第3回 学術創成 研究課題「Tレプトン物理の新展開」評価委員会 Nagoya March 25/26, 2009

CP violation in $\tau \rightarrow v K \pi$

Markus Bischofberger Nara Women's University

Outline

- Motivation
- Theory
 - Differential decay width
 - CP violation
- Observables
- MC Results
- Parameterization of spectral functions
- Angular analysis
- Summary

Motivation

- CP violation has only been observed in meson systems and in Standard Model it is generally forbidden in the leptonic sector
- CPV in tau decays would be a clear sign for new physics
- CLEO has published limits for $\tau \rightarrow \pi \pi^0 v$ and $\tau \rightarrow K \pi v$ from an analysis of data corresponding to 13.3fb⁻¹

The data accumulated at Belle (895fb⁻¹) should allow for a significant improvement of the current limits

Theory

In the Standard Model:

$$H_{SM} = \sin \theta_c \frac{G}{\sqrt{2}} \quad [\bar{v} \gamma_{\alpha} (1 - \gamma_5) \tau] \quad [\bar{s} \gamma^{\alpha} u] + h.c.$$

- the hadronic current can be described with vector and scalar spectral functions F(Q²) and F_s(Q²) which are related to the Kπ resonance spectrum
- CPV could be introduced if the decay is also possible via the exchange of a scalar Boson, e.g. a charged Higgs (SUSY):

$$H_{CP}^{(0)} = \sin \theta_c \frac{G}{\sqrt{2}} \quad [\bar{v}(1+\gamma_5)\tau] \quad \eta_s[su] \quad + \quad h.c.$$

η_s complex coupling constant

 the scalar hadronic current can be described with an additional spectral function F_H(Q²)

Differential Decay Width

$$d\Gamma(\tau^{-} \to K \pi \nu_{\tau}) = \left\{ \bar{L}_{B} W_{B} + \bar{L}_{SA} W_{SA} + \bar{L}_{SF} W_{SF} + \bar{L}_{SG} W_{SG} \right\}$$
$$\frac{G^{2}}{2m_{\tau}} \sin \theta_{c} \frac{1}{(4\pi)^{3}} \frac{(m_{\tau}^{2} - Q^{2})^{2}}{m_{\tau}^{2}} |\vec{q}_{1}| \frac{\mathrm{d}Q^{2}}{\sqrt{Q^{2}}} \frac{d\cos \theta}{2} \frac{d\alpha}{2\pi} \frac{d\cos \theta}{2}$$

all angular and polarization dependence is in L_X functions, W_X functions contain dependence on spectral functions and Q²

$$W_{B}[\tau^{-}] = 4(\vec{q_{1}})^{2}|F|^{2}$$

$$W_{SA}[\tau^{-}] = Q^{2}|\tilde{F}_{S}|^{2}$$

$$W_{SF}[\tau^{-}] = 4\sqrt{Q^{2}}|\vec{q_{1}}|\Re(F\tilde{F}_{S}^{*})$$

$$W_{SG}[\tau^{-}] = -4\sqrt{Q^{2}}|\vec{q_{1}}|\Im(F\tilde{F}_{S}^{*})$$

contribute to hadronic mass spectrum

contributes to angular distributions but cancels out if we average over angles

only observable for polarized τ and if neutrino direction can be reconstructed

Hadronic function are theoretically not well known but have to be measured

Markus Bischofberger

25/03/2009

CP violation

CPV due to exchange of scalar boson can be included in the scalar spectral function:

$$\tilde{F}_{S}(Q^{2}) = F_{S}(Q^{2}) + \frac{\eta_{S}}{m_{T}}F_{H}(Q^{2})$$
Standard Model
W exchange
Scalar boson
exchange

 Using equation of motion for quarks (Dirac equation) F_H can be expressed in terms of the Standard Model F_S:

$$F_H(Q^2) - \frac{Q^2}{m_u - m_s} F_S(Q^2)$$

- Not very nice because it contains quark masses but gives some guidance:
 - Using $F_{H} = Q^{2}F_{s}$ absorb normalization in coupling η_{s}

