_{\mu\nu} \tilde{G}^{\nu\beta,b} G_{\beta}^{\ \mu,c} , \qquad \mathcal{O}_{ij}^{4f} = (\bar{\psi}_{i} \psi_{i}) (\bar{\psi}_{j} i \gamma_{5} \psi_{j})$$

Options for matrix elements:

- Naive dimensional analysis[Georgi/Manohar '84] : only order-of-magnitude estimates
- Baryon χPT : not applicable for all the operators
- QCD sum rules: used here [Pospelov et al.], uncertainties large

Framework for 2HDM contributions

In 2HDMs, CPV in new interactions can generate EDMs!

Parametrization for H^{\pm} Yukawas, ς_i complex:

$$\mathcal{L}_{Y}^{H^{\pm}} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[V_{\varsigma_{d}} M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d + \bar{\nu}_{\varsigma_{l}} M_{l} \mathcal{P}_{R} l \right\} + \text{ h.c.}$$

- General for coupling matrices ς_i (M_i choice of normalization)
- Numbers ς_i: Aligned 2HDM [Pich/Tuzon'09,MJ/Pich/Tuzon'10]
- · Easily matched on your favourite model

For mass eigenstates $\varphi_i^0 = \{h, H, A\}$, $\mathcal{M}_{diag}^2 = \mathcal{RM}^2 \mathcal{R}^T$, we have

$$\begin{split} \mathcal{L}_{Y}^{\varphi_{i}^{0}} &= -\frac{1}{v} \sum_{\varphi,f} \varphi_{i}^{0} \ \bar{f} \ y_{f}^{\varphi_{i}^{0}} \ M_{f} \mathcal{P}_{R} f \ + \ \mathrm{h.c.} \,, \\ y_{f}^{\varphi_{i}^{0}} &= \mathcal{R}_{i1} + \left(\mathcal{R}_{i2} \pm i \ \mathcal{R}_{i3}\right) \left(\varsigma_{F(f)}^{(*)}\right)_{ff} \quad \mathrm{for} \quad F(f) = d, \ I(u) \,. \end{split}$$

For neutrals: additional CPV contributions from the potential!

Theory uncertainties and the EDM of Mercury

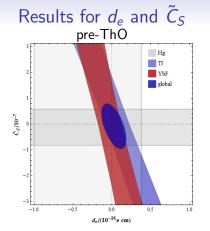
- Extremely precise atomic EDM limit: $|d_{Hg}| \le 3.1 \times 10^{-29} e \text{ cm}$ [Griffith et al. '09]
- However: difficult diamagnetic system
 - Shielding efficient ightarrow sensitivity $\sim d_n, d_{TI}$

$$d_{Hg} \stackrel{Atomic}{=} d_{Hg}(S, C^{N}_{S,P}) \stackrel{Nuclear}{=} d_{Hg}(\bar{g}_{\pi NN}, C^{P,n}_{S,P})$$
$$\stackrel{QCD}{=} d_{Hg}(d^{C}_{f}, C_{qq'}, C^{q}_{S,P})$$

Uncertainties:

Atomic~ 20%, Nuclear~ $\times 00\%$, QCD sum rules~ 100 - 200%No conservative constraint on CEDMs left! [MJ/Pich'13]

$$\begin{split} d_{\rm Hg} &= \left\{ -(1.0\pm 0.2) \left((1.0\pm 0.9) \, \bar{g}^{\,(0)}_{\pi NN} + 1.1 \, (1.0\pm 1.8) \, \bar{g}^{\,(1)}_{\pi NN} \right) \right. \\ &+ \left. (1.0\pm 0.1) \times 10^{-5} \, \left[-4.7 \, \tilde{C}_S + 0.49 \, \tilde{C}_P \right] \right\} \times 10^{-17} \, e \, {\rm cm} \, , \end{split}$$


Progress in theory necessary to fully exploit precision measurements of diamagnetic EDMs

The EDM of the Neutron

Explicit expressions for the neutron EDM [MJ/Pich'13 (refs therein)]

$$\begin{aligned} d_n \Big(d_q^{\gamma}, d_q^{C} \Big) / e &= \left(1.0^{+0.5}_{-0.7} \right) \left[1.4 \left(d_d^{\gamma}(\mu_h) - 0.25 \, d_u^{\gamma}(\mu_h) \right) \right. \\ &+ 1.1 \left(d_d^{C}(\mu_h) + 0.5 \, d_u^{C}(\mu_h) \right) \Big] \left. \frac{\langle \bar{q}q \rangle (\mu_h)}{(225 \text{ MeV})^3} \right. \\ &\left. |d_n(C_W)/e| &= \left(1.0^{+1.0}_{-0.5} \right) 20 \text{ MeV } C_W \,, \\ &\left. |d_n(C_{bd})/e| &= 2.6 \left(1.0^{+1.0}_{-0.5} \right) \times 10^{-3} \text{ GeV}^2 \left(\frac{C_{bd}(\mu_b)}{m_b(\mu_b)} + 0.75 \, \frac{C_{db}(\mu_b)}{m_b(\mu_b)} \right) \,. \end{aligned}$$

Conclusions and Outlook

Competitive with naive extraction:

• Model-independent bounds:

$$|d_e| \leq 1.4 imes 10^{-27} e$$
 cm @95% CL $| ilde{C}_S| \leq 0.72 imes 10^{-7}$

Results for d_e and \tilde{C}_S from ThO [MJ/Pich'14]

Input	$ d_e $ limit (95% CL)	$ ilde{\mathcal{C}}_{\mathcal{S}} $ limit (95% CL)
Result w/o ThO [MJ'13]	$1.4 imes 10^{-27} e{ m cm}$	$7 imes 10^{-8}$
Including ThO, \tilde{C}_{S} Hg	$1.0 imes 10^{-27} e\mathrm{cm}$	$7 imes 10^{-8}$
Including ThO, \tilde{C}_S ThO ($n = 3$)	$0.35 imes10^{-27}e\mathrm{cm}$	$2.3 imes10^{-8}$
Including ThO, \tilde{C}_S ThO $(n = 2)$	$0.25\times 10^{-27} e\mathrm{cm}$	$1.6 imes10^{-8}$
Including ThO, $ ilde{C}_{S}$ ThO $(n=1)$	$0.16 imes 10^{-27} e{ m cm}$	$0.8 imes 10^{-8}$
ThO only, $\tilde{C}_S = 0$, 90% CL	$0.089 imes 10^{-27} e { m cm}^{\dagger,\ddagger}$	$0.6 imes 10^{-8,\ddagger}$

Table : New limits on the electron EDM and \tilde{C}_S , including the measurement in the ThO system [Baron et al,'13]. [†]: Using W_d from [Skripnikov et al.'13]. [‡]: Theory errors neglected.

Turning the argument around

Other limits not relevant to global fit
Use results to conservatively bound their EDMs (ThO not yet included)

System	Allowed range (theory)	Experimental bound on $ d_X $
Cs	$[-1.6, 2.0] imes 10^{-25}$	$1.4 imes 10^{-23}$ [Murthy et al.'89]
Rb	$[-3.1, 4.1] imes 10^{-26}$	$1 imes 10^{-18}$ [Ensberg et al.'67]
	unpublished:	$(1.2 imes 10^{-23})$ [Huang-Hellinger'87]
Fr	$[-1.3, 1.5] imes 10^{-24}$	<u> </u>

Several orders of magnitude below present limits!

Experiments aiming at even better sensitivity:

- Important progress to be expected
- Above limits "sanity check" for future measurements