We need to know form of spectral functions F and F_s

Spectral Functions

- Spectral functions have to be determined experimentally
- Assume spectral functions to be sum of Breit-Wigner shapes for vector and scalar resonances in the hadronic mass range
- $\tau \rightarrow \nu K_s \pi$ decay spectrum has recently been measured by Belle
- Vector and scalar spectral functions have been determined from a fit to the mass spectrum
 - dominant vector Meson K(892)
 - small contribution of scalar mesons K*₀(800) and K*₀(1430)
- Fit solution is however not unique (will come back to this later)

Measurement at Belle

- Belle has accumulated almost 900 fb⁻¹ of data or ~800*10⁶ tau pairs
- Tau pairs can be selected by using leptonic decays of one tau:

- Almost all taus decay into 1 (1P) or 3 (3P) charged particles (99.9%)
 - low multiplicity
 - Missing Energy
- Background is generally dominated by other tau decay modes
- For CPV measurement where absolute normalization is not so important, tag condition can be relaxed to 1P

$(K\pi)^{\pm}$ Final States

- $\tau^+ \rightarrow K_S \pi^+ \nu$
 - BR=(4.2±0.2)*10⁻³
 - K_S → π⁺π⁻ is reconstructed with help of silicon vertex detector (SVD)
 - total background ~20% mainly from other tau decays including K_S (15%)

• $\tau^+ \rightarrow K^+ \pi v^0$

- BR=4.28±0.15)*10⁻³
- background will be dominated by $\tau^+ \rightarrow \pi^+ \pi^0$ which has a much higher branching fraction (*60)
- requires a very good Kaon/pion separation (~*10-20)
- Maybe further suppression by exploiting momentum asymmetry which results from K/ π mass difference
- maybe difficult but good cross check of results

Observing CPV

- Need to compare cross section of τ^- and τ^+
- under CP: $\eta_{\rm S} \rightarrow \eta_{\rm S}^*$
- CP violating quantities $\Delta W = \frac{1}{2}(W^- W^+)$

$$\Delta W_{SA} = \frac{2Q^2}{m_{\tau}} \Im(F_S F_H^*) \Im(\eta_S)$$

$$\Delta W_{SF} = \frac{4}{m_{\tau}} \sqrt{Q^2} |\vec{q}_1| \Im(F F_H^*) \Im(\eta_S)$$

$$\Delta W_{SG} = \frac{4}{m_{\tau}} \sqrt{Q^2} |\vec{q}_1| \Re(FF_H^*) \Im(\eta_S)$$

CPV effect is linear in $Im(\eta_s)$

results in difference in mass spectrum but assumed to be small and disappears if F_s and F_H have a common phase (generally assumed)

- only observable for phase shift between F and F_H, phase shift is expected though. **best bet!**
- would allow for independent measurement of CPV but only observable for polarized T and reconstructed neutrino direction. no phase shift necessary

Observables

- Since we don't expect to see CPV in the total width or the mass spectrum, we need different observable
- Optimal observable with respect to statistical errors is defined as:

$$\xi^{-} = \frac{\frac{d\Gamma^{\tau^{+}}(p_{t}) - \frac{d\Gamma^{\tau^{+}}(-p_{t})}{d\Pi}(-p_{t})}{\frac{d\Gamma^{\tau^{+}}(p_{t}) + \frac{d\Gamma^{\tau^{+}}(-p_{t})}{d\Pi}(-p_{t})} \equiv \frac{\Delta(p_{t})}{\Sigma(p_{t})} \quad \text{and} \quad \xi^{+}(p_{t}) = \xi^{-}(-p_{t})$$

$$\Gamma/d\Pi$$
 = CPV diff. decay width for τ^{\pm} (Im(η_{s}) = 1)

$$p_i$$
 = momenta of K and π . CP: $p_i \rightarrow - p_i$

 ξ[±] are functions of the measured K and π momenta which we use as a weights for each event and average over all angles:

$$(\langle \xi^{-} \rangle - \langle \xi^{+} \rangle) = \int_{\Delta\Pi} \left(\xi^{-}(p_i) \frac{d\Gamma^{\tau^{-}}}{d\Pi}(p_i) - \xi^{+}(-p_i) \frac{d\Gamma^{\tau^{+}}}{d\Pi}(-p_i) \right) d\Pi = \mathfrak{I}(\eta_{\mathcal{S}}) \int_{\Delta\Pi} \frac{\Delta^2(p_i)}{\Sigma(p_i)} d\Pi$$

equal 0 in Standard Model

d

Observables

- Since we don't expect to see CPV in the total width or the mass spectrum, we need different observable
- Optimal observable with respect to statistical errors is defined as:

$$\xi^{-} = \frac{\frac{d\Gamma^{\tau^{+}}(p_{t}) - \frac{d\Gamma^{\tau^{+}}(-p_{t})}{d\Pi}(-p_{t})}{\frac{d\Gamma^{\tau^{+}}(p_{t}) + \frac{d\Gamma^{\tau^{+}}(-p_{t})}{d\Pi}(-p_{t})} \equiv \frac{\Delta(p_{t})}{\Sigma(p_{t})} \quad \text{and} \quad \xi^{+}(p_{t}) = \xi^{-}(-p_{t})$$

d
$$\Gamma$$
/d Π = CPV diff. decay width for τ^{\pm} (Im(η_{S}) = 1)

$$p_i$$
 = momenta of K and π . CP: $p_i \rightarrow - p_i$

 ξ[±] are functions of the measured K and π momenta which we use as a weights for each event and average over all angles:

$$(\langle \xi^{-} \rangle - \langle \xi^{+} \rangle) = \int_{\Delta \Pi} \left(\xi^{-}(p_{l}) \frac{d\Gamma^{\tau^{-}}}{d\Pi}(p_{l}) - \xi^{+}(-p_{l}) \frac{d\Gamma^{\tau^{+}}}{d\Pi}(-p_{l}) \right) d\Pi = \Im(\eta_{S}) \int_{\Delta \Pi} \frac{\Delta^{2}(p_{l})}{\Sigma(p_{l})} d\Pi$$
equal 0 in Standard Model
$$\xi^{-}(p_{l}) \left(\frac{d\Gamma^{\tau^{-}}}{d\Pi}(p_{l}) - \frac{d\Gamma^{\tau^{+}}}{d\Pi}(-p_{l}) \right)$$
25/03/2009 13

Observables

- Since we don't expect to see CPV in the total width or the mass spectrum, we need different observable
- Optimal observable with respect to statistical errors is defined as:

$$\xi^{-} = \frac{\frac{d\Gamma^{\tau^{-}}}{d\Pi}(p_{t}) - \frac{d\Gamma^{\tau^{+}}}{d\Pi}(-p_{t})}{\frac{d\Gamma^{\tau^{-}}}{d\Pi}(p_{t}) + \frac{d\Gamma^{\tau^{+}}}{d\Pi}(-p_{t})} \equiv \frac{\Delta(p_{t})}{\Sigma(p_{t})} \qquad \text{and} \quad \xi^{+}(p_{t}) = \xi^{-}(-p_{t})$$

d
$$\Gamma$$
/d Π = CPV diff. decay width for τ^{\pm} (Im(η_{S}) = 1)

 p_i = momenta of K and π . CP: $p_i \rightarrow - p_i$

 ξ[±] are functions of the measured K and π momenta which we use as a weights for each event and average over all angles:

Monte Carlo Results

- 100'000 reconstructed $\tau \rightarrow K_s \pi v$ events with lepton tag
- Statistics corresponds to ~700 fb⁻¹
- For Standard Model events observable < ξ is the same for τ^+ and τ^-
- If CPV is present difference in low and high mass range visible
- No background included:
 - non CPV background will decrease sensitivity
 - $(<\xi^+>-<\xi^->) = C^* purity^* Im(\eta_S)$
- Upper limit if no difference is found

Monte Carlo Results

- 100'000 reconstructed $\tau \rightarrow K_s \pi v$ events with lepton tag
- Statistics corresponds to ~700 fb⁻¹
- For Standard Model events observable < ξ is the same for τ^+ and τ^-
- If CPV is present difference in low and high mass range visible
- No background included:
 - non CPV background will decrease sensitivity
 - $(<\xi^+>-<\xi^->) = C^* purity^* Im(\eta_S)$
- If no difference is found:

expected limit: $|Im(\eta_s)| < ~0.1 (90\% CL)$ (estimate from integration over hadronic mass range, purity 80%)

Comparison with CLEO

- CLEO limits (90% CL): -0.172 < ∧ < 0.067 for 13.3fb⁻¹
 - Definition of Λ equivalent to Im(η_{S}) but different normalization
- CLEO only used $F_s=0$ and $F_H=BW(K_0^*(1430))$
 - Λ≈24*Im(η_S)

This translates CLEO limits to

Expect >*10 improvement

"New physics" spectral function F_{H} contributes to hadronic mass spectrum proportional to $(F_{H})^{2}$ (same for T^{-}/T^{+})

At CLEO upper limit this contribution is comparable to what has been measured and assigned to $K_{0}^{*}(1430)$ by BELLE

Forward-Backward Asymmetry

- <ξ> is optimized to find CP violating contribution in chosen model
- definition is rather complicated because it contains functional form of differential cross section
- Another observable for CP violation is the forward-backward asymmetry (β describes direction of Kaon in hadronic rest frame with respect to laboratory frame)

$$A_{FB}^{\tau-}(W) = \frac{\int_0^{\frac{\pi}{2}} d\beta \frac{d\Gamma[\tau^- \to \nu K^- \pi^0]}{dW d\beta} - \int_{\frac{\pi}{2}}^{\pi} d\beta \frac{d\Gamma[\tau^- \to \nu K^- \pi^0]}{dW d\beta}}{\frac{d\Gamma}{dW}}$$

Observable is not as powerful as $<\xi>$ but maybe easier to understand theoretically

Model Dependence

 Size of CPV depends on imaginary part of interference term (non trivial phase required)

$$\Delta W_{SF} = \frac{4}{m_{\tau}} \sqrt{Q^2} |\vec{q}_1| \Im(FF_H^*) \Im(\eta_S)$$

 "New physics" spectral function F_H is related to Standard Model scalar spectral function F_S

$$F_H(Q^2) - \frac{Q^2}{m_u - m_s} F_S(Q^2)$$

- CPV limits will be model dependent
- Knowledge of scalar spectral function F_S is very important for interpretation of CPV results
 - F and F_s are important input for low-energy QCD

Scalar Spectral Function (1)

• The hadronic spectral function in $\tau \rightarrow K\pi v$ have been assumed to be a sum of Breit-Wigner shapes:

$$F(Q^2) = \frac{1}{1+\beta+\chi} \left[BW_{K^*(892)}(Q^2) + \beta BW_{K^*(1410)}(Q^2) + \chi BW_{K^*(1680)}(Q^2) \right]$$

$$F_S(Q^2) = e^{i\phi_S} \left(\kappa \frac{m_K^2 - m_\pi^2}{m_{K_0^*(800)}^2} BW_{K_0^*(800)}(Q^2) + \gamma \frac{m_K^2 - m_\pi^2}{m_{K_0^*(1430)}^2} BW_{K_0^*(1430)}(Q^2) \right)$$

Parameters β , χ , γ (complex) and κ (real) can in principle be determined from measurement of mass spectrum

Belle fit to hadronic spectrum not unique

3 possible solutions cannot be distinguished with used statistics (371fb⁻¹)

- 2 solutions for K^{*}₀(800)+K^{*}(892)+K^{*}₀(1430)
- 1 solution for K*₀(800)+K*(892)+K*(1410)

Mass spectrum not sensitive to phase Φ_s

Scalar Spectral Function (2)

- For 220'000 tau events (~2x current integrated luminosity) little difference between 3 solutions of fit
- Analysis of decay angles can help in order to further distinguish between models
- The decay of polarized $\tau \rightarrow K\pi v$ is fully described by the hadronic mass and 3 angles

- At Belle taus are unpolarized and rest frame of taus is not known because of escaping neutrinos but still possible to reconstruct two angles
- Vector and scalar spectral functions (|F|², |F_S|² and Re(FF_S)) contribute with different angular dependence. Fit of angular distributions in different hadronic mass regions.
- Needs however good understanding of angular dependence of event selection efficiencies (asymmetric detector)

even if tau direction is not known

Can we distinguish models for F and F_S?

- Even in absence of CPV it would be very useful to be able to distinguish between the 3 Belle parameterizations for the spectral functions:
 - 2x [K*₀(800)+K*(892)+K*₀(1430)] and [K*₀(800) +K*(892)+K*(1410)]
- Similar to CPV observable $<\xi>$ we can define an variable $<\xi_{SF}>$ in order to measure the interference term FF_S
- Plots suggest that we should at least be able to distinguish between the two model with K^{*}₀(800)+K^{*}(892)+K^{*}₀(1430)
- Sum of Breit-Wigner shapes is theoretically not entirely sound (unitarity, analycity).
 More restrictions from theory (D. R. Boito, R. Escribano, M. Jamin Eur.Phys.J.C59:821-829,2009)

Conclusion

- CP violation in tau decays would be a clear sign for new physics (Charged Higgs, Supersymmetry)
- Data accumulated at Belle allows for a significant improvement of current limits
- Interpretation of results require knowledge of spectral function describing the decay
 - Requires analysis of angular distributions
- Question about contribution of scalar mesons to hadronic spectrum should be resolved by angular analysis

Monte Carlo

- TAUOLA only includes vector resonances K*(892) and K*(1680)
- Update resonance spectral and include CPV by calculating event weights:

$$w = \frac{\Sigma(L_X W_X^{cp})}{\Sigma \bar{L}_X W_X^{\text{tauola}})}$$

All three Belle parameterizations give very similar mass distributions but are clearly different from TAUOLA

Lots of weights for each event because of 6 models and varying values of η_S

Need to be careful when handling statistics

Sensitivity of $<\xi>$

- Difference $\Delta < \xi > = <\xi^- > <\xi^+ > = C^* Im(\eta_S)$
 - C(W) can be easily determined from signal Monte Carlo
- We cannot subtract backgrounds before averaging unless we know the full angular distribution however we can assume that Δ<ξ>=0
- for purity P in some Kπ mass range: Δ<ξ>=P*C*Im(η_S)
- Overall the purity is around 80% but significantly worse at lower end of mass spectrum: P<50%
- We can search for CPV in several bins and calculate a combined limit

ξ Distributions

- ξ over the whole mass range of the Kπ system
- The distribution is clearly non Gaussian,
- the distribution of <ξ> for sufficient number of events and restricted mass ranges can however be approximated by a Gaussian which will simplify limit calculations

Observable ξ

$$\xi^{-}(p_i) = \frac{\bar{L}_{SF}(\gamma_{VA}, p_i)\Delta W_{SF}(\eta_S = i)}{\Sigma \bar{L}_X(\gamma_{VA}, p_i)W_X(\eta_S = 0)}$$

- ξ is only optimal for one specific model:
 - in order to get best limits for the three Belle parameterizations of F and F_s in principle we have to define three observable
 - for the correct choice of parameters, CPV effect is always positive:

$$\int_{\Delta\Pi} \left(\xi^{-}(p_i) \frac{d\Gamma^{\tau^{-}}}{d\Pi}(p_i) - \xi^{+}(-p_i) \frac{d\Gamma^{\tau^{-}}}{d\Pi}(-p_i) \right) d\Pi = \Im(\eta_S) \int_{\Delta\Pi} \frac{\Delta^2(p_i)}{\Sigma(p_i)} d\Pi.$$

• for simplicity we chose for all models: